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Abstract: Microbial biofilms are ubiquitous. In marine and freshwater ecosystems, microbe–mineral interactions sustain biogeo- 
chemical cycles, while biofilms found on plants and animals can range from pathogens to commensals. Moreover, biofouling and 
biocorrosion represent significant challenges to industry. Bioprocessing is an opportunity to take advantage of biofilms and harness 
their utility as a chassis for biocommodity production. Electrochemical bioreactors have numerous potential applications, includ- 
ing wastewater treatment and commodity production. The literature examining these applications has demonstrated that the cell–
surface interface is vital to facilitating these processes. Therefore, it is necessary to understand the state of knowledge regarding 
biofilms’ role in bioprocessing. This mini-review discusses bacterial biofilm formation, cell–surface redox interactions, and the role 
of microbial electron transfer in bioprocesses. It also highlights some current goals and challenges with respect to microbe-mediated 
bioprocessing and future perspectives. 
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The relationship between electroactivity and biofilm charac- 
teristics is especially relevant for bioelectrochemical systems, as 
increased electroactivity can result in efficient product forma- 
tion. Therefore, efforts to enhance biofilm formation on electrodes 
should be focused on either altering the electrode surface to en- 
courage cellular attachment ( e.g. increased surface area ) , or by 
engineering strains to encourage more robust biofilm formation 
( e.g. EPS formation ) . 

Electron Transfer Mechanisms Between 

Microbes and Surfaces 

Redox reactions are the heart of cell–surface interactions. Extra- 
cellular electron transfer ( EET ) allows for the exchange of elec- 
trons between cells and surfaces, which drives biochemical pro- 
cesses necessary to convert substrates to products. One of the 
functions of biofilms is to mediate direct EET between surface- 
attached cells and redox-active surfaces ( e.g. cathodes or redox- 
active minerals ) . This contrasts with indirect electron transfer, 
wherein electrons are transferred via conductive mediators ( e.g. 
soluble electron shuttles ) . Broadly, the movement of electrons can 
be classified as electrode-reducing extracellular electron trans- 
fer ( rEET ) and electrode-oxidizing extracellular electron transfer 
( oEET ) . The former describes the transfer of electrons from cell to 
surface and the latter describes the transfer of electrons from sur- 
face to cell, which cells achieve via extracellular electron uptake 
( EEU ) . Bacteria mediate electron transfer using outer membrane 
cytochromes ( Gupta et al., 2019 ; Tanaka et al., 2018 ) ; redox-active 
electron shuttles such as anthraquinone-2,6-disulfonate, natural 
organic matter, and flavins ( Bai et al., 2020 ; Lin et al., 2018 ) ; con- 
ductive nanowires ( El-Naggar et al., 2010 ; Reguera et al., 2005 ) ; and 
other conductive matrices comprised of redox active substrates 
Biofilm Formation: Benefits of Living 

Together 
The success of microbes on Earth in terms of biomass and habi-
tat distribution can be attributed in large part to their phenotypic
plasticity, which makes them resilient to environmental stimuli
( Costerton et al., 1995 ) . Part of this plasticity is the tendency of
many bacteria to form biofilms. Biofilms can be found on organs
and tissues [e.g. the human oral microbiome ( Krzysciak et al.,
2016 ; Macfarlane & Macfarlane, 2006 ) ], in industrial settings [e.g.
biocorrosion ( Giorgi-Pérez et al., 2021 ) and biofouling ( Banerjee
et al., 2011 ) ], or deep subsurface mineralogical deposits ( Casar et
al., 2021 ) . For a review of bacteria–surface interactions, see Tuson
and Weibel ( 2013 ) . 

Biofilms form via a two-step process initiated by reversible at-
tachment via hydrodynamic and electrostatic interactions, fol-
lowed by irreversible attachment via van der Walls interactions
between the cells and surface ( Costerton et al., 1995 ) . In addition
to cells, biofilms are comprised of extracellular polymeric sub-
stance ( EPS ) and extracellular organelles ( flagella, pili, adhesins ) ,
which facilitate biofilm formation and adhesion ( Costerton et al.,
1995 ; Lewandowski, 2017 ) . In contrast to free-floating planktonic
cells, biofilms demonstrate resistance to externalities, including
antibiotics ( Mah, 2012 ; Mah & O’Toole, 2001 ) , environmental stres-
sors, and shear forces ( Costerton et al., 1995 ; Donlan, 2002 ) . Addi-
tionally, biofilms allow for dynamic nutrient exchange and cel-
lular communication ( Costerton et al., 1995 ; Donlan, 2002 ; San-
tos et al., 2018 ) . Biofilm formation is influenced by numerous fac-
tors. For example, hydrophobic surfaces with a high surface area
are most amenable to cellular attachment ( Donlan, 2002 ; Simões
et al., 2010 ) . Also, the presence of EPS and external structures that
support adhesion play important roles in attachment to surfaces
( Donlan, 2002 ; Vu et al., 2009 ) . 
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 e.g. metallic nanomaterials or EPS ) ( Cui et al., 2020 ; Jia et al., 2021 ;
iao et al., 2017 ) . 
Mechanisms for rEET have been explored in a variety of metal-

espiring microbes, such as Geothrix fermentans ( Coates et al., 1999 ) ,
eovibrio ferrireducens ( Caccavo Jr. et al., 1996 ) , Thiobacillus ferrooxi-
ans ( Pronk et al., 1992 ) , and a range of other microbes, including
rchaea ( Vargas et al., 1998 ) . The first metal-respiring bacteria
tudied in-depth were Shewanella oneidensis and Geobacter sulfurre-
ucens. S. oneidensis MR-1 ( MR-1 ) , which can use iron or man-
anese as a terminal electron acceptor, encodes a metal-reducing
 Mtr ) pathway comprised of multiheme cytochrome c proteins
 including MtrA and MtrC ) and an outer-membrane porin ( MtrA )
hat is essential for reduction of electrodes ( Coursolle et al., 2010 ) .
Efforts to understand rEET mechanisms of the iron-reducing

acterium G. sulfurreducens centered primarily around the roles of
lectrically conductive protein nanowires, referred to as e-pili, and
ytochrome c proteins in mediating long-range electron transfer
 Lovley & Walker, 2019 ) . A number of early studies demonstrated
hat deleting the pilA gene encoding the G. sulfurreducens pilin
onomer ablated the ability of cells to reduce Fe ( III ) oxides, inhib-

ted biofilm formation, and decreased current production during
rowth on electrodes ( Reguera et al., 2005 , 2006 ) . Coupled with
ata that G. sulfurreducens pili are electrically conductive, biofilm
hickness is correlated with current production, and cells remain
iable within the biofilm ( Reguera et al., 2005 , 2006 ) , these studies
uggest that G. sulfurreducens forms conductive networks com-
rised of metabolically active cells and nanowires to transfer elec-
rons throughout surface-attached biofilms. Complicating this
ypothesis, deleting genes encoding the outer membrane c- type
ytochromes OmcS or OmcE inhibited Fe ( III ) and Mn ( IV ) oxide re-
uction in G. sulfurreducens ( Mehta et al., 2005 ) . Later work demon-
trated that OmcS is localized along Geobacter pili ( Leang et al.,
010 ) . While this implies a possible role for c- type cytochromes in
ediating long-range rEET, multiple lines of evidence support the
uperseding role of e-pili ( Lovley & Walker, 2019 ) . For example,
enaturing c- type cytochromes in biofilms does not impact con-
uctivity, and biofilm conductivity is negatively correlated with
- type cytochrome abundance while being positively correlated
ith pilA abundance ( Malvankar et al., 2011 , 2012 ) . Moreover,
mcS spacing along pili precludes their ability to transfer elec-
rons ( Malvankar et al., 2012 ) . Other lines of evidence include the
bility of conductive magnetite to restore Fe ( III ) reduction in an
mcS deletion mutant, but not a pilA deletion mutant ( Liu et al.,
015 ) , as well as the observation that OmcS cannot compensate
or poorly conductive pili vis-à-vis Fe ( III ) oxide reduction ( Liu
t al., 2014 ; Tan et al., 2016 ) . Despite recent claims to the contrary
 Wang et al., 2019 ) , these data suggest that OmcS is not essential
or long-range rEET in Geobacter . Instead, protein nanowires
ppear to be the primary driver of long-range rEET in this organ-
sm ( Lovley, 2012 ) . Further work is required to understand the
echanisms responsible for electron transport along e-pili. 
Although conductive protein nanowires are essential for long-

ange electron transfer between cells and solid surfaces in Geobac-
er , studies to date suggest a role for other protein complexes in
EET. Although deleting omcS inhibits Fe ( III ) and Mn ( IV ) oxide re-
uction, it does not ablate reduction of soluble electron acceptors,
uggesting a potential substrate specificity ( Mehta et al., 2005 ) . Be-
ides OmcS, other cytochrome c proteins are postulated to play
mportant roles in Geobacter electron transfer, biofilm formation,
nd current production. In many cases, this involves integrating
ithin transmembrane porin–cytochrome protein complexes or 
cting as periplasmic electron shuttles ( Leang et al., 2003 ; Levar
t al., 2014 ; Liu et al., 2014 , 2015 ; Lloyd et al., 2003 ; Morgado et
l., 2010 ; Qian et al., 2007 ; Shi et al., 2016 ; Zacharoff et al., 2016 ) .
dditional studies are required to understand the role of cy-
ochrome c proteins in mediating rEET. Moreover, efforts to under-
tand the regulatory mechanisms governing electron transfer in
eobacter are needed. A recent study found that the �gsu1771 mu-
ant strain overexpresses pilA, c-type cytochromes, and develops
hicker biofilms ( Hernández-Eligio et al., 2022 ) . This led to more ef-
cient Fe ( III ) oxide reduction and approximately 100-fold higher
urrent production in electrochemical reactors with fluorine-
oped tin oxide electrodes. Reverse transcription-quantitative
olymerase chain reaction ( RT-qPCR ) and electrophoretic mobility
hift assays indicate that GSU1771 directly binds to and controls
he expression of pilA, omcS, omcZ, omcE, dcuB, and frdC, sup-
orting its role as a transcriptional regulator important for rEET. 
EEU has been studied primarily in autotrophs [see Gupta et al.

 2020 ) for a review]. This includes phototrophic iron-oxidizing
acteria ( photoferrotrophs ) like Rhodopseudomonas palustris TIE-
 ( TIE-1 ) . Genetic, biochemical, and electrochemical studies re-
ealed that TIE-1’s phototrophic iron oxidation ( Pio ) operon en-
odes three proteins that mediate EEU: a multiheme cytochrome
 ( PioA ) , an outer membrane porin ( PioB ) , and a periplasmic high-
otential iron–sulfur protein ( PioC ) ( Gupta et al., 2019 ; Guzman
t al., 2019 ; Jiao & Newman, 2007 ) . Homologs of pioA have
een identified in related organisms, including Rhodovulum sp.
H10, Blastochloris viridis , Rhodomicrobium udaipurense , and Rhodomi-
robium vannielii , suggesting that Pio operon homologs may be
idespread among phototrophic bacteria ( Gupta et al., 2019 ) . As
ith EET, regulatory mechanisms controlling EEU processes re-
ain elusive. Previous work suggests that the pioABC operon in
IE-1 is induced by anoxia ( Bose & Newman, 2011 ) . In the same
tudy, deleting the upstream fixK gene led to decreased pioABC
xpression during phototrophic iron oxidation, suggesting it acts
s a transcriptional activator during photoferrotrophy. However,
he fixK deletion mutant showed increased pioABC expression un-
er other growth conditions, which suggests that FixK represses
ioABC transcription under non-photoferrotrophic growth. Other
utative FixK target genes important for anaerobic phototrophic
rowth were identified, including a potassium uptake protein
 kup1 ) , photosynthetic genes, and iron metabolism genes. Addi-
ional work is required to uncover direct and indirect activation
oles of FixK, as well as additional levels of pioABC regulation in
IE-1. 
EEU mechanisms in other organisms remain elusive; Sideroxy-

ans lithotrophicus ES-1 is hypothesized to oxidize iron via its mto
ene cluster, though additional genetic and biochemical studies
re needed to confirm this ( Beckwith et al., 2015 ; Hädrich et al.,
019 ) . A recent study revealed that the marine anoxygenic pho-
otroph Rhodovulum sulfidophilum performs photosynthetic EEU
rom an electrode and that this process is linked to photosynthetic
lectron transport ( Gupta et al., 2019 ) . Using a transcriptomics-
uided analysis of the environmental isolate R. sulfidophilum AB26,
he authors determined that AB26 uses a previously unknown di-
eme cytochrome c protein, EeuP, for photosynthetic EEU, but not
hotoferrotrophy. Interestingly, AB26 does not encode homologs of
reviously characterized electron transfer proteins known to play
 role in iron oxidation of EET. This study also noted that pho-
otrophic EEU and photoferrotrophy are common in marine pho-
otrophs based on an analysis of 15 R. sulfidophilum environmental
solates enriched from an estuarine microbial mat ( Gupta et al.,
019 ) . EEU has also recently been demonstrated in an aerobi-
ally grown, non-phototrophic consortium enriched from seawa-
er called Biocathode MCL ( Marinobacter–Chromatiaceae–Labrenzia )
 Bird et al., 2021 ; Strycharz-Glaven et al., 2013 ) . Meta-omics analy-
es of Biocathode MCL identified Candidatus Tenderia electrophaga
s the likely sole electroactive member of the biofilm and the most
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active constituent of MCL biofilms grown on graphite electrodes
( Eddie et al., 2016 , 2017 ; Wang et al., 2015 ) . More recently, Bio-
cathode MCL was shown to increase the open circuit potential
( OCP ) of graphite, carbon cloth, and indium tin oxide ( ITO ) elec-
trodes ( Bird et al., 2021 ) . Antibiotic treatments show that metabol-
ically active cells, rather than enzymatic activity, are responsible
for the OCP shift. The increase in OCP was coupled with a 10-
fold increase in biomass relative to biofilms on nonconductive
surfaces; importantly, only Ca. Tenderia demonstrated a signifi-
cant increase in abundance on ITO relative to glass, supporting its
role as the sole electroactive member of MCL. Moreover, because
the OCP remains shifted positive in the presence of metabolically
active cells, the authors propose that redox-active molecules in
the growth medium likely recharge the electrode to supply sus-
tained energy. This suggests that electroactive biofilms in the en-
vironment can use charge-storing conductive surfaces ( e.g. metal-
containing minerals ) to acquire otherwise inaccessible electrons.
Given that Ca . Tenderia is a biomarker of stainless steel corrosion
( Trigodet et al., 2019 ) , further research into this process may in-
form corrosion mitigation strategies. 

Given the lack of understanding of EEU pathways with respect
to their phylogenetic and geographic distribution as well as the
molecular underpinnings of this process, it is essential to continue
identifying novel EEU mechanisms and/or novel EEU-capable mi-
crobes. Recent examples of electrotrophic microbes enriched from
the environment include a microbial consortium enriched from
the sludge in a textile wastewater treatment plant, which was
used to develop a biocathode for microbial fuel cell ( MFC ) applica-
tions ( Mani et al., 2020 ) ; electroactive bacteria that were isolated
from the roots and stems of sweet potato and angelica plants ( Ling
et al., 2020 ) ; and the first thermoacidophilic electroautotrophic
community enriched from geothermal hot springs ( Reiner et al.,
2020 ) . Other potential sources for electroactive microbes include
anaerobic soils and sediments, deep-ocean coldseeps, marine and
freshwater habitats, acid mining runoff, and other terrestrial and
aquatic environments ( Chabert et al., 2015 ) . Therefore, efforts
to explore untapped environments may reveal new and perhaps
more efficient EEU mechanisms. 

Biofilm-Mediated Electron Transfer in 

Bioprocessing 

Biofilms are relevant in a variety of industrial processes, includ-
ing wastewater cleanup ( Ahmad et al., 2022 ; Qureshi et al., 2005 ) ,
bioremediation ( Mohapatra et al., 2020 ) , and the production of
value-added products such as bioplastics and biofuels ( Scientia ,
2021 ) . This latter category takes advantage of bioelectrochem-
ical systems ( BESs ) in the form of MFCs, microbial electrolysis
cells ( MECs ) , and microbial electrosynthesis ( MES ) systems. All
BES technologies are limited by ( 1 ) low electron transfer rates from
cathodes to microbes, and ( 2 ) gaps in knowledge regarding the bi-
ology underlying EET and EEU between electrodes and microbes
[for a review of EEU in MES applications, see Karthikeyan et al.
( 2019 ) ]. Addressing these bottlenecks requires further exploration
of biofilms as biocatalysts. 

Indirect versus Direct EEU 

EET includes both reductive EET and oxidative EEU. Whereas re-
ductive EET has been extensively studied, EEU mechanisms are
not well-understood. Therefore, this section will focus on ad-
vancements in our understanding of biofilm-mediated EEU. For
reviews of EET, see Kumar et al. ( 2017 ) , Logan et al. ( 2019 ) , and
Shi et al. ( 2016 ) . Direct EEU relies on direct contact between cells
and redox-active surfaces, while indirect EEU relies on intermedi- 
ate electron shuttles. The latter includes soluble abiotic H 2 gen- 
eration at the cathode, which then acts as a soluble electron 
shuttle to transport electrons to cells ( Blanchet et al., 2015 ) . Di-
rect EEU via biofilms is understudied, particularly with respect to 
EEU mechanisms. Importantly, direct EEU promises to be a more 
energy- and cost-efficient bioprocessing technology ( Karthikeyan 
et al., 2019 ) . Ultimately, both indirect and direct EEU require fur-
ther examination, as both processes are at play in biofilms and 
BESs. For example, in electromethanogenesis, methanogens use 
H 2 produced from water electrolysis to mediate indirect electron 
transfer for methane formation ( Blasco-Gómez et al., 2017 ) . How- 
ever, they can also conduct direct EEU from a cathode ( Cheng 
et al., 2009 ) . This was explored in a study that sought to tease
out the contributions of both processes to electromethanogene- 
sis ( Villano et al., 2010 ) . Here, a bioelectrochemical system inoc- 
ulated with a mixed methanogenic culture demonstrated simul- 
taneous abiotic H 2 evolution and biological direct EEU. This led 
to methane production at potentials lower than −650 mV versus 
standard hydrogen electrode ( SHE ) . The authors demonstrated a 
maximum contribution of direct EEU toward product formation 
at a cathode potential of −750 mV. The relative contribution of 
abiotic H 2 toward product formation was largely dependent on 
the cathode potential. Importantly, the authors note that the rate 
of direct EEU and its contribution to the overall electron trans- 
fer rate could be improved by enhancing electroactive biofilm 

formation. 
More recently, the relative contributions of direct EEU and 

H 2 - mediated EEU toward methane production were examined 
using a “cage” type cathode colonized by the methanogen 
Methanoscarcina barkeri ( Bai et al., 2020 ) . This novel cathode de-
sign implemented a porous mixed cellulose ester membrane with 
a base of conductive carbon nanotubes, which concentrated the 
cells on the cathode surface to encourage the more energetically 
favorable direct EEU process. Methane production was facilitated 
by direct and indirect electron transfer processes at a range of 
cathode potentials; both direct and H 2 -mediated indirect elec- 
tron uptake occurred at potentials from −0.6 to −1.2 V, with indi-
rect EEU’s contribution increasing as cathode potential decreased.
Only direct EEU was detected at −0.4 V. This supports the notion
that lower cathode potentials are required for H 2- mediated EEU.
It also demonstrates that direct and indirect electron transfer co- 
occur with varying relative contributions, depending upon param- 
eters such as potential. 

Efforts to understand the electron uptake mechanisms 
of the methanogens Methanococcus maripaludis and Sporomusa 
sphaeroides , which mediate microbiologically influenced corrosion 
( MIC ) and electrosynthesis, determined that direct EEU occurs via 
free, surface-associated redox enzymes such as hydrogenases and 
formate dehydrogenases ( Deutzmann et al., 2015 ) . Because loss 
of cellular integrity is a prerequisite for enzyme release, the ten- 
dency for a biofilm to induce cell lysis among its inhabitants may
lead to accumulation of sorbed redox-active enzymes and there- 
fore higher electroactivity. This is in line with later work show- 
ing that the methanogen Methanosarcina barkeri uses extracellular 
hydrogenases to conduct EEU ( Rowe et al., 2019 ) and that mul-
tiheme cytochrome c proteins are not widely conserved among 
methanogens that engage in direct interspecies electron transfer 
( Yee & Rotaru, 2020 ) . Therefore, this enzyme-mediated electron 
transfer process may play an important ecological role in sup- 
porting methanogenic biofilms, although cytochrome-containing 
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ethanogens like M. barkeri may employ other EEU mechanisms
ndependent of extracellular enzymes ( Rowe et al., 2019 ) . 

icroscale Gradients Create Biofilm 

icroenvironments 
iofilms likely develop specialized subpopulations in different
ontexts ( Häußler et al., 2003 ; Mann & Wozniak, 2012 ; Moormeier
t al., 2013 ) . Differential diffusion of signaling molecules, external
tressors, nutrients, oxygen, and waste can lead to the develop-
ent of microenvironments, which can drive changes in pheno-

ypic diversity within the biofilm. The role of these subpopulations
n biofilm development has been studied extensively in the clini-
al realm [for a review, see Bisht & Wakeman ( 2019 ) ]. These stud-
es have shown that heterogeneity within biofilms can manifest
s temperature-dependent EPS gene expression and production,
s seen in Clostridium perfringens ( Obana et al., 2020 ) ; result in dis-
inct transcriptomic profiles and phenotypes dictated by location
ithin the biofilm, including antibiotic-tolerance and slow growth
eep in a Pseudomonas aeruginosa biofilm ( Williamson et al., 2012 ) ;
nd lead to heterogeneous quorum-sensing activation patterns
ccording to external physical properties like flow and topography
n Vibrio cholerae and Staphylococcus aureus ( Kim et al., 2016 ) . This is
y no means an exhaustive description of the kinds of genotypic
nd phenotypic heterogeneity seen in biofilms. Instead, it under-
cores that biofilms are dynamic environments that respond to
heir environment. 
With this in mind, it is likely that biofilms attached to elec-

rodes develop heterogeneous genotypic and phenotypic ex-
ression in response to the environment ( e.g. electrochemical
radients ) , and that this influences electron transfer processes
 Beyenal & Babauta, 2012 ) . Careful consideration of the biofilm
icroenvironment will reveal these microscale gradients, and

ead to improvements in biofilm engineering and electrochem-
cal system design. High-resolution analyses such as single-cell
NA sequencing can uncover underlying gene-expression profiles
 Imdahl et al., 2020 ; Singh et al., 2019 ) . 
Diffusion limitations in response to biofilm morphology are an

mportant consideration, as thick biofilms can result in lower dif-
usivity ( Renslow et al., 2010 ) . For example, current generation by
node-respiring bacteria ( ARB ) is influenced by buffer strength
 Torres et al., 2008 ) . Here, current generation by an ARB biofilm
as limited by proton transport into and out of the biofilm. While
lectrons diffuse toward the anode, protons generated at the an-
de interface diffuse outward. A thick biofilm can limit buffer ac-
ess to the bottom of the biofilm, resulting in proton accumulation
nd a lower pH near the anode interface. While this effect was
itigated using a stronger buffer, it suggests that the influence
f biofilm thickness on diffusion kinetics can have a deleterious
ffect on current generation. 
Also challenging the assumption that thick and conductive

iofilms encourage high electroactivity, it was demonstrated that
. sulfurreducens biofilms have the highest electrochemical activ-
ty with a biofilm thickness of ∼20 μm, with electroactivity de-
reasing beyond that and eventually ceasing at ∼45 μm ( Sun
t al., 2016 ) . This was attributable to the accumulation of inactive
ells accumulating over time within the inner layer, resulting in
igh diffusion resistance. A recent study sought to overcome low
lectron transfer rates induced by diffusion-limited thick biofilms
ia quorum quenching ( QQ ) , which is the process of disrupting
utoinductor-mediated quorum sensing ( QS ) in microbes ( Ta ̧s kan
 Ta ̧s kan, 2021 ) . QQ allows for the control of QS-mediated biofilm
ormation and has been used in membrane bioreactors to control
iofouling and increase membrane flux ( Fakhri et al., 2021 ; Huang
t al., 2019 ; Nahm et al., 2017 ; Oh & Lee, 2018 ) . Here, QQ bacte-
ia ( Rhodococcus sp. BH14 ) were immobilized onto alignate beads
nd added to a dual chamber MFC. Using this approach, QS inhibi-
ion reduced EPS production, resulting in decreased biofilm thick-
ess and increased electroactivity, with a maximum of 1924 mW
 

−2 ( 2.8-fold higher compared to control ) at a biofilm thickness of
6 μm. Interestingly, performance decreased past a certain point,
ith power generation falling to 410 mW m 

−2 ( 1.6-fold less than
ontrol ) at a biofilm thickness of 11.2 μm, suggesting that too sig-
ificant of a decrease in thickness may negatively impact power
eneration. 
Biofilm density is also an important consideration. A study

f the ARB G. sulfurreducens demonstrated that higher biofilm
ensity led to increased current generation ( Otero et al., 2021 ) .
he authors demonstrated that a mutant lacking four of the
ve outer membrane cytochrome complexes ( extABCD 

+ ) formed
enser biofilms on an electrode with higher per-cell anabolic ac-
ivity, leading to faster growth and ∼1.4-fold higher current com-
ared to wild-type. The mutant biofilm concentrated cells with
igher anabolic activity near the electrode interface, which was
upported by significantly higher diffusion rates in the mutant
 ∼30-fold faster electron diffusion in mutant relative to wild-type ) .
mportantly, the study demonstrated that conductive biofilms are
ot homogeneous, as isotopic label incorporation showed that
oth mutant and wild-type biofilms contain subpopulations with
ecreasing anabolic activity further away from the electrode,
hile electron microscopy showed decreasing cell density with
istance. In the same study, overexpression of extABCD did not
ncrease current generation, suggesting that overexpressing com-
onents of electron transfer pathways does not necessarily yield
mprovements in electroactivity. 
Other biofilm components can play an important role in de-

ermining the biofilm microenvironment and electroactivity. A re-
ent study showed that deleting a component of the polysac-
haride biosynthesis and export pathway genes ( GSU1501 ) in G.
ulfurreducens strain PCA yielded an EPS-deficient mutant with
ecreased current generation in a bioelectrochemical system
 Zhuang et al., 2022 ) . The EPS mutant had lower c- type cytochrome
ontent, lower cell viability, and a thinner biofilm ( 14 vs. 27 μm )
elative to wild-type. Moreover, it demonstrated up to 50-fold
igher expression of the pilA gene relative to wild-type, result-
ng in higher pili formation in the mutant. This allowed for later-
tage biofilm formation. The mutant strain eventually developed
 thicker biofilm ( 33 μm ) than wild-type after four batch cycles,
uggesting a compensatory relationship between EPS and pili in
iofilm formation. 

emaining Questions and Challenges 

ne of the key challenges facing BES applications is electron
ransfer efficiency. Electrode material can be a significant factor
n determining electron transfer rate. Typically, carbon electrodes
ave been employed, though novel cathode materials—including
athodes decorated with conductive metal oxides—are being ex-
lored ( Paul et al., 2018 ; Xu et al., 2018 ) . In a novel cathode design,
 nanocomposite comprised of magnetite nanoparticles and re-
uced graphene oxide was electrochemically deposited on carbon
elt. This modified cathode enhanced electron uptake ∼5-fold rel-
tive to unmodified cathodes, resulting in ∼4.2-fold higher poly-
ydroxybutyrate ( PHB ) production in the photoautotroph R. palus-
ris TIE1-1. Other recent efforts to enhance electron transfer via
lectrode modifications include a porous mixed cellulose ester
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Table 1. Recent efforts at plastic ( polyhydroxybutyrate ) and fuel ( hydrocarbon ) production via microbial electrosynthesis 

Organism 

Genetic ma- 
nipulations Product 

Cathode mate- 
rial + mediators Substrate 

Product yield 
( mg L −1 ) Reference 

Ralstonia eutropha Heterologous 
Ribulose- 
1,5- 
bisphosphate 
carboxylase- 
oxygenase 
expression 

PHB Carbon 
cloth + For- 
mate and 
neutral red 
redox 
mediators 

CO 2 485 Chen et al., 2018 

Rhodopseudomonas 
palustris TIE-1 
( TIE-1 ) 

PHB CF/rGO-MNPs CO 2 91.31 Rengasamy et al., 2021 

Cupriavidus necator 
H16 

PHB Indium + indium 

nanoparticle 
Formate 25.2 Al Rowaihi et al., 2018 

TIE-1 PHB Graphite CO 2 4.48 Ranaivoarisoa et al., 
2017 

TIE-1 Heterologous 
expression 
of 
n -butanol 
biosynthe- 
sis 
pathway; 
nitrogenase 
deletion 

n- butanol Graphite CO 2 0.91 Bai et al., 2021 

Activated sludge 
from wastewater 

Acetate/Ethanol Toray Carbon 
Paper 
w/methyl 
viologen and 
neutral red 
redox media- 
tors + polyani- 
line 

CO 2 4.42/0.48 Anwer et al., 2021 

Clostridium beijerinckii Butanol/H 2 Graphite 
felt + neutral 
red redox 
mediator 

Glucose 0.30 g g −1/ 

206.53 mL g −1 

Zhang et al., 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

membrane with a base of conductive carbon nanotubes, as de-
scribed above ( Bai et al., 2020 ) ; a cathode made of copper foam
coated with reduced graphene oxide ( Aryal et al., 2019 ) ; and a
polyaniline/graphene-modified carbon cloth anode ( Huang et al.,
2016 ) . For reviews discussing electrode modifications, see Bian
et al. ( 2020 ) , Hindatu et al. ( 2017 ) , Kaur et al. ( 2020 ) , and Yaqoob
et al. ( 2020 ) . 

In another study, directed evolution of Kyrpidia spormannii EA-
1 sought to enhance cathodic biofilm-forming capabilities ( Jung
et al., 2020 ) . The adapted biofilm showed a 28% increase in thick-
ness, 4-fold higher biofilm accumulation rate, more morphologi-
cal homogeneity, and increased substratum coverage compared to
the progenitor strain. Moreover, comparative genomics revealed
adaptation to oxidative stress as a potential mechanism for en-
hanced biofilm development in the adapted strain. Variations
were found in mfd , which encodes part of the DNA repair machin-
ery, and CVV_06825 , which is a part of the Fur protein family con-
sisting of metal ion homeostasis regulators and oxidative stress
proteins. Further studies will be needed to clarify the potential
role of oxidative stress in oxic electrosynthesis processes, as well
as other genetic components of biofilm formation in electrosyn-
thesis. 
BES technologies are also limited by our understanding of 
biofilm dynamics. Mathematical models describing these may 
allow for more targeted applications. Recently, de Lichtervelde 
et al. ( 2019 ) developed an electrochemical transport model for 
conductive biofilms on electrodes. Their model considered sub- 
strate transport across the biofilm, oxidation of substrate in the 
bacteria, electron transfer ( e.g. via pili ) , and charge transport to 
the anode of an MFC. Their model suggests that current pro- 
duction in an MFC is not limited by organic molecular trans- 
port or conductivity. Regarding biofilm conductivity, they demon- 
strate that electron transport efficiency decreases as conduc- 
tivity is lowered, resulting in electron buildup via reduced cy- 
tochromes. These reduced cytochromes exist as a gradient across 
the biofilm, which is consistent with previous literature examin- 
ing long-distance electron transfer by G. sulfurreducens ( Liu & Bond,
2012 ) . Other recent efforts to develop models of biofilm dynamics
include mass transfer modeling in membrane biofilm reactors for 
wastewater treatment ( Ghasemi et al., 2021 ) , microalgal biofilm 

growth on photobioreactors ( Huang et al., 2021 ) , and multispecies 
oral biofilm development ( Martin et al., 2017 ) . In this vein, devel-
oping and validating models in other contexts will lead to im- 
proved reactor design. 
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Fig. 1 Relevant areas of consideration for optimizing electroactive biofilms in bioelectrochemical applications. Efficient design and operation of 
bioelectrochemical systems rest on fine-tuning bioelectrochemical cell parameters using tools such as mathematical modeling to allow for scalability; 
investigation of microbe–electrode interactions and the effect of electrode type, electrode modifications, microbial composition, and biofilm formation 
on performance; and understanding the cellular processes underlying electron exchange and product formation. Future efforts to improve 
bioelectrochemical cell performance should focus on improving Coulombic efficiency, optimizing biofilm formation, enhancing bioproduct formation, 
and bioprospecting for novel electroactive strains and electron exchange mechanisms. 
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A further consideration is the implementation of multispecies
iocatalysts. Microbial consortia are often implemented in BESs
o enhance electrical efficiency, pollutant degradation, or product
ormation ( Hassan et al., 2018 ) . Consortia can be characterized by
nterspecies cooperation and competition that may impact bio-
rocessing outcomes, though this phenomenon is understudied.
 recent study analyzed a microbial consortium composed of the
. oneidensis MR-1 and Citrobacter freundii An1 in a BES ( Xiao et al.,
021 ) . Using lactate as a substrate, the MR-1/An1 consortia gener-
ted a peak current of 38.4 μA cm 

−2 , or 6-fold that produced of S.
neidensis MR-1 alone. The consortium’s dynamic was character-
zed by competition at the electrode interface, which enhanced
he metabolic activity of S. oneidensis MR-1 and facilitated biofilm
ormation, resulting in a competitive advantage for MR-1. The in-
reased metabolic activity resulted in higher electron generation
nd more flavin production, the latter serving as a soluble elec-
ron shuttle that facilitated EET. Additionally, proteomics revealed
hat, relative to monoculture BESs, co-cultures had increased ex-
ression of proteins involved in biofilm formation, outer mem-
rane cytochrome c , and lactate metabolism. Further studies of
icrobial consortia in the context of BESs may reveal additional
ynamics at play and suggest strategies for designing microbial
onsortia or otherwise adjusting conditions to mirror the benefi-
ial effects of a consortium. 

ES Applications: Bioplastics and Biofuels 

ioprocessing encompasses a variety of technologies with the
hared goal of generating products using biological catalysts.
echnologies falling under this umbrella include MECs, MFCs, and
ES, among others [for reviews on these technologies, see Hasany
t al. ( 2016 ) , Obileke et al. ( 2021 ) , Palanisamy et al. ( 2019 ) , and
ang et al. ( 2015 ) ]. Among other applications, these tools are be-

ng used for wastewater cleanup, bioremediation, hydrogen gen-
ration, plastic production, and fuel production ( Ahmad et al.,
022 ; El-malek et al., 2020 ; Karthikeyan et al., 2019 ; Keasling et al.,
021 ; Mohapatra et al., 2020 ) . The latter two products are espe-
ially important in the current environment. Global plastic waste
ay reach 155–265 Mt per year by 2060 if current trends continue

 Lebreton & Andrady, 2019 ) . The World Economic Forum predicts that
he plastics sector will account for 15% of the global annual car-
on budget by 2050 ( The New Plastics Economy , 2016 ) . Similarly, fos-
il fuel consumption is a significant contributor to climate change
 Hofmann et al., 2009 ) . Therefore, developing sustainable alterna-
ives to traditional fuels and plastics is of the utmost importance.
his section will emphasize recent advancements in developing
ES approaches to bioplastic and biofuel production ( Table 1 ) . 

ioplastics 
olyhydroxyalkanoate ( PHA ) and its homopolymer PHB offer
avorable alternatives to petroleum-based plastics. They are
hermoresistant, moldable, biocompatible, and biodegradable
olyesters produced intracellular by some plants and bacteria,
nd have been used in agriculture, aerospace, medicine, infras-
ructure, and electrical engineering ( El-malek et al., 2020 ) . Addi-
ionally, biological PHA/PHB production uses renewable resources
 e.g. CO 2 , sunlight ) . However, biological production remains eco-
omically infeasible, and some PHA-producing organisms rely on
rganic feedstocks, which interferes with the global food supply
nd is more energy-intensive. 
Challenges facing biological PHA production include organism

hoice and feedstocks ( e.g. carbon sources, culture medium ) .
nown PHA producers include bacteria ( Ranaivoarisoa et al.,
017 ; Sindhu et al., 2011 ) and plants ( Dobrogojski et al., 2018 ) .
etabolically plastic bacteria hold promise as PHA producers,

hough output efficiency remains insufficient ( Chen, 2010 ; El-
alek et al., 2020 ) . MES technologies utilizing CO 2 -fixing bacteria
s a chassis hold great promise, with the goal of establishing a
ontinuous bioprocess using cathodic biofilms driven by renew-
ble electrical energy and CO 2 ( Conners & Bose, 2021 ; Conners
t al., 2022 ) . Recent MES studies have demonstrated that PHB
ynthesis in the phototroph R. palustris TIE-1 can be improved via
athode modifications to enhance EEU. In one study, cathodes
oated with an immobilized iron-based redox mediator—Prussian
lue—led to 3.8-fold higher cathodic current uptake and 1.4-fold
reater PHB production in TIE-1 ( Rengasamy et al., 2018 ) . A sec-
nd study found that magnetite nanoparticle-anchored graphene
athodes led to 5-fold higher electron uptake and 4.2-fold higher
HB production compared to unmodified carbon felt cathodes
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( Rengasamy et al., 2021 ) . Similar efforts to improve PHB produc-
tion have been explored in other organisms. In a recent study,
Cupriavidus necator grown on an indium-nanoparticle electrode
produced PHB at a rate of 25.2 mgL −1 ( Al Rowaihi et al., 2018 ) . Be-
yond this, more than 300 different bacterial strains produce PHBs,
though a small fraction of those have been used at the industrial
scale ( McAdam et al., 2020 ) . While this suggests an abundance of
microbial chassis, the type of strain can have a significant impact
on the mechanical quality of the PHB ( McAdam et al., 2020 ;
Peña et al., 2014 ) . Moreover, the specific parameters guiding any
given production platform may require uniquely tailored PHB-
producing strains. With this in mind, it will be important to both
develop existing PHB producers and identify novel ones. Consider-
ing the vital role of biofilms in mediating these processes, special
care should be paid to the biofilm-forming abilities of these
strains. 

Biofuels 
Similar to bioplastics, biofuels represent an opportunity to take
advantage of organisms that fix carbon dioxide, thus mitigating
carbon emissions. Biofuel production methods include cellulosic
and noncellulosic biomass-consuming organisms, photosyn-
thetic microbes, and electron-consuming microbes ( Keasling
et al., 2021 ) . Heterologous pathways in non-model organisms
hold great promise, as these organisms offer several advantages
to model microbes, including higher tolerance for end products
( Smith et al., 2010 ; Yang et al., 2016 ) and metabolic versatility ( Bai
et al., 2021 ; Yang et al., 2016 ) . A recent study achieved n- butanol
production in a R. palustris TIE-1 strain encoding the n- butanol
biosynthesis pathway and lacking its nitrogen fixation pathway
( Bai et al., 2021 ) . Using a bioelectrochemical cell platform with
solar panel-generated electrons and halogen light ( representing
the solar spectrum ) , a maximum n- butanol production rate of
0.91 mg L −1 was achieved. Importantly, this study demonstrated a
proof-of-concept for sustainable, carbon-neutral biofuel produc-
tion. Other recent studies to generate potential fuel precursors
using electroactive biocatalysts include ethanol production via
activated sludge enriched from a wastewater treatment plant
( Anwer et al., 2021 ) and butanol and hydrogen production by
Clostridium beijernckii ( Zhang et al., 2021 ) . Future efforts geared
toward isolating and engineering microbial chassis that are
tolerant of end products and other toxins and have improved
biofuel production relative to wild-type strains are paramount.
The primary barrier to all bio-commodity production, including
biofuels, is cost; strains that are more efficient fuel producers that
can withstand variable conditions are best suited to tackle these
challenges. 

Conclusion 

Numerous efforts to use microbes as the centerpiece of biopro-
cessing technologies have revealed the importance of biofilms.
Among other characteristics, biofilms facilitate redox reactions
and are resilient against otherwise harmful products. Our under-
standing of the mechanisms underlying these traits in the con-
text of bioprocessing is ongoing. As described in this review, there
is a need for improvements with respect to the biology ( e.g. bio-
prospecting and genetic engineering ) and bioreactor design ( e.g.
electrode modification ) ( Fig. 1 ) . As we turn toward transitioning
these applications from the lab into industry, it is essential to ad-
dress the barriers described here and elsewhere ( Conners & Bose,
2021 ; Conners et al., 2022 ; Jourdin & Burdyny, 2021 ; Karthikeyan
et al., 2019 ; Lee et al., 2021 ) . 
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