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ABSTRACT

A-to-I RNA editing is an important post-
transcriptional modification, known to be altered in
tumors. It targets dozens of sites within miRNAs,
some of which impact miRNA biogenesis and
function, as well as many miRNA recognition sites.
However, the full extent of the effect of editing on
regulation by miRNAs and its behavior in human
cancers is still unknown. Here we systematically
characterized miRNA editing in 10 593 human sam-
ples across 32 cancer types and normal controls.
We find that the majority of previously reported sites
show little to no evidence for editing in this dataset,
compile a list of 58 reliable miRNA editing sites,
and study them across normal and cancer samples.
Edited miRNA versions tend to suppress expression
of known oncogenes, and, consistently, we observe
a clear global tendency for hypo-editing in tumors,
in strike contrast to the behavior for mRNA editing,
allowing an accurate classification of normal/tumor
samples based on their miRNA editing profile. In
many cancers this profile correlates with patients’
survival. Finally, thousands of miRNA binding sites
are differentially edited in cancer. Our study thus
establishes the important effect of RNA editing on
miRNA-regulation in the tumor cell, with prospects
for diagnostic and prognostic applications.

INTRODUCTION

A-to-I RNA editing by the ADAR enzymes is a process that
alters the content of RNA molecules post-transcriptionally,
by deamination of Adenosines into Inosines (1,2). In many
cellular processes, including translation and splicing, in-
osines are read as guanosines (3). Thus, A-to-I editing can
provide an additional layer of complexity to the transcrip-
tome, diversifying the genetic information beyond the lin-

ear sequence encoded in the genome. However, the majority
of editing activity targets non-coding regions of the RNA
molecules (4,5), and thus has a limited impact on their func-
tion.

Nevertheless, some non-coding RNA sequences do have
important functions, and their editing could therefore play
a significant role in regulation. One class of functional
non-coding RNAs is micro-RNAs (miRNAs). These are
short (∼22nt), endogenous, RNAs molecules that regulate
mRNA expression and translation. miRNA targeting is
conferred by sequence complementarity between the seed
region of the miRNA molecule (positions 2–7) and a recog-
nition site within the target mRNA sequence (6–8). miR-
NAs are known to regulate most protein-coding genes, and
their expression and regulation has been shown to have a
substantial role in development and cancer (9). Accord-
ingly, editing of the miRNA sequence (especially its seed
region) or editing of its recognition sites, are expected to
modify the miRNA-target interaction and have a profound
effect on gene regulation (10–12).

Notably, mature miRNAs are cleaved and processed from
parent RNA molecules that have a distinct double stranded
RNA (dsRNA) secondary structure, the structural mo-
tif preferred by the ADAR enzymes (13,14). Moreover,
DICER, one of the major players in miRNA maturation,
is known to create a complex with ADAR1 (15). Thus, it
may be expected that miRNAs will be extensively edited.
Indeed, a decade ago it was explicitly demonstrated how A-
to-I editing of a single site can alter miRNA target speci-
ficity, leading to changes in targets’ expression levels (12).

Several groups have attempted to systematically map
the miRNA editome. Altogether, these reports documented
editing events in ∼100 human miRNAs. However, the vast
majority of detected sites are edited to a very low level
(<1%), which most likely has no biological implication.
Furthermore, the overlap between the lists of sites reported
by the different studies is rather low, suggesting insufficient
specificity and/or sensitivity.

Earlier this year, Wang et al. (16) have published com-
prehensive analyses of 8595 miRNA-seq samples represent-
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ing 20 cancer types, using a de novo detection method. This
method allowed them to identify 19 editing sites within ma-
ture microRNAs. They were able to experimentally validate
15 of them and to correlate their editing levels with patients’
survival, disease state and tumor subtype. Moreover, they
showed that editing in the miR-200b seed region redirects
its targets to alternate miR-200b role in cancer metastasis.

Here, we take a different, complementary, approach to
screen for editing events using the large scale expression
dataset of The Cancer Genome Atlas (TCGA): 10 593
miRNA-seq samples representing 32 different cancer types
and normal controls (17,18). We complemented the de novo
approach by profiling the editing levels at 58 pre-known,
reliable, miRNA editing sites. Thus, we were able to find
many more cases where editing levels correlate with diag-
nostic and prognostic state, and, more importantly, iden-
tify some general characteristics of the cancer editome, as
well as showing the predictive power of the editing profile.
In contrast with mRNA editing, miRNA editing is globally
suppressed in cancer. Editing profiles may be used to clas-
sify the tissue as normal or cancerous, as well as predict pa-
tients’ prognosis. Furthermore, we study the effect of RNA
editing on miRNA recognition sites within mRNA targets,
and find thousands of sites in hundreds of different genes
in which miRNA recognition sites are differentially edited
in cancer. This previously neglected mode of interaction be-
tween miRNA regulation and RNA editing could therefore
be as important as direct editing of miRNA molecules.

MATERIALS AND METHODS

Data retrieval

10 593 miRNA-seq samples originating from 32 human
cancer types and 23 normal tissue types (Supplementary Ta-
ble S1) were downloaded from ‘The Cancer Genome Atlas’
(TCGA; http://tcga-data.nci.nih.gov) via The Cancer Ge-
nomics Hub (CGHub) (19). Strand-specific 22nt-enriched
sequencing libraries were constructed and sequenced as de-
scribed (18).

Detection of de novo sites

Pre-processing. BAM files were converted to FASTQ us-
ing BEDtools (20), reads with low quality were filtered out
using FASTX. Only reads with length between 15–28 were
kept for the alignment.

Alignment. FASTQ files were aligned to the human refer-
ence genome (hg19) using Bowtie (21) with recommended
parameters as described (22,23).

De novo detection. editing sites were detected using the
Analyze mutation.pl and Binomial analysis.pl scripts (22).
Briefly, for each position along a miRNA we counted the
high-quality (Q ≥ 30) read-nucleotides mapped to it. We
used a binomial test followed by FDR correction in order
to identify locations where the nucleotide distribution can-
not be explained by random sequencing errors (statistically
significant mismatches).

Parameters’ Optimization. Several features might influ-
ence the detection of reliable editing sites (number of
samples, sequencing-depth, miRNA expression levels and
editing-enzyme expression levels). These features vary
across the 55 sample types we analyzed. Hence, we opti-
mized the parameters (minimal editing levels of a mismatch
and minimal percent of samples that supports a mismatch
in a groups of samples from the same type) for each tissue-
type separately. For each group of samples from the same
type the combination of the two parameters with the high-
est ratio of # of mismatches from most abundant type

Total number of mismatches was used.

Calculation of editing levels of known sites across all samples

We collected a list of 129 A-to-I editing sites within mature
human miRNAs from 17 different studies. In order to mea-
sure the editing levels at these sites, we used the same align-
ment of the TCGA data to the human genome and kept
only bases with Phred score Q ≥ 30. We used mpileup for
base calling for each of the known editing sites and calcu-
lated the editing levels as the ratio between the number of
G bases and the sum of A and G bases.

We looked for sites showing editing at a level significantly
higher than 1% (using the binomial test followed by FDR
multiple testing correction) in at least one of the 55 samples
types.

Significant differential editing (between cancer and nor-
mal samples) was determined using the two-tailed Mann–
Whitney test followed by a Benjamini–Hochberg multiple
testing correction.

Prediction of sample state

To show how the editing profile can be used to predict the
sample state we used logistic regression to build the statis-
tical model. We then applied the leave-one-out cross vali-
dation method to assess accuracy. Namely, for each tissue
type we used all samples but one as a training set in order
to determine the parameters of the logistic regression, and
then calculated the probability of a correct prediction for
the left out sample. As usual, different cutoffs result in vary-
ing specificities and sensitivities (see Figure 4D). The overall
success is evaluated by the AUC (area under curve).

Correlation between editing and survival

Kaplan–Meier analysis was applied to test for differences
in survival between patients with high (>median) and low
(≤median) editing levels. P-values were corrected using
FDR.

miRNA target prediction

We predicted the targets of both the unedited and edited
seeds using TargetScan 7 (24), assuming inosines behave like
guanosines. Pathway enrichment was assessed using Inge-
nuity Pathway Analysis (IPA, http://www.ingenuity.com).

Differential editing in miRNA targets

We analyzed RNA-seq data available from TCGA for 9 can-
cer types having tumor samples and matched controls from

http://tcga-data.nci.nih.gov
http://www.ingenuity.com
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the same patients (BLCA, BRCA, COAD, HNSC, KIRC,
LIHC, LUAD, PRAD, THCA, see Supplementary Table
S2). Using the method described in (4) we generated a list
of 70 687 RNA editing events within Alu repeats in 3′UTRs.
In order to find loss of function alterations in miRNA tar-
gets, we have downloaded the human miRNA predicted tar-
gets by TargetScanHuman 7.1 (24), and used ANNOVAR
(25) to find editing sites that modifies these targets. We then
calculated the editing levels of these sites using REDITools
(26) script, trimming 6bp on both sides of the read. Statisti-
cal significance was evaluated using Wilcoxon signed-rank
test, followed by FDR multiple testing correction. To find
miRNA gain alterations which reside within 3′UTR Alu se-
quences, we looked at perfect complementary matches be-
tween editing sites to 8-mer, 7mer-a1 and 7mer-m8 seeds,
and applied the same statistical analysis as described above.

RESULTS

De novo detection lead to small number of sites

Several de novo methods for detecting miRNA editing
based on small-RNA sequencing data were developed re-
cently (22,23,27–38). Basically, they all align the miRNA-
seq reads to the genome, or to a reference miRNA se-
quences, and then look for systematic mismatches where
the reference genomic sequence reads ‘A’ for an adeno-
sine, but the miRNA-seq reads show a ‘G’ for a guano-
sine. Such mismatches could implicate an inosine in the ac-
tual RNA molecule. One might have thought that the tight
dsRNA structure of the primary miRNA molecules would
make them a favourable target of the ADAR enzymes. In-
terestingly, though, only a limited number of editing sites
were found in mature miRNAs, and the editing levels ob-
served are, in most sites, rather low (see below). However,
these studies were typically based on analysis of only a few
samples each (36,38–41), and the overlap between differ-
ent studies is generally low (Supplementary Figure S1). The
low overlap could point to low sensitivity, where each study
finds only a small fraction of the whole set (maybe due to
the limited number of samples). In addition, it may attest
for low specificity, a large number of false detections in each
study, not reproduced in other studies.

In order to clarify the situation, we analyzed here the
large TCGA database, including miRNA-sequencing data
for 10 593 samples originating from 55 different human tis-
sue types (32 different cancer types, and normal controls
for 23 tissues, see Supplementary Table S1), in order to ob-
tain a comprehensive picture of the miRNA editome in nor-
mal and cancerous tissues. We first employed the approach
designed by Alon and Eisenberg (22,35,37), (see Materi-
als and Methods), to detect editing sites de novo. Briefly,
reads were pre-processed, mapped to the pre-miRNAs in
the human genome (hg19) using the Bowtie (21) alignment
tool, and mismatches were called. We applied a binomial
test to remove random sequencing errors, and additional
cutoffs for minimal average editing levels and minimal frac-
tions of samples showing editing. Cutoffs were set to each of
the 55 tissue types separately (see methods). Altogether, 34
154 mismatches were detected, 32 229 (94.3%) of them were
A-to-G mismatches mapped to only 19 unique editing site
(Supplementary Figure S2). All of these 19 locations were

previously reported to be edited. The detection scheme used
here is rather restrictive, and certainly misses some sites (see
below), but considering the large size and wide spectrum of
tissues analyzed, the result suggests that the scope of editing
in mature human miRNAs is rather narrow, and that previ-
ous reports have nearly exhausted the set of miRNA editing
sites. In the following we therefore focus on these previously
reported sites.

Most of previously reported sites exhibits no evidence for edit-
ing in the TCGA dataset

We then tested whether previously reported miRNA editing
sites are observed as edited in our large-scale database (even
if undetected by the de novo approach). We collected a set
of 129 editing sites in human mature-miRNA from 17 dif-
ferent studies (12,23,36,38–51), (Supplementary Table S3),
and measured the editing levels at each site for each of the
TCGA samples (see methods). Notably, only 55 sites have
shown an averaged editing level above 1% in at least one tis-
sue type (Figure 1A), suggesting that many of the previously
reported miRNA editing sites are either edited to a very low
editing level (possibly below biological significant), edited
(or expressed) only in a rare tissue or condition that is not
represented in the large cohort of the TCGA dataset, or are
not edited at all (i.e. being false-positives of the detection
methods used in previous studies). Three additional sites
showed editing levels which were lower but very close to 1%,
and we included them to create a list of 58 high-confidence
miRNA editing sites (Table 1; Figure 1B). Most of these
sites, 48/58 (83%), are located in bona-fide mature miRNAs
as defined by the MirGene database (52), compared to only
47/71 (66%) of the sites discarded (P-value = 0.04; Fisher’s
exact test).

The 58 sites in the restricted set show the well character-
ized 5′-UAG-3′ ADAR preference motif (23,43,45) (Figure
2A). Interestingly, editing in miRNAs is overrepresented in
3p miRNAs, compared with 5p miRNAs (P = 0.036; Figure
2B). Possibly, this might be related to the stronger depen-
dence of 3p miRNAs on DICER (53), making them more
exposed to ADAR1 which is in complex with DICER (15).

More importantly, the majority of these sites (36/58,
62%) reside in the seed region (Observed/Expected = 2.3,
P = 2.7 × 10−8, � 2 test, Figure 2C and D). Target recogni-
tion of miRNA requires Watson–Crick pairing between the
‘seed’ region of a miRNA (nucleotides 2–7 in the mature se-
quence) and the targeted transcript (7,8,54,55). Hence, this
region is highly conserved and mutations within it are rare
(52,56). In contrast, editing events are enriched in the seed
(33,57), strongly suggesting a functional role. In the follow-
ing, we consider only these reliable 58 sites, and quantify
their editing levels (hereafter, the editing profile) across sam-
ples. Note that even these are typically edited to low editing
levels (Figure 1B).

The editing profile is markedly different in tumor tissues

In order to quantify the normal-cancer differences in the
editing profile, we measured the editing level in each of the
58 editing sites for all samples of a specific cancer type, and
compared it to the editing level observed in the normal con-
trols (where available). Of the 1276 comparisons, we found
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Figure 1. Editing profiles of the 58 reliable A-to-I editing sites. (A) The editing level per tissue was calculated for each of the previously reported 129 sites,
coalescing all samples available for each of the 55 tissue-types (normal and cancer are considered separate types). For each site, we present the number of
tissue types for which the editing level exceeds 1% editing. Notably, 74 sites exhibit levels lower than 1% in all 55 tissue types (Supplementary Table S3).
(B) Editing levels per site and tissue type. Sites are ordered by their averaged editing levels. Unsupervised hierarchical clustering of tissues largely separates
them to normal and tumors (purple and green on top bar, respectively). Black cells represents low coverage (<10 reads). See Supplementary Table S1 for
tissues acronyms.
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Table 1. List of the 58 high-confidence sites

miRNA Locus Maximal editing levels Tissue type In seed? Validated by miRgene?

hsa-let-7c 27 27.4 LAML Tumor No Yes
hsa-let-7d 66 0.8 LUSC Normal Yes Yes
hsa-let-7e 57 1.7 PCPG Tumor Yes Yes
hsa-mir-1251 10 28.6 GBM Normal Yes Yes
hsa-mir-1260b 18 100.0 GBM Normal No No
hsa-mir-1301 52 4.5 GBM Normal Yes Yes
hsa-mir-1304 57 17.9 GBM Normal Yes No
hsa-mir-130b 71 4.6 PCPG Normal No Yes
hsa-mir-151a 49 7.8 GBM Normal Yes Yes
hsa-mir-200b 61 6.3 PCPG Normal Yes Yes
hsa-mir-24–2 18 5.0 LUAD Normal Yes Yes
hsa-mir-27a 10 3.8 PCPG Tumor No Yes
hsa-mir-27a 56 1.4 PCPG Tumor Yes Yes
hsa-mir-301a 70 3.4 LUAD Normal No Yes
hsa-mir-301b 64 35.7 GBM Normal No Yes
hsa-mir-3157 70 34.5 BLCA Normal No No
hsa-mir-3167 62 25.0 LUAD Tumor No No
hsa-mir-337 66 6.3 GBM Normal Yes Yes
hsa-mir-3622a 52 60.3 GBM Normal Yes Yes
hsa-mir-3681 10 9.6 LIHC Tumor Yes Yes
hsa-mir-376a-1 9 42.9 UVM Tumor Yes Yes
hsa-mir-376a-1 49 90.0 THCA Normal Yes Yes
hsa-mir-376a-2 15 69.2 LUAD Normal Yes Yes
hsa-mir-376a-2 55 89.4 PRAD Normal Yes Yes
hsa-mir-376b 67 3.6 PAAD Normal Yes Yes
hsa-mir-376c 48 44.8 PCPG Tumor Yes Yes
hsa-mir-377 54 7.5 GBM Normal No Yes
hsa-mir-378a 58 32.2 BLCA Normal No Yes
hsa-mir-378b 53 100.0 LAML Tumor No No
hsa-mir-378c 31 12.8 OV Tumor No No
hsa-mir-379 10 8.1 GBM Normal Yes Yes
hsa-mir-381 52 61.8 PCPG Tumor Yes Yes
hsa-mir-381 55 1.5 PCPG Tumor Yes Yes
hsa-mir-411 20 53.6 GBM Normal Yes Yes
hsa-mir-421 54 3.6 PCPG Tumor Yes Yes
hsa-mir-421 61 7.6 PCPG Tumor No Yes
hsa-mir-4510 20 100.0 PCPG Normal No No
hsa-mir-455 32 9.1 LUAD Normal No Yes
hsa-mir-4662a 8 6.7 LUSC Normal Yes Yes
hsa-mir-488 56 4.9 PCPG Tumor Yes Yes
hsa-mir-497 25 17.4 LUAD Normal Yes Yes
hsa-mir-497 83 71.5 LUSC Normal No Yes
hsa-mir-503 7 7.8 BLCA Normal Yes Yes
hsa-mir-532 34 0.6 PCPG Tumor No Yes
hsa-mir-539 18 16.2 LUAD Normal No Yes
hsa-mir-556 60 30.3 PCPG Tumor Yes Yes
hsa-mir-561 69 38.2 READ Tumor No Yes
hsa-mir-589 66 93.9 PCPG Tumor Yes Yes
hsa-mir-598 62 1.0 PCPG Tumor Yes No
hsa-mir-605 54 83.3 COAD Tumor Yes Yes
hsa-mir-624 58 39.3 LIHC Normal Yes Yes
hsa-mir-625 58 16.9 KICH Normal Yes Yes
hsa-mir-6503 59 67.8 LIHC Normal Yes No
hsa-mir-664a 18 11.3 GBM Normal No No
hsa-mir-944 59 7.5 KICH Normal Yes Yes
hsa-mir-98 32 55.6 READ Normal No Yes
hsa-mir-99a 13 12.4 LUAD Normal No Yes
hsa-mir-99b 47 1.3 PCPG Tumor Yes Yes

Sites with at least one tissue type with >1% editing levels were kept for further analyses. miRNA annotations are based on miRBase db, location represents
the position of the editing site within the pre-microRNA. The reported maximal editing levels represents the highest (weighted average) editing level across
the 55 tissues studied. See Supplementary Table S1 for tissues acronyms.
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Figure 2. Characterizing miRNA editing sites. (A) Local sequence pref-
erence: distribution of nucleotides one position up- and down-stream of
the 58 reliable miRNA editing sites exhibits the familiar ADAR motif. (B)
Editing sites are more prevalent in 3′ microRNAs (P = 0.03, proportion
test). (C) Editing sites distribution along the different positions within ma-
ture microRNAs. Positions 2–7 are the seed region, responsible for target
recognition. (D) Expected and observed ratio of the 58 editing sites within
the seed region (positions 2–7; O/E = 2.3, P = 2.7 × 10−8, � 2 test).

305 cases (24%) of significant (FDR < 0.05) differential
editing (Figure 3A; Supplementary Table S4). Many of the
comparisons not yielding a significant results are those with
a very small number of normal samples, resulting in a poor
statistical power. In most of the significantly different cases
editing was lower in the cancer tissue (213/305 cases, 70%,
P = 3.3 × 10−12, exact binomial test). In 34 cases (13 unique
sites), the difference in editing levels between normal and tu-
mors was larger than 10% (absolute difference), 29 of which
having higher editing in normal tissues (Figure 3B). One can
speculate that the differential editing reflects inversed differ-
ential expression of the edited miRNAs. However, no corre-
lation was found between them (Supplementary Figure S3).

The large fraction of sites showing differential editing
suggests that the global editing profile might distinct be-
tween normal and cancer tissues. For each of the 55 can-
cer and normal tissue types we calculated the averaged edit-
ing level in each of the 58 sites, and clustered the tissues ac-
cording to these averaged editing profiles. Interestingly, two
large clusters appear. One which is pre-dominantly normal
and the other pre-dominantly composed of cancer tissues
(Figure 1B). In other words, the averaged editing profile for
normal breast tissue is more similar to other normal tis-
sues than it is to the averaged breast cancer profile. Taken

together, these results point to a global tendency towards
lower miRNA-editing in cancer tissues. To further demon-
strate that, we looked at the averaged editing level over the
58 sites as a single measure of miRNA activity per sample, in
all normal and tumor samples. In 19 of the 22 cancer types
with matched normal controls the averaged editing level per
sample was lower, on average (over samples) than that mea-
sured in the normal controls (significant difference in 13)
(Figure 4A). Furthermore, we looked for site-site correla-
tions between the editing profiles across all samples. Out of
the 1653 site-pairs, we found significant positive correlation
in 780 cases, compared to only 55 cases of negative correla-
tion (Figure 4B). The same behavior emerges when correla-
tions are calculated for each tissue type separately (Figure
4C). These observations again suggest that the differences in
editing levels are controlled by a global tendency (towards
reduction) in cancer samples.

The above results, showing a global and correlated
change in the editing profile in cancer, raise the possibil-
ity that a combined global measure, taking into account
changes in multiple sites, might better capture the normal-
tumor differences. We used logistic regression analysis to
fit a model that predicts whether a given editing profile
describes a normal or a tumor sample. The fitted model
was statistically significant for all cancer types (FDR <
0.05), providing high accuracy classification (average ac-
curacy 0.97; Supplementary Table S5). In order to assess
the predictive power, we used leave-one-out cross validation
method (i.e. we fit the model with the full dataset leaving
only one sample out, and then test for this single sample,
repeating the procedure such that each sample is left out
once). We found high accuracy in all cancer types (overall
accuracy 0.94; see Supplementary Table S6 for specific can-
cers, and Figure 4D for a concrete example).

Higher editing levels are correlated with longer survival

If editing dysregulation is relevant to cancer progression,
one may hypothesize that the editome profile correlates with
patients’ survival. For each of the 58 sites in each of the
32 cancers-types in our database we divided the patients
into two equal-sized groups based on their editing level––a
group of patients with editing level higher than the me-
dian, and another one with levels below the median. Us-
ing Kaplan-Meier analysis we found 56 cases (26 editing
sites; 15 cancer types) with significant (FDR < 0.2) differ-
ence in survival between the two groups (Supplementary
Table S7). As expected from the previously described ten-
dency for lower miRNA editing in tumors, we found better
prognosis for the patients with higher editing levels in 40
out of the 56 cases (Supplementary Table S7). For example,
Head and Neck squamous cell carcinoma (HNSC) patients
with high editing levels in mir-376a-2 had more than 3-fold
longer survival (median) compared to those with low edit-
ing levels (Figure 5).

Targets of edited miRNAs

Editing in the seed region of a miRNA will modify the set
of targeted genes (12,41). For each of the eight miRNAs
that are edited in the seed region and show a sizable (>10%)
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Figure 3. miRNA editing is suppressed in human cancers. (A) Editing levels were calculated for each site in each of the 22 tissues for which tumor and
normal samples are available. Cases where editing levels are significantly higher in normal samples are colored in blue while cases where editing levels
are significantly higher in tumor samples are colored in red. Darker shades of red/blue correspond to higher statistical significance (P value calculated
by two-tailed Mann–Whitney test followed by a Benjamini–Hochberg multiple testing correction). Cases with P > 0.05 are colored in white. Tissue types
are ordered from left to right by ascending number of normal samples (see Supplementary Table S1). Sites are ordered from top to bottom by ascending
number of significant differences. In most sites and most cancer types, editing is higher in the normal tissue. (B) Editing levels of sites with significant and
sizable (>10%) difference between normal and tumors. P < 0.05 Mann–Whitney test followed by a Benjamini Hochberg multiple testing correction. Error
bars denote ± SEM. See Supplementary Table S1 for tissues acronyms.

difference in editing level between normal and tumors in
at least one cancer type (Figure 3B), we used TargetScan
(24) to predict the targets for both the edited and unedited
version. On average, the unedited and edited version share
36.4% of their target genes (Supplementary Table S8). Edit-
ing of miRNAs is only partial, and the unedited molecules
still bind those targets that are exclusive to the unedited ver-
sion. We thus focused on targets genes that are exclusive
to the edited version, and used ingenuity pathway analysis
(IPA) to look for association with diseases and pathways.
Strikingly, for all the above eight edited miRNAs, the dis-
ease that was most significantly associated with genes tar-
geted by the edited miRNAs was cancer (P < 0.001; Sup-
plementary Figures S4–S11). In addition, cellular functions
related to cell proliferation, growth or survival (Supplemen-
tary Tables S9–S16) were enriched. Interestingly, there are
two genes that are targeted by the edited version of all of
the above eight miRNAs (but not by their unedited version)
(Supplementary Table S17). One is the growth and differen-
tiation factor Activin receptor type-1B (ACVR1B) that was
found to regulate cell proliferation and death. Somatic mu-

tations in this gene were found in pancreatic carcinoma (58).
The second target of these eight differentially edited miR-
NAs is CD30 (TNFRSF8), a positive regulator of apopto-
sis, a tumor marker, and a target of the drug Brentuximab
vedotin which is used to treat patients with Hodgkin lym-
phoma (Figure 6A). Taken together, these observations fur-
ther strengthen the link between differential miRNA editing
and cancer.

A cross talk between editing in miRNAs and their targets

In addition to editing the miRNA sequence, RNA editing
can affect miRNA regulation in yet another way, by editing
and modifying miRNA-targets in 3′UTRs of mRNAs, de-
stroying targets or creating new ones (11,59). Virtually, all
human editing sites reside in Alu sequences, and thus we fo-
cused here on editing sites in Alu elements, within 3′UTRs,
and studied 357 tumor RNA-seq samples from 9 cancer
types and their matched normal samples (93% overlap with
the miRNA-seq samples, see Methods and Supplementary
Table S2). We looked for sites where editing creates a novel
target of any miRNA seed (7mer-1A, 7mer-m8 and 8mer) or
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Figure 4. Global characterization of miRNA editing suppression in tumors. (A) As a global measure of miRNA editing, we looked at the editing level
averaged over the 58 editing sites. In all but 3 of the 22 tissues shown, this average was higher in normal samples. Significant differential averaged editing
(*P < 0.05, two-tailed t test) was found in 13/22 tissues, in all of which higher levels are observed in the normal samples. Error bars denote ±SEM. (B and
C) Site-site Pearson’s correlations of editing levels are almost all positive, reflecting the global nature of miRNA editing regulation. (B) Correlation matrix
for all site pairs across all samples. (C) Significant Pearson’s correlation coefficients per cancer (corrected P value ≤ 0.05). The vast majority (∼97%) of
the significant correlations (3088 out of 3187) are positive. (D) The editing profile can be used to predict whether a sample is normal or cancerous. Here
we present the ROC (receiver operating characteristic) curve for predicting the sample state (normal or tumor) of 422 Liver Hepatocellular Carcinoma
(LIHC) samples. The AUC (area under curve) is 0.97. Coloring refers to the different cutoffs used to achieve the various false positive and negative rates
(scale at the side). Similar results are observed for other tissues (see Supplementary Table S6). See Supplementary Table S1 for tissues acronyms.
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Figure 5. Editing levels correlate with clinical outcome. We present one
example (out of 56 significant results, see Supplementary Table S7) where
Kaplan-Meier analysis shows a significantly different clinical outcome de-
pending on the editing level at a given site. Here, head and neck sarcoma
(HNSC) patients are separated to two groups, higher and lower than me-
dian, based on the editing levels of mir-376a-2 in position 55 (Median edit-
ing level 73.8%). Median survival for the groups of patients are 1748 days
(editing higher than median) and 580 days (lower editing). n = 177 patients;
P = 0.00462.

destroys complementarity between a miRNA and the UTR
of the target. We found 63 308 such editing sites (out of 70

687 sites detected in Alu, see Methods) in 2687 genes. Thus,
editing in Alu elements might be involved in the miRNA
regulation of transcription of ∼10% of the genes in the hu-
man genome. Previous studies have found that Alu editing is
globally higher in cancer (60–62). Accordingly, the weighted
average level of the editing in the sites affecting miRNA
recognition was higher in tumors than in their matched
normal samples (0.026 and 0.022 respectively P = 3.55 ×
10−22, Wilcoxon signed-rank test; Figure 6B and Supple-
mentary Figure S12). Examining each of the 63 308 sites
separately, we find 7982 sites in 583 genes that were signif-
icantly (FDR < 0.05) differentially edited between tumors
and their matched normal samples (Supplementary Tables
S18 and S19).

Some of the miRNAs gain multiple new targets. Interest-
ingly, the miRNA hsa-miR-513a-5p gains the highest num-
ber of targets (214 new targets in 157 genes) as a result of
target editing, as was noted by Borchert et al. (11) This
miRNA is known to induce apoptosis via down-regulation
of the apoptosis inhibitor XIAP (63). Three novel targets of
miR-513a-5p are created by editing in the 3′ UTR of XIAP,
editing levels of which is elevated in tumors. Thus, it seems
editing plays a role in enabling XIAP inhibition by miR-
513a-5p, thereby promoting apoptosis. In cancer, editing of
the miRNA target is stronger, inhibition of XIAP increases,
and the cell is further pushed towards apoptosis (Figure
6C). In addition, the conserved miRNA with highest num-
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Figure 6. Suppressed miRNA-editing and elevated targets-editing affects miRNA-dependent gene regulation. (A) Two examples of genes, the cancer related
CD30 and ACVR1B, gaining multiple new miRNA targets due to miRNA editing. Binding sites of unedited miRNAs are marked in blue, and those of
edited-miRNAs are marked in red. (B) Editing of microRNA targets is elevated in tumors. Boxplot of editing index per sample for matched samples in 9
different cancers. Targets-editing is significantly (P < 0.05 Wilcoxon signed-rank test) higher in 5 cancers and lower in 1. See Supplementary Table S1 for
tissues acronyms. (C) Suggested mechanism for activation of apoptosis by editing in 3′utr of the apoptosis inhibitor XIAP. Two target sites of miR-513a-5p
are present in the XIAP transcript, enabling inhibition of XIAP, resulting in apoptosis. Alu editing of XIAP creates three additional target sites of the same
miRNA, further inhibiting XIAP and inducing apoptosis.

ber of lost targets (146 targets in 60 genes) is miR-129–5p,
regulating cell proliferation, death, invasion and migration.
This miRNA was found to be a biomarker for prognosis
and diagnosis of dozens of cancers (64).

Editing of miRNA targets may have a sizable impact of
the affected genes. The number of targets a specific mRNA
transcript gains/losses due to editing may be comparable to
the number of miRNA targets in the unedited transcript,
and even higher (see Supplementary Table S20). Finally,
there are cases in which editing creates both a novel miRNA
isoform as well as its targets (Supplementary Table S21).
Two genes were found to gain the highest number of novel
edited target of an edited-miRNA: XIAP, which was men-
tioned before, and MAVS. Noticeably, MAVS is known to
be tightly connected to ADAR1. The MDA5-MAVS RNA
sensing pathway is negatively regulated by ADAR1 (65),
and MAVS knockout is known to rescue ADAR1 knock-
outs (66), suggesting a delicate balance between the two
(67). Possibly, editing of the miRNAs and their target serves

as one of the feedback mechanisms required for maintain-
ing this balance.

DISCUSSION

pri-miRNAs are known to form a rather tight dsRNA stem-
loop structure, making them a perfect ADAR target. Thus,
it may have been anticipated that they would be extensively
edited, and that these editing events would result in edited
mature miRNAs. Here we analyzed a large scale miRNA
expression data and found that most of the previously re-
ported sites are not edited in our dataset, suggesting they
are either very weakly edited, edited under rather specific
conditions, or not edited at all. Furthermore, even the 58
sites we found to be edited exhibit, mostly, very weak edit-
ing - the majority of them are edited to less than 5% in all
tissues studied. Certainly our screen could have missed sites
that are edited in tissues or conditions not represented in
our samples. Nevertheless, it seems the big picture is that
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miRNAs are rather weakly edited, in general. Given the un-
derlying dsRNA structure, one may wonder why would that
be the case. Possibly, the proteins involved in miRNA pro-
cessing block the ADAR enzymes and prevent, to most ex-
tent, editing of the pri-miRNAs. Alternatively, pri-miRNAs
might be extensively edited, but editing suppressed their
processing into mature miRNAs. Future experiments look-
ing directly at pri-miRNA editing could help resolve this
question.

We point out that computational prediction of miR-
NAs’ re-targeting following editing are of limited accuracy.
Accordingly, our results concerning any particular target
should be taken as putative, and need to be confirmed ex-
perimentally. However, the statistical properties of the pre-
dicted targets as a group, are likely robust.

While this work has been prepared for publication, an-
other work studying miRNA editing in the TCGA dataset
has been published (16). Wang et al. have analyzed the 19
sites that were identified de novo based on the TCGA data
alone, while we chose to look at all previously reported sites.
Focusing on the 58 reliable ones, we were able to find a
higher number of differentially edited sites and sites asso-
ciated with survival. In addition, the larger number of sites
allowed us to look at the data globally, identifying the gen-
eral hypo-miRNA-editing occurring in tumors.

Interestingly, the editing sites we do observe tend to occur
in the seed region, responsible for the miRNA target recog-
nition. In contrast, genomic mutations are suppressed in the
critical seed region (52,56), which is highly conserved across
species. This stark difference may be understood in terms of
an important difference between editing and genomic mu-
tations - a mutation affects all copies of the miRNA, chang-
ing dramatically its target set and the associated regulation
mechanisms. Thus, a random mutation in the seed region
is usually quickly removed by purifying selection. miRNA
editing, on the other hand, usually affects only a small frac-
tion of the miRNA copies, allowing for the majority of the
copies to keep their original function while presenting the
cell with a new version of the molecule that can be exapted
for new processes. Therefore, adaptation of editing sites in
the seed region is a route for miRNA diversification that en-
tails a lower evolutionary barrier compared with a genomic
mutation.

The similarities and differences between A-to-I editing
and genomic mutations carry over from the evolutionary
considerations to the analysis of pathologies. Altered edit-
ing profiles may be viewed as ‘RNA mutations’ that, un-
like genomic mutations, are highly dynamic and could be
easier to exapt and adapt. It has been previously shown
that mRNA editing activity is indeed altered in tumors. In-
triguingly, unlike the global mRNA editing indices, editing
in miRNAs is actually suppressed in most of human can-
cers. Either way, these alterations of editing may contribute
to cancer transformation, an idea supported by the present
results associating differential miRNA editing with cancer
and its prognosis. Furthermore, miRNA profiling is cur-
rently being used clinically to identify the tissue of origin
in cancer (68). Adding the miRNA editing information to
the expression levels data could be used to improve identi-
fication power of liquid biopsy.

The global hypo-editing of miRNAs in tumors is sur-
prising, as it was previously shown (using the same sam-
ples) that, generally speaking, ADAR1 expression levels
and mRNA editing levels are elevated in many tumor types
(61,62). This discrepancy seems to suggest a specific dys-
regulation mechanism relevant to miRNA editing, indepen-
dent of the overall increase of ADAR1 levels. Alternatively,
the difference may be explained by the activity of ADAR2,
which is known to edit many miRNAs (2). Unlike ADAR1,
ADAR2 was found to be downregulated in many cancers
(Supplementary Figure S13). In addition, the increase in
Alu editing coupled by decreased of miRNA editing may
be related to a change in the balance between the interferon-
induced isoform of ADAR1-p150 and the constitutively ex-
pressed ADAR1-p110 isoform. Unfortunately, it is diffi-
cult to measure the expression level of each variant from
mRNA-seq data.

In addition to editing of miRNAs, we highlight here an-
other way in which editing affects miRNA-mediated gene
regulation, namely editing of miRNA targets. We show that
this phenomenon is quite extensive, affecting hundreds of
human genes, some of which gained or lost a sizable fraction
of their miRNA targets, thus changing dramatically their
miRNAs regulation by Alu editing within 3′ UTR human
genes. In some cases the 3′ exon harbors two inverted Alu
repeats, or more, that bind together to form a tight dsRNA
structure. These are extensively edited, but do not make ef-
fective miRNA targets, as the mature miRNA cannot com-
pete with the ∼300 bp-long inverted repeat (69). However,
the majority of 3′ UTR Alus are edited in the pre-mRNA
stage, where they pair with an intronic repeat, while the Alu
in the mature mRNA is unpaired and may bind miRNAs.

As many of the human edited targets reside within Alu
elements, their editing is, by and large, primate-specific, in-
troduced by the recent Alu invasion to the primates genome.
Thus, editing of miRNA targets is very much different from
editing of the miRNAs themselves, which is often conserved
across mammals. Accordingly, it is possible that many of the
modified targets have no biological implication and may be
considered ‘noise’. However, the few cases in which multiple
targets are affected (some of them highlighted above) might
have been adapted to provide a functional role, providing a
primate-specific fine-tuning of the miRNA regulation path-
way. Of particular interest is the MAVS gene. The primary
role of ADAR1 is preventing MAVS activation by endoge-
nous dsRNAs (65–67). Fascinatingly, MAVS is also regu-
lated by ADAR1 through editing of miRNA targets within
its 3′ UTR.
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