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Abstract: Background: Approximately 6.5 to 6.9 million individuals in the United States have
heart failure, and the disease costs approximately $43.6 billion in 2020. This research provides
geographical incidence and cost models of this disease in the U.S. and explanatory models to account
for hospitals’ number of heart failure DRGs using technical, workload, financial, geographical, and
time-related variables. Methods: The number of diagnoses is forecast using regression (constrained
and unconstrained) and ensemble (random forests, extra trees regressor, gradient boosting, and
bagging) techniques at the hospital unit of analysis. Descriptive maps of heart failure diagnostic-
related groups (DRGs) depict areas of high incidence. State- and county-level spatial and non-spatial
regression models of heart failure admission rates are performed. Expenditure forecasts are estimated.
Results: The incidence of heart failure has increased over time with the highest intensities in the
East and center of the country; however, several Northern states have seen large increases since 2016.
The best predictive model for the number of diagnoses (hospital unit of analysis) was an extremely
randomized tree ensemble (predictive R? = 0.86). The important variables in this model included
workload metrics and hospital type. State-level spatial lag models using first-order Queen criteria
were best at estimating heart failure admission rates (R? = 0.816). At the county level, OLS was
preferred over any GIS model based on Moran’s I and resultant R?; however, none of the traditional
models performed well (R? = 0.169 for the OLS). Gradient-boosted tree models predicted 36% of the
total sum of squares; the most important factors were facility workload, mean cash on hand of the
hospitals in the county, and mean equity of those hospitals. Online interactive maps at the state and
county levels are provided. Conclusions. Heart failure and associated expenditures are increasing.
Costs of DRGs in the study increased $61 billion from 2016 through 2018. The increase in the more
expensive DRG 291 outpaced others with an associated increase of $92 billion. With the increase in
demand and steady-state supply of cardiologists, the costs are likely to balloon over the next decade.
Models such as the ones presented here are needed to inform healthcare leaders.
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1. Introduction
1.1. Demand for Treatment

Heart failure (HF) is increasing in prevalence and affects at least 26 million adults
globally [1] and 6.5 million [2] to 6.9 million adults in the United States [3]. In men and
women aged 64 to 75, five-year mortality mean estimates range from 40 to 71% [4]. One out
of 8 deaths in 2017 was attributed at least in part to HF, and the annualized cost was
estimated to be $30.7 billion in 2012 [2], rising to $43.6 billion in 2020 [3]. HF is a subset
of coronary heart disease (CHD), which is the leading cause of death in most developed
countries [5].

Age and male gender are known risk factors for HF [6,7] along with hypertension, left
ventricular hypertrophy, myocardial infarction, diabetes mellitus, valve disease, and over-
weight or obese status [8]. The increased risk for males may be partially explained by
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greater incidence and prevalence of coronary heart disease (CHD) [9,10]. Less consistently
associated risks for HF include alcohol consumption, cigarette smoking, dyslipedemia,
renal insufficiency, sleep-disordered breathing, low physical activity, low socioeconomic sta-
tus, coffee consumption, dietary sodium intake, increased heart rate, impaired pulmonary
function, and mental stress/depression [8].

Chronic HF consumed an estimated 1-2% of total healthcare resources in industrial-
ized nations in 2004 [11], yet HF and CHD were not common causes of death at the turn of
the 20th century [12]. Between 1974 and 2004, hospitalizations for HF more than tripled
in the United States, rising from 1.28 million to 3.86 million [13]. The increase is partially
explainable due to the aging of the population [14]. The economic impact of heart failure
was estimated to be $108 billion per annum in a study of 197 countries [15].

1.2. Supply and Payment of Cardiologists

Despite the national average of 383 people per physician in the United States, the
number of people per cardiologist is 14,572 [16]. There is certainly an element of artificiality
in those numbers because while all people in the U.S. seek some medical care, a much
smaller number need specialty care from a cardiologist. However, the message is the same:
cardiology is highly specialized and a highly sought area of care.

While the general trend is up for cardiovascular disease (CVD), the growth of those
entering cardiology is relatively flat. It is estimated that 40.5% of the U.S. population will
have some form of CVD by 2030. This equates to a 3.1% incidence rate and $818 billion in
cost of care [17]. A 2018 study of HF incidence from 1990 to 2009 revealed that HF with
reduced ejection fraction (HFrEF) was down, while HF with preserved ejection fraction
was up (HFpEF) [18]; see Appendix A for a list of abbreviations. More recent studies are
not readily available.

1.3. Relevant Methods

Explanatory models for healthcare costs have included linear and penalized linear
models such as a lasso regression [19] with reasonable success. Other machine learning
techniques such as random forests have also been used to predict and explain CHD events
and risk factors successfully [20]. Random forests are an ensemble of tree models used
for either regression or classification [21]. This study uses these models for explanatory
investigation of CHD in this study as well, as they have proven successful in previous
studies of this nature.

Geospatial analyses are becoming increasingly important and relevant in the area of
public health [22]. With visualization and analytical capabilities, geospatial analyses in
public health are now ubiquitous [23-31]. A review of geospatial methods used for public
health as well as the historical development is available from Saran, Singh, Kumar, and
Chauhan [22].

Specific research in public health has leveraged geospatial analysis to look at several as-
pects of heart disease such as emergency transport and interhospital transfer of myocardial
infarction [32] as well as individual and contextual correlates of cardiovascular disease [33].
Spatial analysis in the area of public health is conducted at the worldwide, country, and
regional levels of analysis [34]. Most often, choropleth maps are used to present one or
two data attributes, although dot maps, graduated symbol maps, and isarithmic maps are
also commonplace [34]. Spatial regression techniques such as simultaneous autoregressive
(SAR) models are often used to document health risks [35], and spatial clustering has been
used for leprosy in Brazil [36], measle vaccination in sub-Saharan Africa [37], as well as
food and physical activity in the United States [38]. Spatial analysis has been used to
identify congenital heart disease in youth aged 4-18 in China as well [39]. Geospatial
analysis has also been used for describing birthing incidence [40], the opioid epidemic [41],
evaluating back surgery growth over time [42], and in many other health-related studies.
To date, however, researchers have not conducted geospatial analyses of HF with predictive
modeling to provide epidemiological and administrative descriptive and inferential insight
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as well as economic implications for supply and demand. This research does just that over
a three-year window (2016 through 2018).

1.4. Research Question and Significance

This research seeks to understand the geospatial incidence of CHD by state and county
and to build predictive models that forecast hospitals’ number of HF DRGs using technical,
workload, financial, and geospatial variables. Analysis and forecasting of the raw numbers
of HF DRGs provides for financial and demand estimation based on empirical inflationary
pressures and existing /forecast disease rate increases. Understanding patterns is important
to both policy makers, epidemiologists, and health administrators alike for cost control and
planning efforts. Finally, the demand and supply analysis highlight potential shortfalls
that may require redress.

2. Materials and Methods
2.1. Data

Data from this study come from the Definitive Healthcare dataset [43]. Diagnostic-
related groups (DRGs) associated with HF (DRGs 291, 292, and 293) were selected for
inclusion. The Definitive Healthcare datasets contain the Centers for Medicare and Medi-
caid Services (CMS) Standard Analytical Files (SAF) [43]. State and county-level population
data for rate calculations were from the Census Bureau [44,45]. For years 2016 through 2018,
there were 13.66, 13.52, and 13.35 thousand hospital observations in the study, respectively.
These hospital observations were associated (respectively) with 20.08, 22.74, and 23.46
million DRGs. For the geospatial analyses only, the DRG counts were aggregated by county
and state for different analyses under the assumption that there might be a geographical
relationship. These counts were then converted to rates based on the population of the geo-
graphic unit, as rates per population base provide a comparison basis across geographical
units.

2.2. Variables

The primary variable of interest is admissions for “heart failure” diagnoses as defined
by diagnostic-related groups 291, 292, and 293 [46]. Diagnostic-related group 291 encom-
passes “Heart Failure and Shock with Major Complication of Comorbidity (MCC)”; DRG
292 relates to “Heart Failure and Shock with Complication or Comorbidity (CC); DRG 293
pertains to “Heart Failure and Shock without Complication or Comorbidity (CC)/Major
Complication or Comorbidity”. The dependent variable is measured at the hospital level
and aggregated by county for ] mapping. Inpatient claims for HF provide a measure of the
met demand for services and is suggestive of which areas may need additional funding
and resources from health policy decision makers.

Variable groups evaluated in the explanatory models included four categories: finan-
cial variables, workload variables, technical variables, and geospatial temporal variables.
All variables are measured at the hospital level by year. Table 1 provides the definitions of
the independent variables.
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Table 1. Independent variables.

Technical Variables Defined Measurement
% Medicare Percent of patients reimbursing via Medicare Ratio
% Medicaid Percent of patients reimbursing via Medicaid Ratio
Diagnostic-Related Groups DRG 291, DRG 292, DRG 293 Categorical
Ownership Hospital Ownership Categorical
Medical School Affiliation None, Limited, Major, Graduate Affiliation Categorical
Hospital Type Children, Critical Access, Long-Term, Psychiatric, Rehab, Short-Term Categorical
Workload Variables Defined Measurement
Discharges Number of patients discharged from admission Integer
ER Visits Number of emergency room visits Integer
Affiliated Physicians Number of physicians affiliated with hospital Integer
Employees Number of direct employees of hospital Integer
Staffed Beds Number of staffed beds operated by hospital Integer
Surgeries Number of surgeries performed Integer
Financial Variables Defined Measurement
Net Income Net revenues minus loss Ratio
Operating Profit Margin Profit divided by revenue Ratio
Cash on Hand Cash available to the organization Ratio
Equity Assets minus liabilities Ratio
Geospatial Variables (and Time Window) Defined Measurement
State Indicator variables for hospital’s state Dichotomous
County Indicator variables for county in states Dichotomous
Urban/Rural Indicator variable for metropolitan status Dichotomous
Year Indicator variables for year of observation (2016 through 2018) Dichotomous

2.3. Models for Number of Heart Failure Admissions
2.3.1. Train and Test Sets

For the non-spatial model exploration, data were divided randomly using a pseudo-
random seed for replication and consistency in model comparison into 80% training and
20% test set of sizes 32,206 and 8051, respectively. Models were built on the training set
and evaluated on the test set. The splitting of the data occurred prior to any imputation
or transformations, so that no information would be leaked from one set to the other. The
primary model selection metric for non-spatial models was R?, the proportion of the sum
of squares accounted for by variables in the model.

2.3.2. Imputation, Transformation, and Scaling

Little data were missing (2%). Observations with 33% or more missing data were
deleted. Imputation was conducted separately for the total data, the training data, and the
test data. Six workload-related variables (discharges, emergency room visits, surgeries,
staffed beds, affiliated physicians, and employees) were highly collinear and replaced with
a single principal component that accounted for 84.8% and 84.9% of the variability in the
total and training datasets, respectively. The workload variable for the test set was built
using the linear combination estimated on the training set to avoid information leakage
between the two data sets. Data were then scaled between zero and unity, as some models
are not scale invariant.

2.3.3. Explanatory Analysis for the Number of Heart Failure Diagnoses

Linear regression, lasso regression, robust regression, elastic net regression, random
forests, extra trees random forests, extreme gradient-boosted random forests, and bagging
regressors estimate the DRG HF admissions. To investigate the bias-variance trade-off [47],
we built multiple models on an 80% training and evaluated on a 20% test set. The models
are exploratory to see which features (workload, financial, technical, and geospatial) might
be explanatory.
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Lasso regression is a constrained regression that penalizes overfitting using an L1-
norm penalty function (absolute value), while ridge regression is similar to lasso regression
but penalizes using the L2-norm (squared) [47]. Elastic net combines both lasso and ridge
penalty functions [48]. While coefficients are easily interpreted in regression-type models,
the data typically require scaling and transformations. Unlike tree ensemble models
(forests), regression models are unable to find polytomous splits of variables automatically
and are not scale invariant. To address the concerns of collinearity, principal component
analysis is performed.

2.3.4. Tree Models

Random forests are an ensemble of de-correlated tree models. Figure 1 is an example
of a tree with three branches that includes a random subset of candidate features (variables).
The tree splits observations by the number of hospital discharges less than or equal to versus
greater than or 12,406 initially to obtain the maximum separation (RMSE). In a random
forest, every tree produces a separate forecast. All trees produced are than averaged to
produce the estimate. Trees are “pruned” to prevent overfitting [47].

Discharges <= 12406.0
mse = 2579062 84
samples = 8080

value = 1065.84

True False
Discharges <= 4728.5 Discharges <= 32545.0
mse = 42732811 mse = 4492227 .42
samples = 6709 samples = 1371
value = 523.65 value = 3789.86
Discharges <= 1945.5 Discharges <= 8696.0 Discharges <= 21364.5 ER_Visits <= 278812.0

mse = 65478.25 mse = 535363.72 mse =2007835.68 mse = 6830571.41
samples = 5112 samples = 1597 samples = 1195 samples = 176
value =243.03 value = 1410.73 value = 3273.22 value = 7441.68

mse = 19343.25 mse = 111888.78 mse = 304519.24 mse = 581351.27 mse =1203323.4 mse =2315177.23 mse = 4833175.82 mse = 4487080.14
samples = 3906 samples = 1206 samples = 990 samples = 607 samples = 820 samples = 375 samples = 167 samples =9
value = 156.67 value =528.11 value = 1130.78 value = 1850.89 value = 2819.61 value = 4291.28 value =7131.44 value = 13930.83

Figure 1. An example of a tree model to classify opioid admissions.

Extremely randomized regression trees (extra trees) add randomness by generating
random split locations for features and using the best threshold as the splitting rule [49].
These models typically result in less variance but higher bias.

Gradient boosting is an ensemble of weighted trees composed by iteratively assigning
weights to trees that reduce prediction error [50]. These models use non-linear optimization
to optimize a cost function based on the (pseudo)-residuals of a given function. Unlike ran-
dom forests, gradient-boosted random forests do not produce uncorrelated trees. Instead,
the residuals of each tree are re-fitted with the possible independent variables in other tree
models. A more complete discussion of gradient boosting is provided in The Elements of
Statistical Learning [47].

A bagging tree regressor (or bootstrap aggregation) uses random subsets of the data
to generate estimates, which are then aggregated to form a final prediction [51]. A good
implementation and discussion of bagging regressors is available from the Python scikit-
learn module [52].

2.4. Geospatial Analysis, State and County Heart Failure Admission Rates

Hospital data were aggregated at the state and county levels and then merged with
geospatial data under the presumption that HF admissions may have a geographical
explanation. All states had admissions, so no data were missing. Some counties had no
admissions likely due either to lack of hospital facilities or small populations. A single
principal component was used for the 6 workload variables as before, accounting for 98%
of the variability at the state level and 97% of the variability at the county level.

Geospatial maps for the rates of HF incident rates for the selected DRGs from 2016
through 2018 were generated at the county and state levels. Rate data adjust for population
changes, allowing comparison of incidence rates across counties or states. Population data
for each county and the states by year came from Census Bureau estimates [45].
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The determination about whether to use spatial regression/error models (see Mahara
et al. [53]) or simple spatial mapping was informed by residual diagnostics of regression
models (i.e., Moran’s I global test of residuals with post-hoc Lagrangian multiplier diag-
nostics as required). In all cases, maps of regression residuals are mapped to provide a
visual indicator of outliers [54]. Spatial models are compared to non-spatial models for
both coefficients and performance metrics (i.e., R?). Spatial contiguity was modeled using
Rook (edge borders considered neighbors) and Queen (edge and vertex borders considered
neighbors) criteria. Only first-order Rook and Queen criteria were evaluated. Further, we
used the row-standardized sums for weighting neighbors and a zero-policy that allowed
for weight vectors of zero length for areas with unconnected neighbors.

2.5. Changes in DRGs

The significance of changes for 2016 through 2018 (DRG rates) are also evaluated by a
non-parametric Friedman'’s test. The Wilcoxon non-parametric test is preferable and more
conservative than repeated samples ANOVA, as normality, homogeneity of variance, and
independence assumptions do not hold [55].

2.6. Software

All analysis was performed in Anaconda Python Release 3.8 [56], R Statistical Software,
and Microsoft Excel 2016 [29]. Python was used primarily for tree models, while R provided
regression analysis and geospatial analyses. The primary geospatial packages included
tmap [57], sf [58], sp [59], and spatialregression [59]. Online interactive maps were done in
the R package, leaflet [60].

3. Results
3.1. Descriptive Statistics—Quantitative Data

Descriptive statistics for all data are freely available online at https:/ /rpubs.com/R-
Minator /heart [61]. A roll up for the quantitative data is provided in Table 2. The average
hospital observation during any given year had approximately 1600 observations of DRG
291, 292, and 293 (median of 383). That same hospital had approximately 147 staffed beds
(median of 86), 7 thousand discharges (median of 2.8 thousand), and approximately 6.4
thousand surgeries (median of 4.5 thousand). The average hospital had positive income (in
millions) of $17.3 (median of $2.03), significant cash on hand ($20.3 thousand, median of
$1.95 thousand), and positive equity. The typical hospital had just over 1000 employees
(median of 436) with 232 affiliated physicians (median of 104) and was reimbursed 45% by
Medicare (median of 42%). Only 9% reimbursement was from Medicaid (median of 6%).

Table 2. Descriptive statistics for the study (dollars in millions).

n = 40,257 Mean SD Median Min Max
Number DRGs 1640.258 3334.942 385 11 57,461
Staffed Beds 146.507 172.468 86 2 2753
Affiliated Physicians 231.786 353.461 104 1 4328
Employees 1008.034 1683.991 436 4 26,491
Percent Medicare 0.448 0.186 0.422 0 0.983
Percent Medicaid 0.087 0.091 0.063 0 0.869
Discharges 7014.259 9908.036 2811 1 129,339
ER Visits 32,864.497 33,976.188 25,085 0 543,457
Surgeries 6349.317 7987.273 4464 0 130,741
Net Income ($ in M) $17.23 $117.65 $2.04 —$1.21 $33.01
Cash on Hand ($ in M) $20.28 $120.24 $1.99 —$2.51 $3.88
Profit Margin —0.03 1.25 —0.02 —15.45 62.07
Equity ($ in M) $174.11 $625.76 $33.94 —$3.25 $10.24

Year over year, both DRGs and rates of DRGs per 1000 population increased as
illustrated in Figures 2 and 3, respectively. The significance of the DRG increase is the
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financial consideration. The significance of the rate of DRG increase is the epidemiological
consideration. If the DRG rate is considered a proxy for incidence rate, then there is either
a significant increase, a coding issue, or something else. These considerations are found in
the discussion section. One might expect the DRG rate graph to remain horizontal (static).
Independent variables remained relatively constant year over year likely due to repeated
measures on the same facilities.

24,000,000

23,500,000

23,000,000

22,500,000

22,000,000

21,500,000

Admissions

21,000,000
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Figure 2. Number of DRGs as a function of year.
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Figure 3. Inpatient diagnoses rates as a function of year.

3.2. Descriptive Statistics—Categorical Data

California, Texas, and Florida had the largest number of diagnoses for all years and
year over year, largely due to population size, with averages of 1.7 million, 1.6 million,
and 1.5 million, respectively. When adjusted per 1000 population, the District of Columbia,
West Virginia, and Delaware dominated the with total rates per 1000 population of 109,
103, and 94, respectively. Utah, Hawaii, and Colorado had the smallest average rates, 26,
29, and 35, respectively.

Most hospitals were in urban settings (58%). Fifty-two percent were voluntary non-
profits with 29% proprietary and 18.7% governmental. The vast majority (75%) had no
affiliation with a medical school and were short-term care facilities (60%). Nearly no
hospitals were classified as Department of Defense (DoD) or children’s hospitals.
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3.3. Descriptive Statistics—Financial Estimates

In Fiscal Year (FY) 2008, the Centers for Medicare and Medicaid (CMS) estimated
that HF DRGs 291, 292, and 293 national average total costs per case were $10.235, $6.882,
and $5.038 thousand, respectively. By FY 2012, CMS increased those estimates to $11.437,
$7.841, $5.400 thousand, respectively. In four years, the accumulation rates (1 plus the
inflation rate) were 1.139, 1.117, and 1.072 for the DRGs in descending order. Using these
accumulation rates, estimates for 2016, 2017, and 2018 were generated. Table 3 shows these
extrapolated estimates.

Table 3. Estimated total costs for heart failure by DRG in thousands, linear extrapolation method.

DRG 2016 2017 2018
DRG 291 $12,780 $13,155 $13,243
DRG 292 $8934 $9245 $9257
DRG 293 $5788 $5891 $5998

Another method for estimating these costs involved the use of the Federal Reserve
Bank of Saint Louis (FRED) producer price index for general medical and surgical hospi-
tals [62]. The annual accumulation rates for 2013 through 2018 were estimated as 1.022,
1.012,1.007, 1.013, 1.018, and 1.023, respectively. Applying these to the 2012 total costs from
CMS results in Table 4 estimates for 2016 through 2018.

Table 4. Estimated total costs for heart failure by DRG in thousands, medical inflation rate method.

DRG 2016 2017 2018
DRG 291 $12,058 $12,273 $12,582
DRG 292 $8267 $8414 $8626
DRG 293 $5693 $5795 $5491

Both estimates are reasonably close. To estimate costs, we used both of these tables
separately as upper and lower bounds. Since these total costs represent only CMS costs, the
actual financial burden across all payers is likely underestimated as commercial third-party
insurers can reimburse up to 90% more than Medicare for the same diagnosis [63]. Figure 4
illustrates the number of DRGs by year, while Figure 5 shows the associated aggregate cost
estimates.

24.00
20.00
2
2
= 16.00
=
8
€ 12.00 m DRG293
Q
s
5 = DRG292
= 8.00
2 m DRG291
4.00

Y16 Y17

Year

Figure 4. Number of DRGs by type (left axis) and cost estimates by DRG type and total, 2016
through 2018.
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Estimated Total Expenditures in Millions by Year and DRG
(Lower Bound is Medical Inflation, Upper Bound is Linear Extrapolation)

$300,000.00

stimates

Total Expenditure E:

$250,000.00

DRG 291 gstimates

$200,000.00

$150,000.00

$100,000.00

Estimated Expenditures (Millions)

$50,000.00 DRG 292 Estimates.

DRG 293 Estimates

Figure 5. Associated cost estimates in billions (total and by DRG) per year.

In Figure 4, it is clear that DRG 291, the DRG with the highest average reimbursement
rate per case, has increased non-linearly, while DRG2 292 has seen a small drop, and DRG
293 is flat. In Figure 5, the total cost estimates for 2018 are nearly $66 billion more than
2016 on average. DRG 291, the most expensive DRG, has seen reimbursement increases of
$92 billion on average. Reasons for such an increase are explored in the discussion section.

3.4. Descriptive Statistics—Correlational Analysis

Hierarchical clustered correlation analysis of quantitative variables (Figure 6) illus-
trates tight relationships among many variables. This type of correlation analysis clusters
variables based on distance measures (e.g., Euclidean), so that those which are most highly
correlated are close in location. These variables are then placed into a correlation plot or
correlogram. Figure 6 illustrates that discharges and staffed beds are most closely associ-
ated with the number of diagnoses, our primary variable of interest. More importantly,
the workload variables appear to have significant collinearity that must be addressed for
regression-based models.

filated_Physicians

Staffed_Beds

Discharges
Surgeries
ER_Visits -..
Diagnoses 0.49 0.46 057 053 05 047 05
Net_Income 0.13 021 0.25 0.28 0.26 0.3 022 0.0
Equity 017 025 0.32 0.4 043 041 045 0.42
Cash_on_Hand 033 01 013 0.22 0.25 026 0.26 0.28 0.26
Profit_Margin 2 0.01 0.07 001 0.02 0.01 002 001 0%] X
Medicaid 61/0.03 0.03-0.01/0.02| 0.1 |0.06 0.09 0.1 0.08 0.11

Medicare -0.32-0.02 -0.1 -0.16-0.15 -0.22 -0.45 -0.33 -0.45 -0.45-0.39 -0.36

0 & D QP P P P ¥ E P
RS FFTTHFIS S o"’zg
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L & S N S S
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&

Figure 6. Hierarchical clustered correlation of quantitative variables.
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Analysis of the relationship between some categorical variables and the number of
diagnoses also proved interesting. Notched boxplots by year and medical school affiliation
reveal that hospitals with major medical school affiliations experience a larger median
number of diagnoses at the 0.05 level, a result that is to be expected. (See Figure 7). Further,
voluntary not for profits see a larger median number of diagnoses (Figure 8).

Major - — T } -
Graduate - — . } - s s W =
Limited - — LI f
Unknown- [ F——— - . . »
Mo Affiliation - .U: : : . :
0 2,500 5,000 7,500 10,000
Year 2016
Major - — I } . -
Graduate- —[__ T+ 1 5 EAEEN D JERESN B SE S
Limited - X - e ..
Unknown- 11 F——— . T —
Mo Affiliation - .ﬂ: . : : :
0 2500 5,000 7.500 10,000
Year 2017
Major- —[_ X 1 . -
Graduate - — T - e SENS BN S EIE I 8 S EEs8
Limited - - S . ———
Mo Affiliation - 11 f
Unknown - I-II:I— - — . - i i
0 2 500 h.000 7,500 10,000
Year 2018

Figure 7. Number of diagnoses by year by medical school affiliation (some outliers omitted).
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Governmental - '|| B RS S

0 2500 5,000 7.500 10,000
Year 2017

Voluntary Monprofit - -|I
Proprietary - -|| -
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Figure 8. Number of diagnoses by year by type of hospital (some outliers omitted).

3.5. Explanatory Models for Heart Failure Diagnoses, Hospital Unit of Analysis
3.5.1. Regression Models

Linear, lasso, and elastic net regression evaluated the number of diagnoses as a
function of all other variables. Models built on the training set and applied to the training
and test sets resulted in predicted R? values of 0.501, 0.328, and 0.417 (training) and
0.454, 0.323, 0.348 (test) for the OLS, lasso, and elastic net models, respectively. The



Healthcare 2021, 9, 22

11 0f23

OLS model predicted better than the constrained regression models and did not overfit.
Appendix B provides the coefficient estimates for all variables after fitting on the entire
dataset (F73, 40183 = 934, p < 0.001, R? = 0.492).

Very few coefficients are recommended by the lasso and elastic net models. The
lasso model suggests that the workload principal component and DRG 293 are important
predictors, both of which are associated with reduced diagnoses ceterus parabus. Elastic
net was similar in recommending inclusion of workload as well as DRG 292 and DRG
293, all associated with reduced diagnoses. The OLS model had a larger array of variables
that were statistically significant, and the coefficients of the largest magnitude for the
min-max scaled variables were associated with workload (—0.439), Short-Term Acute Care
hospitals (STAC, 0.084), cash on hand (0.082), and Critical Access Hospitals (CAH, 0.082).
When evaluated by categorical groups, the most significant variables were workload (0.302
additional R?), DRGs (0.162 additional R?), and hospital type (0.011 additional R?).

3.5.2. Tree Ensemble Models

Random forests, extra trees regression, gradient boosting, and bagging regressors after
some hyperparameter tuning on the training set predicted HF diagnoses on the test set
with reasonable accuracy (R2 =0.829, 0.862, 0.821, and 0.830, respectively). The number
of trees used for each estimator was tuned along with the maximum depth of the trees
(number of branches). A pseudo-random number ensured that any model improvements
were not due to the random number stream. All models accounted for more variance than
any regression model.

The best-performing tree ensemble was the extra trees regression. This model en-
sembled 50 trees and resulted in variable importance shown in Figure 9. Similar to the
regression models, hospital type (STAC/LTAC), workload (PC), and DRG (DRG 293) were
important along with the state of Utah.

0.365

03-

Importance
[=]
o

0.1

0.037

0.0-

PC-

=
=2

STAC -
DRG293 -
LTAC -

Figure 9. Variable importance measures from the extra trees regression model. STAC = Short-Term
Acute Care, PC = principal component for workload, UT = the state of Utah, and LTAC = Long-Term
Acute Care.

The conclusion for both the regression and tree models is that hospital-level diagnoses
by DRG are forecastable and that workload along with hospital type are important in
doing so. Further, the models indicated that geography might be important, as individual
state variables and urban/rural status were important to the OLS and the tree models.
These models were evaluated on the hospital unit of analysis for raw diagnoses numbers.
Rate-based admission models were then evaluated for the states and counties.
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3.6. State-Level Geospatial Analysis

A descriptive analysis of HF from 2016 through 2018 using geographical information
systems was conducted to evaluate regional differences. Primarily, we were interested
in rates per standardized unit in the population of the geographical area. Populations
were based on Census Bureau estimates for each geographic region [44,45]. The state-level
analysis was limited in that only 50 states and Washington, D.C. were included (n = 51).

Results of the state analysis are available here: https:/ /rpubs.com/R-Minator /HeartState
[64]). There is a clear bifurcation in the center of the United States separating high and
low rates (see Figure 10). That bifurcation suggests a clear West-East difference, favoring
the West Coast. Washington, D.C. has experienced the highest average admission rate for
diagnoses of HF (109.5 per 1000), which might be due to the large presence of military
and veteran care facilities) followed by West Virginia (102.8 per 1000), Mississippi (98.2
per 1000), Michigan (94.3 per 1000), Delaware (94.2 per 1000), Kentucky (93.8 per 1000),
North Dakota (90.6 per 1000), North Carolina (88.7 per 1000), Virginia (88.0 per 1000), and
Missouri (87.5 per 1000). Of interest is that previous studies indicate that these states also
see many admissions due to the opioid crisis [41].

Admissions per 1000, Combined Admissions per 1000, 2016

Admits /1000 Admits /1000
100
90
&0
70
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40

20
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80
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40
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Figure 10. Admissions per 1000, 2016 through 2018.

From 2016 through 2018, the average rate of diagnoses per 1000 population increased
for nearly all states. A Friedman rank sum test (paired, non-parametric ANOVA) of rates
by state by year revealed significantly different rates by year by state (x?,=70.941, p < 0.001).
Figure 11 illustrates the changes by year and by state.

Further, evaluating obesity prevalence intensity from the Centers for Disease Con-
trol and Prevention (CDC) shows significant correlation between obesity and DRGs per
1000 [65]. A Spearman’s test for correlation of obesity prevalence and 2018 DRGs per 1000
was statistically significant with p = 0.689, S = 6867.7, p < 0.001.

Ordinary least square regression was performed on the state admission rate as a
function of the quantitative, aggregated variables. While the model was statistically
significant and accounted for reasonable variability (Fjo, 40 = 4.5, p < 0.001, R? = 0.529),
only the proportion Medicare was significant at the 0.05 level. Most important to this
preliminary analysis was whether state-level spatial data were important to evaluating
admission rates. The spatial map of the standardized residuals [57] as well as residuals
associated separate linear models for all included variables is available as an interactive GIS
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map here: https://rpubs.com/R-Minator/heart [61]. The spatial residuals shows some
spatial correlation (see Figure 12). The visual check was confirmed by a global test for both
Queen and Rook neighbors suggest that spatial relationships exist, (I = 0.309, p < 0.001 and
I=0.306, p < 0.001, respectively) [66]. Lagrangian multiplier diagnostics (non-robust and
robust) suggested that the preferred models would be spatial lag rather than spatial error,
as robust tests for error models were insignificant while lag models remained significant
(see [61]).

State 2016 2017 2018 % A Graph State 2016 2017 2018 % A Graph State 2016 2017 2018 % A Graph
AK 3007 37.23 4015[>33.53% . KY 8863 9482 9799 1056% .~ NY 5287 59.33 62.38 [>18.00%
AL 8070 86.36 8415 4.28% LA 8138 8959 9129 F1218% .~ OH 8170 88.69 89.68 > 9.76% .
AR 66.69 7831 83.42[P2508% . MA 7949 8886 9281 [P1676% -\ OK 6230 7434 7571 [B2154%
AZ 3629 3998 4221 [>16.30% MD 8175 8344 8121 [>-0.66% - OR 3886 4447 48.61 [>25.10%
CA 3742 4371 4597 |»22.85% ME 7471 7827 7284 [ -2.49% PA 6897 7540 8101 [P17.46%
CO 3044 37.17 3659 [#2020% . MI 8870 9858 9567 [ 7.87% Rl 6143 6948 66.79 > 874%
CT 7340 8400 8239 1225% . MN 5994 69.82 76.69 [27.95% SC 6881 77.83 77.68 [>12.88%
DC 10168 117.34 109.40 [ 7.60% MO 7769 90.00 94.66 [2184% .~ SD 6777 7517 82.07 [>21.10%
DE  8L17 9861 10268 [#2651% .-~ MS 8584 10637 10234 [+1922% TN 7175 8027 80.80 [>12.62% .
FL 6660 7274 7386 >1091% . MT 5348 6136 61.09 -1423% . TX 5295 5933 60.39 [>14.05%
GA 6149 7082 7292 >18.60% .~ NC 8146 9295 9159 1244% . UT 2412 2664 27.77 [»1517% .~
HI 2875 2951 2836 [ -1.36% ND 7473 9991 97.16 [#30.01% _— VA 7952 90.67 93.84 [>18.01% .
1A 5754 69.12 7093 »2328% .~ NE 5672 6191 67.72[»1938% .~ VT 5701 67.09 67.66 [»18.67% ./
ID 3183 37.51 4150 |>30.39% 7427 8041 85.66 [»1535% .~ WA 49.86 5490 5523 [»10.77%
IL 7325 8427 89.50 [>22.19% 7379 7990 8164 1064% . WI 6171 6877 7224 [>17.06%
IN 7981 8898 9244 [>15.83% 3653 4169 4175 [1428% .~ WV 90.56 110.99 107.02 > 18.17%
KS 5697 6852 7129 [»25.13% 4634 6134 64.31 > 38.79% WY 4358 4372 5425 | 2448% __
Figure 11. Diagnoses per 1000 by year by state.
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Figure 12. Map of regression residuals.

Generalized spatial two-stage least squares estimated Queen, and Rook models, while
a comparison linear model was estimated in traditional fashion. R? for OLS, Queen, and
Rook models were 0.529, 0.816, and 0.809, respectively. Queen and Rook models performed
better on the state-aggregated data. The coefficient results of the spatial models were nearly
identical to each other, while the OLS was obviously needed geospatial data to improve its
performance (see Table 5). The geographic component for Queen and Rook models were
statistically significant along with mean profit margin and the proportion of facilities with
major medical school affiliation were important in predicting diagnoses rates.
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Table 5. Results of the state-level regression.
Variable Linear Model Queen Model Rook Model
Rho 0.993 i 0.993 wE
(Intercept) —0.221 —0.101 —0.123
Income —0.055 0.011 0.01
Profit Margin —0.418 —0.458 o —0.458 **
Cash on Hand —0.162 0.015 0.023
Equity 0.183 0.060 0.049
% Medicare 0.842 ek 0.221 0.24
% Medicaid —0.163 0.058 0.061
% Non-Profit 0.129 —0.128 —-0.122
% Med School 0.386 0.398 i 0.408 o
% STAC 0.483 ** —0.016 —0.015
Workload —0.004 —0.162 —0.152

**p <0.01 and *** p < 0.001.

3.7. County-Level Spatial Analysis
3.7.1. Maps

The average three-year HF admissions per 1000 county population are shown in the
interactive map online [67]. These county maps show that the admissions are generally
(as expected) in large metropolitan areas, e.g., Dekalb, Illinois (0.65 per 1000). There are
exceptions, however. For example, Montour, Pennsylvania is a small county that is home to
a large Geisinger facility and thus has a higher than expected admission rate (1.00 per 1000).

The top ten counties for average rates per 1000 over three-years were Winchester,
Virginia (3.33 per 1000); Norton, Virginia (3.21 per 1000), Montour, Pennsylvania (3.01 per
1000); Fredericksburg, Virginia (2.13 per 1000); DeKalb, Illinois (1.95 per 1000); Harrison-
burg, Virginia (1.58 per 1000); Petersburg, Virginia (1.57 per 1000); Boyd, Kentucky (1.45
per 1000); St. Francois, Missouri (1.34 per 1000); and Adams, North Dakota (1.21 per 1000).
Of interest is that half of these counties are in the state of Virginia, perhaps due to the
large military and veteran medical centers located in the area. Many of these counties (e.g.,
Winchester) are small but have large healthcare facilities. Figures 13 and 14 illustrate the
raw admissions and rate of admission per 100,000 population, respectively. Other maps
are available online.

Sum Admits

13 to 834
B34 to 2,570

2,570 to 7,851

7,851 to 30,4M
30,401 to 1,360,419
Mis=ing

Figure 13. The total admissions from 2016 through 2018 by county.
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Figure 14. The admission rate from 2016 through 2018 by county.

3.7.2. Regression Models, County-Level of Analysis

Similar to what was done at the state level, an exploratory spatial regression model
using first-order Queen and Rook contiguity criteria to evaluate the importance of geog-
raphy was performed using rolled, Z-scaled, county-level independent variables on the
county-level admission rate variable (admissions per population in each county). Moran’s
I global test suggested that the OLS model was probably sufficient (I = 0.02, p = 0.100);
however, we explored further with Lagrangian multiplier diagnostics. The robust from of
these statistics slightly favored a lag model. Results of the regression are in Table 6, and the
residual maps for the global model and the individual variables are available online [61]
The OLS, Queen, and Rook regression models accounted for only a small fraction of the
sum of the squares (R2 =0.169, R =0.132, R? = 0.132, respectively).

Table 6. Regression table for county analysis.

Variable Linear Model Queen Model Rook Model
Rho —0.539 ook —0.538 i
(Intercept) 0.019 0.048 EE 0.047 ok
Income 0.010 0.015 0.015
Profit Margin —0.007 * —0.002 —0.002
Cash on Hand —0.063 * —0.058 o —0.057 ek
Equity 0.090 * 0.081 i 0.081 o
% Medicare 0.049 ** 0.050 ook 0.050 i
% Medicaid 0.012 * —0.001 —0.001
% Non-Profit 0.013 ** 0.016 i 0.016 wrE
Mean Affiliated 0.045 . 0.044 0.044
Providers
% STAC 0.041 xE 0.044 i 0.044 il
Workload 0.084 * 0.079 wx 0.079 o

Moran’s I favors the linear model, but all coefficients are similar; * p < 0.05, ** p < 0.01, and *** p < 0.001.

Most variables in all models are statistically significant largely due to the sample
size, but the coefficients are of small magnitude. Every variable except for the proportion
Medicaid was statistically significant in the best-fitting OLS model, and yet the magnitude
of the coefficients across the three models (OLS, Queen, Rook) was quite similar. Profit
margin, and cash on hand were negatively associated with admission rates in the OLS
model, ceterus parabus. All other variables had positive coefficients in the OLS model.
Interpretation of directionality must be done cautiously, as the variables act together
in prediction.
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Interactive maps of the admission rate, model residuals (OLS, Queen, and Rook), as
well as residuals for individual variables are provided online [61]. The residual maps are
not suggestive of spatial autocorrelation given the residual dispersion by county. Future
explanatory models can omit spatial correlation.

Given the small contribution of the OLS, Queen and Rook models to estimating
county-level admission rates, ensemble models were investigated at the county level. With
2431 valid observations, sufficient power existed to split the data into training and test
sets (80%/20%). Results of hyperparameter tuned models suggested that extreme gradient
boosting was the best model as the predictive R? for random forests, extra trees, extreme
gradient boosting, and bagging regressors was 0.242, 0.292, 0.264, and 0.130, respectively.
The first three models performed much better on the 20% withhold set than regression
models. The variable importance analysis suggested that workload, cash on hand, and
mean equity were the most important variables with importance scores of 0.35, 0.13, and
0.13, respectively.

4. Discussion
4.1. Review of Findings

From Figure 2, we can see that the number of DRGs for HF is increasing over time. We
do not have sufficient data or monthly data to run time series analyses such as exponential
trend seasonality and autoregressive integrated moving average models. Even without
those models, it is clear that there appears to be an increase in HF admission diagnoses
and a change in intensity from 2016. What is most interesting is that intensity changes
are largely in the North Central while current incidence rates are highest East of the Texas
panhandle.

The heterogeneity found in this study and others inside the United States [68] is
present internationally. One study found high variation in spending based on economic
status of the country [15]; other studies have shown heterogeneity in prevalence rates
(with a predominant global range of 1-3%) [69]. The reasons for heterogeneity are varied;
however, income disparity appears to be a major contributor [70].

Our results indicate there has been a significant shift in cardiology diagnoses since
2016. As we note, it is clear that DRG 291, Heart Failure and Shock with Major Compli-
cation of Comorbidity (MCC), counts and costs have increased non-linearly. DRG 292,
Heart Failure and Shock with Complication or Comorbidity (CC), has seen a small drop
and DRG 293, Heart Failure and Shock without Complication or Comorbidity (CC)/Major
Complication or Comorbidity, is flat. A DRG is determined by the principal diagnosis, the
principal procedure, if any, and certain secondary diagnoses identified by CMS as comor-
bidities and complications (CCs) and major comorbidities and complications (MCCs) [71].
A comorbidity is a condition that existed before admission. A complication is any condi-
tion occurring after admission, not necessarily a complication of care [72]. Although HF
DRGs represented the largest cause of hospitalizations among Medicare beneficiaries and
were among the costliest to Medicare prior to 2016, the results of our study now suggest
that total cost estimates for these three DRGs in 2018 are now nearly $61 billion more
than 2016 [73-75]. DRG 291, the most expensive DRG, is associated with $91 billion cost
increases from 2016.

Tree models at the hospital unit of analysis were capable of capturing close to 90% of
the variability on a 20% withhold test set. The variables of most importance to this predic-
tion were consistent with the variables found through regression modeling. Specifically,
hospital type and workload variables captured by a single principal component re impor-
tant in predicting the number of diagnoses by facility. This finding is particularly useful in
that localities and states may forecast expected costs associated with the ever-increasing
number of HF admissions with hospital-level granularity.

For the state-level GIS analysis, OLS as well as first-order Queen and Rook models
were estimated, and the coefficients were both stable and congruent across models. Facility
ownership and hospital type were important predictors, and the first-order Queen model
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provided the best variance capture (R? = 0.816). No sophisticated predictive models were
available due to the small samples size (50 states plus the District of Columbia).

At the county level, no regression models performed well, although the OLS model
captured more variance than the first-order Queen and Rook models. In fact, the best-
performing model after hyperparameter tuning was an extreme gradient-boosted tree
ensemble that captured 36% of the variability on an unseen test set.

4.2. Limitations and Future Work

This study is limited in that only three complete years of data were available. As more
data become available, the analysis will be expanded. Further, the study does not consider
sub-DRGs, which might provide additional value in understanding the cost structure,
particularly since procedures such as extracorporeal membrane oxygenation (ECMO) are
highly costly yet coded across multiple DRGs.

While it is likely that many individuals receiving care in a geographic area are from
outside that county or state, the majority are likely to receive care near the vicinity of the
admission, particularly since HF may result in a medical emergency. Further, the intent
of the study is to explain admissions and their associated treatment locations. For public
health professionals interested in where HF events (rather than admissions) occur, the
state-level geospatial analysis would be more reflective as it reduces bias associated with
facility locations.

Although our research has demonstrated substantial reliability in the explanatory
factors associated with the longitudinal growth trajectory, it does not explain the reasons
why we see such substantial growth in DRG 291 versus DRGs 292 and 293. Given our study
results, there are several potential drivers that could meaningfully contribute to the growth
in DRG 291 from 2016 through 2018. First, there may have been a significant increase in
patients with cardiac conditions and additional major comorbidities. This cannot be simply
dismissed given the rapid increase in Medicare eligible beneficiaries—by some estimates
as many as ten thousand per day—and the prevalence of obesity, chronic obstructive
pulmonary disease, and other age and lifestyle-related conditions [76-78]. However, given
the relatively flat or declining rate in DRGs 292 and 293, we do not believe this is the only
driver of our findings. Our findings support other predictions that soon patient demand
will outpace the supply [79,80].

Second, up until October 2018, all extracorporeal membrane oxygenation (ECMO)
cases were assigned to DRG 003, which typically reimburses at a rate of approximately
$100,000 per case [81]. In fiscal year 2019 (beginning October 2018), that reimbursement
methodology changed so that every ECMO case would no longer be assigned to DRG 003.
Rather, the DRG assigned depends on the path of the cannulation. If the ECMO patient
is accessed centrally, DRG 003 is still applied. However, if cannulated peripherally, then
it falls into another (lower-paying) DRG [82,83]. Although there is only a three-month
overlap of this change and our study dataset, there is high likelihood this additional volume
is reflected in our study in 2018.

Third, since 2010 and the passage of the Affordable Care Act, many cardiologists
have sought hospital employment versus private practice. The uncertainty of contin-
ued healthcare reform efforts, burdensome electronic health record costs, declining CMS
reimbursement rates in physician professional fees for non-invasive testing procedures
(e.g., electrocardiograms and nuclear stress tests), and younger clinicians’ different expecta-
tions related to work and personal life balance have all combined to prompt cardiology
groups to seek ways to stay financially viable. Today more than 70 percent of cardiologists
are employed by hospitals or health systems [84,85]. Hospitals, in turn, seek to maximize
utilization and reimbursement from the highly resource intensive cardiology service lines.
Prior research from the National Bureau of Economic Research found that hospitals re-
sponded to price changes by up-coding patients to diagnosis codes associated with large
reimbursement increases. These authors indicate hospitals do not alter their treatment or
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admissions policies based on diagnosis-specific prices; however, they employ sophisticated
coding strategies in order to maximize total reimbursement [86,87].

Fourth, we suspect the recent transition from ICD-9 to ICD-10 that occurred in October
2015 is a contributing factor. Starting on 1 October 2015, there were 68,069 valid ICD-10-CM
diagnosis codes, representing a nearly 5-fold increase from the 14,025 valid ICD-9-CM
diagnosis codes. ICD-10-CM diagnosis codes are structured differently from ICD-9-CM
codes and provide more detail [49]. This code expansion allows providers the ability to
capture the severity and specificity of the condition in much greater detail, which may
prompt increased use of DRG 291.

As we look at the number of times many of the codes are being assigned to any
particular patient, we see a notable change in how physicians are diagnosing. Previously,
we had an ICD-9 diagnosis code with some generic areas that covered many patients.
A very general and generic set of HF codes existed under 428.x in ICD-9. There was little
specificity as to sidedness of the issue or specifics of the disease. ICD-10 codes allow
a specific diagnosis per code, and these codes will continue to change over time due
to physicians” adaptation of coding in this manner. For example, the 150.8xx codes did
not exist in 2016, but they have been used since 2017, with another change adding more
sub-codes in 2018.

Today, we have specific codes for specific diseases and processes which go on within
the heart, to include acute on chronic concerns as well. The adjustment to ICD-10 codes
has undoubtedly created a learning phase for practitioners on determining the appropriate
codes as well as when and how to use them.

We would expect to see some elevation from year to year with the growth of the Baby
Boomer population coming into healthcare, without an age adjustment to the population.
This is shown in the numbers from 2016 through 2018 with total admissions diagnoses
increasing from 5.39 M to 5.61 M to 5.69 M. However, how the diagnosis codes are being
applied shows variation from year to year, to include some years of negative numbers
in several codes. Many of the negative values for codes are for “unspecified” types of
heart disease. This shows that we are moving away from generic diagnoses and towards
diagnoses based in specificity instead, which is one of the purposes of moving to ICD-10.

One could draw a conclusion of upcoding: a monetary free for all, assigning diagnoses
based on what pays the most. However, in many cases the physician is not billing based
on a diagnosis code, but on the level of the visit and the type. This is obviously dependent
upon insurance types, contracts, and other inputs outside the discussion level of this paper.

5. Conclusions

The policy implications of this analysis are several. First, clearly there is a need to
continue to focus on a population health approach to reduce obesity rates across the country,
specifically focusing on the geographic states identified with the highest incidence and
prevalence across the study timeline. The substantial increase in DRGs 291-293 show that
shifting funding to prevention from chronic disease management certainly has the financial
evidence to support this approach. The argument is certainly made that education is not
sufficient to change lifestyle and behaviors contributing to the rise of heart disease shown
here, so it is time to begin exploring a punitive annual health assessment requirement for
high-risk individuals who fail to make significant risk factor changes. While a punitive
health assessment might incentivize behavioral modifications and might result in lower
costs, there is also the possibility that these modifications will possibly require medication
and surgical interventions. Using such a strategy alone is not likely to produce the results
required. The health administrator will certainly need to analyze both the volume and
scope of services within these analyzed DRGs to ensure the evident increase in demand
indicated will be available, specifically in the identified high incidence geographic areas.
In Certificate of Need (CON) states, this analysis will be beneficial in getting the CON
approved based on the increased demand. Evidence shows that CON states for cardiac
services, of which most of the high incidence and prevalence states in the study are,
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have higher mortality rates for cardiac services [88]. Another significant potential policy
implication is a continued re-evaluation of the need for CONs in general. Researchers are
now questioning whether they are needed, as they restrict services and lead to increased
mortality [89]. A final policy implication relates to policy incentives. Since heterogeneities
in HF prevalence and HF facilities exist (i.e., center of the country versus the North and
East), provider incentive policies might be established at both the federal and local levels
to balance healthcare professional supply with patient demand.
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Appendix A
List of Abbreviations
ER Emergency Room
CcC Complication of Comorbidity
CMS Centers for Medicare and Medicaid
CON Certificate of Need
DRG Diagnostic-Related Group
ECMO Extracorporeal Membrane Oxygenation
GIS Geographical Information System
HF Heart Failure
HFpEF Heart Failure with preserved Ejection Fraction
HFrEF Heart Failure with reduced Ejection Fraction
ICD International Classification of Disease Version (-version)
MCC Major Complication of Comorbidity
Appendix B

Table Al. Results of regression analyses for the number of diagnoses, hospital unit of analysis.

Variable Linear Lasso Elastic Net Variable Linear Lasso Elastic Net
Workload —0.439 = —0.298 —0.323 State_MA 0.010 ** 0.000 0.000
Net Income —0.043 *Hx 0.000 0.000 State_MD 0.013 *Hx 0.000 0.000
Profit Margin 0.026 x 0.000 0.000 State_ME —0.002 0.000 0.000
Cash on Hand —0.082 * 0.000 0.000 State_MI 0.013 wHE 0.000 0.000
Equity 0.012 wHx 0.000 0.000 State_MN 0.003 0.000 0.000
% Medicare 0.029 ** 0.000 0.000 State_MO 0.005 0.000 0.000
% Medicaid —0.002 *HE 0.000 0.000 State_MS 0.003 0.000 0.000
Proprietary Ownership 0.003 0.000 0.000 State_MT 0.004 0.000 0.000
Non-profit Ownership 0.006 wHx 0.000 0.000 State_NC 0.016 wHx 0.000 0.000
Limited Med Sch Aff 0.002 A 0.000 0.000 State_ND 0.004 0.000 0.000
Major Med Sch Aff —0.009 0.000 0.000 State_NE 0.001 0.000 0.000
No Med Sch Aff 0.000 x 0.000 0.000 State_NH 0.002 0.000 0.000
Unknown Med Sch Aff —0.005 0.000 0.000 State_NJ 0.012 HHE 0.000 0.000
Critical Access Hospital 0.074 0.000 0.000 State_ NM —0.002 0.000 0.000
DoD Hospital 0.000 x 0.000 0.000 State_NV 0.007 0.000 0.000
LTAC Hospital 0.048 *Hx 0.000 0.000 State_NY —0.005 0.000 0.000
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Table A1. Cont.

Variable Linear Lasso Elastic Net Variable Linear Lasso Elastic Net
Psych Hospital 0.067 o 0.000 0.000 State_OH 0.007 * 0.000 0.000
Rehab Hospital 0.058 o 0.000 0.000 State_ OK 0.001 0.000 0.000
STAC Hospital 0.084 o 0.000 0.006 State_OR —0.002 0.000 0.000

State_AL 0.005 0.000 0.000 State_PA 0.002 0.000 0.000

State_ AR 0.003 0.000 0.000 State_RI 0.002 0.000 0.000

State_AZ —0.002 0.000 0.000 State_SC 0.006 0.000 0.000

State_CA 0.000 0.000 0.000 State_SD —0.002 0.000 0.000

State_CO —0.003 0.000 0.000 State_ TN 0.003 0.000 0.000

State_CT 0.013 o 0.000 0.000 State_TX 0.004 0.000 0.000

State_DC 0.006 0.000 0.000 State_UT —0.004 0.000 0.000

State_DE 0.018 i 0.000 0.000 State_VA 0.014 o 0.000 0.000

State_FL 0.006 0.000 0.000 State_VT —0.001 0.000 0.000

State_ GA 0.009 i 0.000 0.000 State_ WA 0.005 0.000 0.000

State_HI —0.003 0.000 0.000 State_ WI 0.003 0.000 0.000

State_IA 0.001 0.000 0.000 State_ WV 0.002 0.000 0.000

State_ID 0.000 0.000 0.000 State_ WY 0.002 0.000 0.000

State_IL 0.009 i 0.000 0.000 Urban 0.004 o 0.000 0.000

State_IN 0.006 0.000 0.000 Year 2017 0.003 e 0.000 0.000

State_KS 0.002 0.000 0.000 Year 2018 0.004 % 0.000 0.000

State_KY 0.005 0.000 0.000 DRG 292 —0.040 o 0.000 —0.016

State_ LA 0.006 0.000 0.000 DRG 293 —0.056 =+ —0.013 —0.029

*p <0.05,* p < 0.01,and *** p < 0.001.
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