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Abstract

infection, autoimmunity, and cancer.

T cells are the central mediators of both humoral and cellular adaptive immune responses. Highly specific receptor-
mediated clonal selection and expansion of T cells assure antigen-specific immunity. In addition, encounters with
cognate antigens generate immunological memory, the capacity for long-term, antigen-specific immunity against
previously encountered pathogens. However, T-cell receptor (TCR)-independent activation, termed “bystander
activation”, has also been found. Bystander-activated T cells can respond rapidly and secrete effector cytokines even in
the absence of antigen stimulation. Recent studies have rehighlighted the importance of antigen-independent
bystander activation of CD4" T cells in infection clearance and autoimmune pathogenesis, suggesting the existence of
a distinct innate-like immunological function performed by conventional T cells. In this review, we discuss the
inflammatory mediators that activate bystander CD4™ T cells and the potential physiological roles of these cells during

Introduction

The immune system is classically divided into the innate
and adaptive arms’. Innate immune cells express invariant
antigen receptors, such as pattern recognition receptors
(PRRs) that recognize conserved molecular patterns of
pathogens. Adaptive immunity is mediated by cells known
as lymphocytes, which have evolved to recognize patho-
gens through highly precise and diverse antigen-specific
receptors generated by gene rearrangement. While innate
immunity generates less specific but rapid inflammatory
responses, adaptive immunity provides long-lasting,
highly specific defense and protection against pathogens
by generating immunological memory®. This dichotomy,
supported by the clonal selection theory and the concept
of antigen processing and presentation, has been accepted
for decades®™*. However, the recent discovery of innate
lymphoid cells (ILCs) has drawn special attention to the
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importance of the innate-like function of lymphocytes.
ILCs are derived from common lymphoid progenitors,
which also give rise to T lymphocytes. ILC subsets,
including ILC1, ILC2, and ILC3, mirror the transcrip-
tional and cytokine profiles of the effector CD4* T-helper
Thl, T2, and Ty17 subsets®. As ILCs are activated by
cytokines rather than antigen receptors, this correlation
suggests the possibility of T cells having an innate-like
capacity. Of note, the concept of antigen-independent
“bystander activation” of conventional T cells has been
previously reported. An increasing body of evidence
suggests that effector/memory T cells can be activated in
the absence of antigen stimulation by pro-inflammatory
mediators®. The antigen-independent activation of
bystander effector/memory CD8" T cells has been shown
to play an important role in immune responses in viral
infection, cancer, and autoimmunity’™”. Although the
bystander activation of CD8" T cells has been recently
reviewed®'?, the key concept of T-cell receptor (TCR)-
independent CD4" T-cell activation has not been well
characterized. In this review, we focus on the under-
standing of the TCR-independent bystander activation of
CD4" T cells and the importance of bystander activation
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in potential immunological roles and therapeutic
approaches during infection, autoimmunity, or cancer.

Overview of bystander CD4" T-cell activation
Traditionally, the activation and differentiation of naive
CD4" T cells into effector T-helper cells require THREE
distinct signals: TCR engagement of antigen peptides
presented by major histocompatibility complex class II
molecules (signal 1) and the interaction of costimulatory
molecules (signal 2) initiate T-cell activation. These acti-
vated naive CD4" T cells further differentiate into distinct
subsets of helper T cells, including Ty1, Ty2, Ty17, Treg,
and Tgy cells, in different cytokine milieus (signal 3), as
defined by their pattern of effector cytokine production
and immunological function'"'?, Compared to conven-
tional T-cell activation, bystander T-cell activation is
independent of TCR signaling®'® (Fig. 1). Bystander
CD4" T cells were first reported in lymphocytic chor-
iomeningitis virus infection, where TCR-independent
proliferation of unrelated CD4" T cells was observed'?.
Bystander proliferation has also been demonstrated with
direct injection of lipopolysaccharide (LPS) or with cyto-
kine stimulation'*'", Interestingly, the TCR-independent
activation of CD4" T cells has primarily been observed in
memory (CD44M8M) cells, while naive (CD44"") cells
exhibit lower reactivity'>™'>. Thus, it appears that cyto-
kines and innate receptors, such as Toll-like receptors
(TLRs), can play important roles in TCR-independent
bystander activation and that effector/memory CD4"
T cells have a lower threshold than naive CD4" T cells,
which indicates that effector/memory CD4" T cells have a
higher probability of undergoing this bystander activation.
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Bystander CD4" T-cell activation: IL-1 family
cytokines and STAT activators

Cytokines are the central mediators that regulate innate
and adaptive immune responses. Previous studies have
revealed that pro-inflammatory cytokines can directly
induce the effector function of T cells®'>'®, Of note,
Interleukin-1 (IL-1) family cytokines (IL-1, Interleukin-18
(IL-18), and Interleukin-33 (IL-33)) and signal transducer
and activator of transcription (STAT) activators (Inter-
leukin-2 (IL-2), Interleukin-12 (IL-12), Interleukin-23 (IL-
23), and Interleukin-27 (IL-27)) appear to be potent
activators of antigen-independent bystander activation of
CD4" T cells (Fig. 2).

Interleukin-1 (IL-1)

IL-1, the first identified interleukin, is a central mediator
of innate and adaptive immune responses'’. IL-1B has
been shown to contribute to the early differentiation and
maintenance of Ti;17 cells by regulating the expression of
IEN regulatory factor (IRF4) and retinoid acid-related
orphan receptor (ROR)yt'®. Importantly, IL-1B can
potently induce cytokine production by effector Tyl7
cells in the absence of TCR engagement'®°, As differ-
entiated Ty17 cells upregulate the expression of IL-23
and IL-12 receptors, IL-1p acts synergistically with IL-23
and IL-12"%"?% In the presence of IL-1B, Ty17 cells can
produce IL-17 and IFN-y in a TCR-independent manner
when stimulated with IL-23"%">" or IL-12%', respectively.
The IL-1B- and IL-23-mediated mechanisms underlying
the bystander activation of Ty17 cells are dependent on
nuclear factor (NF)-«kB and p38 mitogen-activated protein
kinase (MAPK) signaling®®. We and others have shown
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Fig. 1 Antigen-specific vs. bystander T-cell activation. a Antigen-specific T-cell activation requires three distinct signals. Signal 1 is antigen-specific
signaling mediated by T-cell receptor (TCR) engagement of pathogenic peptides presented by major histocompatibility complex (MHC) molecules.
Signal 2 is costimulatory signaling, which is mainly mediated by the interaction of CD28 with one of the B7 molecules (CD80 and CD86). Signal 3 is
polarizing signaling mediated by various cytokine milieus produced by dendritic cells. b In contrast, bystander T-cell activation is the concept of T-cell
activation independent of antigen stimulation. Bystander-activated T cells can respond rapidly to inflammatory mediators (cytokine and TLR
signaling) in a TCR-independent manner. TLR2 Toll-like receptor 2, TLR4 Toll-like receptor 4.
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Stimuli Subsets Effector molecules Immune functions
:t:g Clearance of pathogen infection
Lipoprotein — IFN-y (virus, in\ragellular parasite)
LPS Autoimmunity
EffectorMemory
IL-2 IL-5 Clearance of pathogen infection
IL-33 IL-13 (extracellular parasite)
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IL-1
IL-12 IL-17A
o=
Lipoprotein GM-CSF
LPS EffectorMemory
IL-2 ) )
IL-18 —_— IFN-y Autoimmunity )
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Fig. 2 Stimulatory molecules for antigen-independent bystander activation and functioning of CD4" T cells. Effector/memory CD4™ T cells
(Ty1, T2, and T417) can undergo bystander activation by directly responding to inflammatory cytokines and TLR agonists. These signals induce
effector cytokine production that promotes important pathological responses in autoimmunity and pathogen infections. Naive CD4 " T cells can also
be activated in a TCR-independent manner under the influence of cytokines such as IL-2, IL-18, and IL-27. Bystander activation of naive CD4" T cells
can promote immunosuppressive functions that regulate autoimmune pathogenesis. IL interleukin, IFN-y interferon-y, GM-CSF granulocyte-
macrophage colony-stimulating factor, PD-L1 programmed death-ligand 1, LPS lipopolysaccharide, Ty1 T-helper 1, Ty2 T-helper 2, T417 T-helper 17,
Ty naive CD4T T cell.

that both murine and human memory CD4" T cells
express high levels of interleukin receptor type 1 (IL-
1R1)****, Memory but not naive CD4" T cells primarily
respond to IL-1p in the absence of TCR engagement. This
bystander activation synergizes with IL-23 to induce
pathogenic Tyl7 signature genes (e.g, Csf2, I123r,
Bhlhe40, Ccr6, and Rorc) while downregulating the
expression of nonpathogenic Ty17 signature genes (e.g.,
Foxp3, 1110, and IL6st). Murine models of multiple
sclerosis (MS) (experimental autoimmune encephalo-
myelitis, EAE) have revealed the potential pathogenicity of
antigen-nonrelated memory-like T1;17 cells responding to
IL-1p and IL-23. The recruitment of bystander T cells into
the central nervous system (CNS) and their pathogenic
function were found to be directly mediated by IL-1R1
signaling®*.

Interleukin-18 (IL-18)

IL-18, a member of the IL-1 cytokine family, is a
pleiotropic cytokine potentially capable of inducing
bystander activation of CD4" T cells in both mice and
humans'’. The TCR-independent function of IL-18 has
been shown in various T-helper subsets including Tyl,
T2, and Tyl7 cells'®?V?, 11-18 overexpression in the
murine lungs spontaneously induced effector CD4"
T cells expressing IFN-y, IL-13, and IL-17A without
exogenous antigen challenge”. Effector Tl cells exten-
sively express IL-18 receptor o (IL-18Ra), and signaling
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through this receptor increases the expression levels of
IFN-y and IL-18Ra in direct response to IL-18'. In
addition, IL-18 promotes IL-17A production in Ty17 cells
generated in vitro or in vivo in the absence of TCR
engagement”’. IL-18 has also been demonstrated to
contribute to the bystander activation of both murine and
human naive and memory CD4" T cells to produce high
levels of IFN-y*"*®, Recent studies have identified a major
subset of human mucosal memory CD4" T cells expres-
sing IL-18Ra. IL-18Ra" memory CD4" T cells respond to
IL-18 by producing IFN-y, TNF-q, IL-6, IL-5, IL-13, GM-
CSF, and IL-22 in an antigen-independent manner®”. IL-
18 has been shown to have synergistic effects with various
combinations of cytokines, including IL-2, IL-12, IL-23,
and IL-15. Of note, these “cytokine synergies” were mostly
dependent on IL-18 signaling®®, thus implicating IL-18 as
an important initial mediator of the bystander activation
of antigen-nonrelated CD4" T cells during host defense.

Interleukin-33 (IL-33)

IL-33, an epithelial-derived cytokine in the IL-1 family,
is a particularly potent activator of ILC2s that induces the
production of the effector cytokines IL-5 and IL-13"",
Ty2 cells, which selectively express the IL-33 receptor
(ST2), are another important effector cell type responsive
to IL-33. Previous studies have reported that ST2 is
expressed on Ty2 cells but not on Tyl, Tyl7, or Tyeg
cells'®?"3%, Because of this ST2 expression pattern, T2
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cells are considered to directly respond to IL-33'°***, In

vitro studies have revealed that T2 cells can produce IL-
13 and IL-5 but not IL-4 in response to IL-33 without
TCR engagement. The antigen-independent activation of
Ty2 cells responding to IL-33 was dependent on NF«B
and p38 but independent of nuclear factor of activated
T cells’. Notably, memory Ty2 cells express ST2 at
higher levels than effector Ty2 cells’?®, A murine
infection model demonstrated the innate immunological
function of bystander memory Ty2 cells in allergic
inflammation and protection against early helminth
infection. This bystander activation of airway memory
Ty2 cells was dependent on IL-33 but not on TCR sti-
mulation®®. Furthermore, lung-resident ST2" memory
CD4" T cells have been reported to be involved in IL-33-
induced lung inflammation. Compared with ILC2s, ST2"
memory CD4" T cells were the major contributors to the
pathogenicity of eosinophilic inflammation and func-
tioned by producing IL-5 and IL-13**. Thus, collectively,
these results suggested a distinct innate mechanism of
bystander-activated effector/memory T2 cells in type-2
inflammation that correlates with ILC2s.

Interleukin-2 (IL-2)

IL-2, originally called T-cell growth factor, is a member
of the common y-chain family’’. IL-2 induces
STATS5 signaling, which has important roles in the reg-
ulation of T-cell proliferation and immune responses®®.
Both in vitro and in vivo studies have revealed that IL-2
drives the expansion and proliferation of bystander CD4*
T cells®®*. However, the direct effect of IL-2 on
bystander-activated CD4" T cells is unknown. When
naive murine CD4" T cells are treated with high doses of
IL-2, they can respond to IL-12 and IL-18 to produce
IEN-y in the absence of TCR engagement®’. This result
suggests that high-dose IL-2 stimulation can replace TCR
signaling to activate naive CD4" T cells. Furthermore, IL-
2-mediated STAT5 signaling has been shown to be
important in the TCR-independent activation of Ty2
cells. IL-2 is directly involved in GATA3 and ST2 upre-
gulation in T2 cells, which has a synergistic effect with
IL-33 to drive the production of the effector cytokine IL-
13" Further studies may be necessary to establish the
potential roles of IL-2 in the effector functions of
bystander-activated CD4" T cells.

Interleukin-12 (IL-12)

IL-12 is an important cytokine that induces IFN-y
production and Tyl differentiation from naive CD4"
T cells through STAT4 signaling. Previous studies have
shown that IL-12 is one of the key factors in the induction
of TCR-independent IFN-y production by CD4" T cells
in both mice and humans*”*®, Without antigen stimula-
tion, IL-12 can directly upregulate T-bet and IL-18Ra
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expression in Tyl cells'”. Together with IL-18, IL-12
induces bystander activation of effector Tyl and Tyl7
cells to induce IFN-y production'®*!, Studies of in vivo
mouse models indicate that IL-12 signaling generates and
maintains T-bet™" memory-phenotype (MP) CD4"
T cells. These MP cells rapidly produce IFN-y in response
to IL-12, which provides host resistance against Tox-
oplasma gondii infection in the absence of cognate anti-
gen recognition*’. Thus, IL-12 appears to be an important
inflammatory mediator of bystander T-cell responses in
type-1 immunity.

Interleukin-23 (IL-23)

IL-23, a pro-inflammatory cytokine belonging to the IL-
12 family, is essential for the generation of pathogenic
Tyl7 cells* *°, IL-23 upregulates the expression of
transcription factors, such as RORyt and T-bet, and
induces effector molecules, including IL-17A, IFN-y, GM-
CSF, and IL-22, by activating the JAK2/STAT3 signaling
pathway*®>~*. We and others have shown that IL-23 alone
cannot induce TCR-independent activation of effector/
memory CD4" T cells'”*"**, However, in the presence of
IL-1pB, IL-23 increases the expression and production of
the effector cytokines IL-17A, IEN-y, GM-CSF, and IL-22.
IL-1B appears to be an important factor in the initial
upregulation of IL-23R expression, and compared with
either of these two cytokines alone, cotreatment with IL-
1B and IL-23 significantly increases the expression levels
of both IL-1R1 and IL-23R, indicating the existence of
positive feedback between IL-1 and IL-23>*. Further stu-
dies are necessary to reveal the distinct mechanisms by
which IL-1p and IL-23 transduce antigen-independent
signals to effector/memory CD4" T cells.

Interleukin-27 (IL-27)

IL-27 is a member of the IL-12 family of hetero-
dimeric cytokines that have immunosuppressive func-
tions. IL-27 can inhibit pro-inflammatory cytokine
production by effector T cells, including Ty1, T2, and
Ty17 cells*®. Of note, naive CD4" T cells are reported
to express IL-27R, whose expression is downregulated
in the presence of TCR signaling. IL-27 can directly
upregulate the expression of CD274, which encodes
PD-L1, an immune checkpoint inhibitor that binds to
PD-1, on naive CD4" T cells in a STAT1-dependent
manner®, IL-27-primed naive T cells inhibit Ty17
differentiation by expressing PD-L1, which ameliorates
the development of autoimmune encephalomyelitis>°.
Hence, IL-27 can induce bystander activation of naive
CD4" T cells, leading to acquisition of antigen-
independent inhibitory function. This suggests a
potent role for the antigen-independent regulatory
function of T cells during inflammation, which merits
further investigation.
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Induction of bystander CD4" T-cell activation
through TLR signaling

TLRs are one of the key participants in innate immu-
nity. The discovery and functional characterization of
TLRs furthered our understanding of how innate immune
cells rapidly respond to microbial pathogen invasion®".
Recent studies, however, demonstrate that T cells can
express a variety of TLRs®”. Direct activation of TLR
signaling in effector/memory CD4" T cells induces
innate-like effector function (Fig. 2).

TLR2

TLR2 is an important PRR for the recognition of bac-
terial lipoteichoic acid, lipoproteins, and peptidoglycans®?.
Previous studies have demonstrated the functional role of
TLR2 in effector/memory CD4" T cells®*°%. TLR2 ago-
nists can act directly on effector Tyl cells to induce
production of IFN-y in the absence of TCR stimulation.
This TLR2-induced IFN-y production can be greatly
enhanced by the combination of the cytokines IL-2 and
IL-12, which induce the activation of MAPK signaling®®.
In addition, T1;17 cells have been linked to the expression
of TLRs, including TLR2 and TLR4. TLR2 signaling,
which has a synergistic effect with IL-23 signaling, directly
induces the TCR-independent activation and proliferation
of Ty17 cells, resulting in the secretion of the effector
cytokines IL-17A and IL-22. A murine model of EAE
revealed that Ty17 cell-intrinsic TLR2 activation is
important for the pathogenesis of autoimmune neuroin-
flammation®’. TLR2 stimulation has been shown to
impair the suppressive function of regulatory
T cells®*****, Although TLR2 signaling drives Treg cell
glycolysis and proliferation, it reduces the suppressive
capacity in an mTORC1-dependent manner. Thus, these
findings demonstrate the potential roles of TLRs in reg-
ulating T, metabolism to balance proliferation and
suppressive function®’. In humans, TLR2 is expressed in
memory and activated CD4" T cells®®. In the absence of
antigen stimulation, human memory CD4" T cells have
been reported to respond to TLR2 agonists with higher
IFN-y production than that achieved by naive CD4"
T cells®*®,

TLR4

TLR4 is a receptor that recognizes for gram-negative
bacterial LPS. LPS stimulation has been reported to
enhance the proliferation and survival of CD4" T cells.
Loss of TLR4 in CD4" T cells abrogated disease symp-
toms in a murine model of EAE by substantially reducing
Ty17 and Tyl cell numbers in the CNS. Thus, TLR4
expression in CD4" T cells is essential in EAE patho-
genesis®. In contrast, TLR4 signaling in CD4" T cells
seems to ameliorate spontaneous colitis. A T-cell transfer
model of colitis showed that LPS stimulation inhibited
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ERK1/2 activation and Tyl responses®®. Regulatory
T cells also selectively express TLR4. LPS treatment
directly increases the survival/proliferation and sup-
pressor efficiency of T,.; cells in the absence of TCR
engagement®”. In human CD4" T cells, LPS stimulation
directly increases adherence to fibronectin in a PKC- and
p38-dependent manner, indicating that TLR4 signaling
can regulate T-cell behavior in inflammation®®. Thus,
TLR signaling is important not only for phagocytic cell
functions and inflammation but also direct stimulation of
effector T cells, which induces activation of antigen-
nonrelated T cells during inflammatory responses.

Bystander CD4" T-cell activation in immunity and
disease
Infection

The published mechanistic studies on infection are
mainly focused on antigen-specific T-cell responses®””°.
However, the importance of bystander CD8" T cells in
viral infections has been recently reviewed'’, indicating an
unexpected role for antigen-nonrelated T cells during
infection. Notably, previous studies have revealed the
potential role of antigen-nonrelated CD4" T cells in
various infectious diseases®>*!>%717%, Bystander activa-
tion of CD4" T cells has been reported during herpes
simplex virus (HSV) infection. Ocular infection with HSV
can cause an immunopathological disease called herpetic
stromal keratitis (HSK) in the corneal stroma’®. HSV-
unrelated CD4" T cells were shown to contribute to
establishing ocular lesions in the absence of antigen spe-
cificity”"”?, thus indicating a significant role for virus-
unrelated CD4™ T cells in HSK pathogenesis. Moreover,
recent studies have shown evidence for bystander acti-
vation of CD4" T cells in parasitic infections®*">°,
Mouse models of Borrelia burgdorferi infection have
demonstrated expansion and activation of Borrelia-unre-
lated TLR2*CD4" T cells in the synovial joint. TLR2
expression on bystander T cells contributed to IFN-y
production and arthritis pathogenesis®®, indicating the
existence of a microbe-induced innate mechanism during
infection. Recently, T2 cells generated in response to the
helminth Ascaris suum were shown to contribute to the
clearance of unrelated Nippostrongylus brasiliensis. OVA-
induced airway T2 cells also were found to participate in
antigen-nonspecific protection against helminth infection.
Such bystander activation of T2 cells was dependent on
IL-33 but not on TCR*?, Furthermore, in Toxoplasma
gondii infection, compared with pathogen-specific effector
T cells, MP CD4" T cells induced rapid IFN-y produc-
tion. MP CD4" T cells provided nonspecific IL-12-
dependent host resistance against infection*'. Taken
together, these findings indicate that antigen-unrelated
CD4" T cells can undergo bystander activation in the
absence of TCR stimulation during infection, which could
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be implicated in both protective and pathogenic immune
responses.

Autoimmunity

MS, one of the most common autoimmune diseases, is
an inflammatory demyelinating human autoimmune dis-
ease of the CNS’®. Previous studies on EAE, a model of
MS, have reported that myelin-specific Tyl and Ty17
cells mediate the pathogenesis of autoimmune neuroin-
flammation””~”°, However, we and other groups have
shown that the majority of CNS-infiltrating effector CD4™"
T cells in the spinal cord of EAE mice are not specific for
myelin oligodendrocyte glycoprotein (MOG)***°~%2,
These T cells unrelated to MOG expressed high levels of
effector cytokines (IL-17A, IFN-y, and GM-CSF)*.
Murine models of EAE have suggested that effector/
memory CD4" T cells can invade the CNS without
antigen specificity”**>*®, One study reported that T cells
unrelated to myelin contributed to EAE development by
stimulating the function of antigen-presenting cells®.
Furthermore, we recently confirmed that memory-like
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CD4" T cells unrelated to myelin contribute to EAE
pathogenicity by amplifying the production of the effector
cytokines IL-17A, IFN-y, and GM-CSF** (Fig. 3), thereby
indicating a potential role for bystander CD4" T cells in
the pathogenesis of EAE development. GM-CSF, which is
directly regulated by the transcription factor RORyt", is a
well-defined pathogenic cytokine in Tyl7-related dis-
eases, including EAE*™®” and MS®. Interestingly, over-
expression of GM-CSF in CD4" T cells has been reported
to induce spontaneous neuroinflammation regardless of
antigen specificity. The transcription factor Bhlhe40,
whose expression is a characteristic of encephalitic Ty17
cells, was primarily expressed in CNS-infiltrating effector
T cells unrelated to MOG®*>®, As further studies have
revealed that IL-1P is one of the key cytokines that
directly induces GM-CSF and Bhlhe40 expression45’82’90,
Bhlhe40 and GM-CSF may be potent pathogenic media-
tors of the bystander activation of CD4" T cells
responding to IL-1B. In humans, the CD4" T cells of
patients with MS have been reported to significantly
express the cytokine receptor IL-1R1 and TLRs, including
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Fig. 3 IL-1B and IL-23 induce pathogenic function in bystander-activated memory-like CD4" T cells in autoimmune neuroinflammation. IL-
1B and IL-23 induce innate-like pathogenic function in memory-like CD4™ T cells that are not specific for myelin. Along with myelin-specific effector
T cells (T41 and T17), bystander memory-like CD4™ T cells contribute to the development of autoimmune pathogenesis by increasing IL-17A, IFN-y,
and GM-CSF levels in the CNS. Thus, bystander-activated memory-like CD4™ T cells responding to IL-18 and IL-23 perform a pathogenic role in an
antigen-independent manner in autoimmune encephalomyelitis. IL interleukin, IFN-y interferon-y, GM-CSF granulocyte-macrophage colony-
stimulation factor, IL-1R1 interleukin-1 receptor type 1, IL-23R interleukin-23 receptor, RORyt RAR-related orphan receptor gamma, CCR6 chemokine
receptor 6, Ty1 T-helper 1, Ty17 T-helper 17, CNS central nervous system.
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TLR2 and TLR4, indicating the potential of CD4™ T cells
to exert innate-like function in MS®>°'. TLR agonists
directly induced IL-6, IFN-y, IL-17, and GM-CSF pro-
duction by CD4" T cells in patients with MS>®. Several
groups have also recently reported the protective role of
bystander CD4" T cells in the pathology of CNS inflam-
mation®”%, T-cell-mediated neuroprotection after CNS
injury has been reported to occur in the absence of TCR
engagement. This neuroprotective bystander T-cell
response was dependent on IL-4, which attenuated axo-
nal damage®”. In a study of an EAE murine model, naive
CD4" T cells primed with IL-27 induced PD-L1, which
inhibited severe autoimmune encephalomyelitis®’. Toge-
ther, these findings suggest that bystander CD4" T cells
can contribute to the development of and protection
against autoimmune encephalomyelitis. Further work is
necessary to reveal the precise pathological mechanisms
involving bystander CD4" T cells in various autoimmune
diseases.

Cancer

The role of bystander T cells in anticancer immunity
remains an open question. However, a recent study
revealed that in human lung and colorectal cancers,
tumor-infiltrating CD8" TILs can be antigen nonspecific.
These bystander CD8" TILs, which lacked expression of
CD39, were specific for unrelated viruses including
Epstein—Barr virus, human cytomegalovirus, and influ-
enza virus. The absence of CD39 expression, which
indicates chronic antigen stimulation, suggested a potent
biomarker for bystander T cells in antitumor immunity®.
Interestingly, murine models of cancer have revealed that
CD4" T cells can also infiltrate tumors independent of
antigen specificity. TCR-transgenic murine models have
demonstrated nonspecific T-cell migration and accumu-
lation in tumors. This bystander activation of CD4"
T cells required an effector/memory phenotype®®. In mice
treated with dual costimulation of CD134 (OX40) and
CD137 (4-1BB), bystander activation of effector CD4"
T cells unrelated to the tumor contributed to the anti-
tumor response, although the precise mechanism is
unknown”®, Collectively, these findings demonstrate the
potent role of bystander CD4" T cells in antitumor
immunity and immunotherapy. Further investigation of
the distinct mechanism involving bystander T cells in
tumor pathogenesis may provide a new platform for
understanding cancer immunopathology.

Concluding remarks

Bystander activation of CD4" T cells occurs when
T cells are stimulated by inflammatory mediators such as
cytokines or TLR signaling molecules in the absence of
antigen-specific TCR stimulation. In addition to providing
rapid effector cytokine production, these bystander-
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activated CD4" T cells significantly contribute to dis-
ease pathology, including that of infection, autoimmunity,
and cancer, via their innate-like capacity. In reality, it may
be more than just the few antigen-specific T cells that are
capable of responding to pathogen invasion or related
inflammation. Therefore, the dichotomy of rapidly
responding innate immune cells of low specificity and
highly antigen-specific responsive immune memory cells
may need to be reconsidered. Concerning the importance
of antigen-independent bystander T-cell activation,
numerous questions remain unanswered. Further studies
dissecting the molecular mechanisms driving bystander
T-cell activation and the precise roles of these cells in
immunity will provide new insights to improve the
understanding of the pathological mechanisms of
immune-mediated diseases. In addition, the character-
ization of specific T-cell subsets undergoing bystander
activation needs to be completed. Recently, tissue-
resident memory T cells have emerged as key compo-
nents of immunological memory”. They are the domi-
nant T-cell subsets residing in human tissues (the skin,
lungs, gastrointestinal tract, etc.) that form a front-line
defense against reinfection’®. Being situated within per-
ipheral tissues, Try cells may be ideal subset candidates
capable of responding to local inflammatory cytokines.
Furthermore, identifying distinct and reproducible bio-
markers of bystander T cells is necessary for generating
new therapeutic approaches. Taken together, these stu-
dies will provide a foundation for a better understanding
of the pivotal roles of bystander T-cell activation, thereby
suggesting new directions for the treatment of immune-
mediated diseases.
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