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Abstract
Purpose  The identification of pathological mediastinal lymph nodes is an important step in the staging of lung cancer, 
with the presence of metastases significantly affecting survival rates. Nodes are currently identified by a physician, but this 
process is time-consuming and prone to errors. In this paper, we investigate the use of artificial intelligence–based methods 
to increase the accuracy and consistency of this process.
Methods  Whole-body 18F-labelled fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography/computed tomography 
([18F]FDG-PET/CT) scans (Philips Gemini TF) from 134 patients were retrospectively analysed. The thorax was automati-
cally located, and then slices were fed into a U-Net to identify candidate regions. These regions were split into overlapping 
3D cubes, which were individually predicted as positive or negative using a 3D CNN. From these predictions, pathological 
mediastinal nodes could be identified. A second cohort of 71 patients was then acquired from a different, newer scanner (GE 
Discovery MI), and the performance of the model on this dataset was tested with and without transfer learning.
Results  On the test set from the first scanner, our model achieved a sensitivity of 0.87 (95% confidence intervals [0.74, 0.94]) 
with 0.41 [0.22, 0.71] false positives/patient. This was comparable to the performance of an expert. Without transfer learning, 
on the test set from the second scanner, the corresponding results were 0.53 [0.35, 0.70] and 0.24 [0.10, 0.49], respectively. 
With transfer learning, these metrics were 0.88 [0.73, 0.97] and 0.69 [0.43, 1.04], respectively.
Conclusion  Model performance was comparable to that of an expert on data from the same scanner. With transfer learning, 
the model can be applied to data from a different scanner. To our knowledge it is the first study of its kind to go directly from 
whole-body [18F]FDG-PET/CT scans to pathological mediastinal lymph node localisation.
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Introduction

Lung cancer is the most commonly diagnosed cancer and the 
leading cause of cancer death worldwide, with non–small-
cell lung cancer (NSCLC) comprising more than 85% of 

these cases [1, 2]. NSCLC typically metastasises to the hilar 
and mediastinal lymph nodes, and the presence of metasta-
ses significantly impacts the staging, prognosis, and patient 
management. Five-year survival rates are 54% for patients 
without any metastases and 27% for patients with mediasti-
nal metastases [3]. Tumour progression, prognosis evalua-
tion, and decisions on treatment plans are mainly dependent 
on this staging, and thus, it is critically important to accu-
rately detect the mediastinal cancer nodes.

Currently, a 18F-labelled fluoro-2-deoxyglucose ([18F]
FDG) positron emission tomography/computed tomography 
([18F]FDG-PET/CT) scan is acquired, and the nuclear medi-
cine physician/radiologist examine all the slices. The sen-
sitivity and specificity of these lesion-based analyses have 
been shown to be 0.59 and 0.97, respectively, meaning many 
nodes remain undetected [4]. Additionally, the agreement 
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between observers is limited. Inter-observer agreement, 
defined by the kappa score (κ), has been shown to range 
from 0.48 to 0.88, depending on the type of node (agreement 
was lower for aortopulmonary nodes (κ = 0.48–0.55) but 
higher for inferior and superior nodes (κ = 0.71–0.88)) [5]. 
We hypothesise that an artificial intelligence–based system 
could improve the sensitivity and reproducibility of medias-
tinal lymph node staging while also saving radiologists time.

In recent years, the use of machine learning algorithms 
to aid and automate medical-related problems has increased 
massively. Programmes have been built to automate tasks 
across the gamut of clinical oncology, from tumour detec-
tion and segmentation to therapy decisions [6–9]. A subset 
of machine learning, convolutional neural networks (CNNs) 
have emerged as a leading tool for classifying images [10]. 
In contrast to mathematical radiomic features, CNNs self-
learn optimised features through a series of layers. Succes-
sive layers learn increasingly higher-level features from the 
images using non-linear mappings, eventually using these 
features to make predictions. The network is trained so that 
the features become optimised for the task. CNNs have 
shown promise in a wide range of image recognition and 
classification tasks, in some cases challenging the accuracy 
of medical experts [11–13]. One important issue impeding 
the widespread adoption of machine learning models is their 
lack of ability to generalise to data from different sources 
(domain shift) [14, 15]. A solution is to use transfer learning, 
which involves further training of the model using data from 
the second domain, often with some CNN layers frozen or 
with a smaller learning rate (also called fine-tuning). This 
has been shown to improve inter-scanner performance [16, 
17].

For lung cancer, machine learning models have been built 
to detect pulmonary nodules in CT scans at an accuracy 
comparable to or better than that of physicians [18, 19]. 
Ardila et al. used a cohort of 14,851 patients from the pub-
licly available National Lung Screening Trial to predict risk 
of lung cancer, achieving an AUC of 0.94 and outperforming 
radiologists [20].

However, there has been less progress on the automated 
detection of pathological mediastinal lymph nodes. Roth 
et al. used a CNN to automatically detect enlarged lymph 
nodes (indicating disease) from CT scans [21]. The input 
data consisted of 2.5D patches (three orthogonal slices) 
centred on the lymph node locations. With a cohort of 86 
patients, they achieved a sensitivity of 0.70 with three false 
positives/patient.

Several [18F]FDG-PET thresholding methods have 
also been proposed, as described in the meta-analysis by 
Schmidt-Hansen et al. [22]. These studies used features such 
as [18F]FDG-PET SUVmax and [18F]FDG-PET SUVmean 
to classify nodes as pathological. Using an SUVmax ≥ 2.5 
criterion gave an average sensitivity and specificity of 0.81 

and 0.79, respectively. However, the meta-analysis showed 
high inter-study heterogeneity. Additionally, these studies all 
required the nodes to first be located manually by an expert.

Given the diversity of mediastinal node shapes, sizes, and 
locations, using solely the CT or [18F]FDG-PET is limiting. 
Wu et al. showed that using [18F]FDG-PET/CT for nodal 
staging of NSCLC confers significantly higher sensitivity 
and specificity than only contrast-enhanced CT and higher 
sensitivity than only [18F]FDG-PET [23]. With a cohort of 
168 patients, Wang et al. used a 2.5D CNN (using six axial 
patches of size 51 × 51 mm2) to diagnose mediastinal lymph 
node metastasis, achieving a sensitivity and specificity of 
0.84 and 0.88, respectively [24].

While these models achieved good results, they all 
required as inputs the locations of the mediastinal nodes. 
Locating these nodes is already a time-consuming task. 
Furthering these studies, our aim was to build a model that 
could automatically classify mediastinal nodes directly from 
whole-body [18F]FDG-PET/CT scans, without the need for 
prior annotation. This is akin to other works that have used 
CNNs to go directly from whole-body [18F]FDG-PET/CT 
scans to suspicious [18F]FDG-PET/CT foci localisation [25, 
26]. This model could then be used by a physician to quickly 
identify high-risk lymph nodes, saving time and increasing 
diagnosis consistency.

Materials and methods

To achieve our goal, we used supervised learning to build a 
fully automated 3D end-to-end algorithm that used whole-
body [18F]FDG-PET/CT scans as inputs and output the 
same scans with the locations of suspicious mediastinal 
nodes highlighted. The performance of the algorithm with 
respect to an experienced “reference” nuclear medicine 
physician was compared to that of a second physician with 
respect to the reference physician. The model was also tested 

Table 1   Summary of the datasets, showing the numbers of patients 
and positive nodes in each cohort. Also shown are the distributions of 
patients by number of nodes per patient

Scanner 1 Scanner 2

Training set Test set Training set Test set

Number of 
patients

96 29 30 29

Number of nodes 120 52 35 34
Patients split 

by number of 
nodes

0 55 12 13 16
1 11 6 6 3
2 13 3 7 3
3 6 1 2 4
4 +  11 7 2 3
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on data from a different scanner with and without transfer 
learning.

Datasets

Details of the datasets are shown in Table 1. An initial 
cohort of 134 NSCLC patients who underwent [18F]FDG-
PET/CT scans (Gemini TF; Philips Medical Systems, Best, 
the Netherlands) was studied. This study was approved 
by an institutional review board. [18F]FDG-PET/CT was 
performed 60 min after intravenous injection of 3 MBq/kg 
of [18F]FDG, with 105-s acquisition per bed position. CT 
images were obtained without a contrast medium. Images 
were reconstructed using a blob ordered subset–time of 
flight list-mode iterative algorithm (2 iterations, 33 sub-
sets, including attenuation and scatter corrections). [18F]
FDG-PET voxels were 4 × 4 × 4 mm3. CT in-plane resolu-
tion varied from 0.58 mm to 1.05 mm, and the inter-plane 
resolution was 1 mm. All scans were analysed under the 
supervision of an experienced dual board–certified radiolo-
gist (15 years’ experience in thoracic imaging), who used 
the LIFEx [27] software to mark the positions of medias-
tinal nodes they would consider positive in routine clinical 
examination. These positions served as a surrogate ground 
truth. Nine patients were excluded from the study because 
of multimetastatic disease involving the lung, pleura, and 
the mediastinum leading to unreliable nodal identification. 
This gave a total of 125 patients comprising 172 positive 
nodes. Twenty-nine randomly chosen patients (comprising 
52 positive nodes) were reserved for testing and only used 
for the final evaluation of the model. For comparison of 
the variation between our algorithm and the physician and 
that between two physicians, this test set was also labelled 
independently by a second physician (5 years’ experience 
in thoracic imaging). For hyperparameter optimisation, a 
validation set of 24 patients comprising 35 nodes was used. 
During final evaluation of the model, the validation set was 
included in the training set.

A second cohort of 71 patients was later acquired on a 
different scanner from the same institution. These data were 
acquired on a digital GE Discovery MI PET/CT (DMI) sys-
tem with a 25-cm FOV. PET scans were performed around 
60 min after intravenous injection of 2.5 MBq/kg of [18F]
FDG, with 120-s acquisition per bed position. Data were 
reconstructed using BSREM (Q.Clear) with a penalisa-
tion β-factor set at 800. [18F]FDG-PET voxels were of size 
2.8 mm inter-plane and varied from 2.34 to 2.73 mm in-
plane. CT in-plane resolution varied from 0.8 to 1.37 mm, 
and inter-plane resolution was 1.25 mm. These scans, from a 
newer scanner, had improved contrast (see Fig. 1 for a com-
parison). Positions of pathological mediastinal nodes were 
marked by the same expert to serve as a surrogate ground 
truth. Twelve patients were excluded due to the reasons 
above, giving a total of 59 patients comprising 69 positive 
nodes. From these, 30 patients (comprising 35 nodes) were 
reserved for transfer learning training, leaving 29 patients 
(comprising 34 nodes) for testing.

Automated image analysis

The proposed pipeline for the model is shown in Fig. 2 and 
consists of several stages, starting with the whole-body 
[18F]FDG-PET/CT images and ending with a list of pre-
dicted pathological node locations. All experiments were 
run on a single Nvidia GeForce RTX 2080Ti graphics card. 
CNNs were built using Keras 2.4.3 with a TensorFlow 2.2.2 
backend.

Data preprocessing

Both the [18F]FDG-PET and CT scans were resampled to 
give images with uniform voxels of size 1 × 1 × 1 mm3 using 
a cubic spline interpolation. The raw DICOMs were whole-
body scans, but only the thorax was relevant. This region was 
isolated using a crude lung segmentation algorithm, based 
on [28]. The CT scan was first thresholded, so any voxel with 

Fig. 1   A comparison of [18F]
FDG-PET/CT images from a 
scanner 1, Gemini TF (Philips 
Medical Systems), and b scan-
ner 2, Discovery MI (GE Medi-
cal Systems)
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a Hounsfield unit (HU) greater than –400 was set to 0 and 
anything below set to 1. This identified the air-filled regions 
of the CT. This was followed by a two-iteration binary clos-
ing operation and a seven-iteration binary opening operation 
(both with a square connectivity of one). These operations 
removed very small air-filled regions and removed small 
nodules within the lungs. Any air regions outside the patient 
were discounted (these were automatically identified as any 
regions within 25 voxels of the image border). The larg-
est air-filled region was then selected, in all cases one or 
both lungs. To automatically identify the thorax, only slices 
within the range of this segmentation were kept, and the 
whole-body scans were cropped to leave just slices within 
these bounds. Slices were then symmetrically cropped to 
size 256 × 256 pixels to remove large non-relevant regions 
outside the body. CT values were bounded such that any 
values above/below –1000/1000 HU were set to –1000/1000, 
and [18F]FDG-PET values above 8 SUV were set to 8 SUV. 
[18F]FDG-PET and CT values were finally rescaled to give 
the dataset zero mean and unit variance, using the whole 
training data to calibrate the rescaling (this dataset-level res-
caling ensured that absolute differences in values between 
patients were maintained). This data preprocessing was fully 
automated and did not require any manual supervision.

Classification phase one: generate candidates

The initial dataset was very unbalanced, with only a small 
number of positive mediastinal nodes compared to the large 

total image volume. Because of this, a two-phase process 
was used for classification.

Phase one was a “candidate generation” step, with the 
goal of producing a small set of candidate pathological 
regions that retained most of the true positive nodes (high 
sensitivity). To do this, a 2D U-Net was trained [29]. The 
mediastinal nodes were not explicitly segmented, so simple 
spheres of radius 15 mm centred on the nodes were used as 
labels (most nodes are of diameter 0–30 mm, so this ensured 
that the entire nodes were within the labelled regions [30]). 
The U-Net was trained on a slice-by-slice basis, with the 
training data being 256 × 256 × 2 pixel [18F]FDG-PET/CT 
slices (full details of the CNN architecture can be found in 
Supplementary Material 1) and the output being the positive 
node regions. Only slices containing positive labels were 
used in training. This whole-slice view was used so the net-
work had a full physiological view of each slice and could 
learn to only pick candidates within the mediastinum. The 
network was trained for 20 epochs with a Dice loss and an 
Adam optimiser with a learning rate of 10–5, by which time 
the validation loss had stopped decreasing.

Once trained, for each patient, the entire 3D volume was 
input into the U-Net slice-by-slice, and a set of contiguous 
candidate regions was produced. Any region with a volume 
of less than 300 voxels was removed, as these were clearly 
too small to be node candidates. A three-iteration dilation 
was then performed (with a square connectivity of one) to 
expand the candidate regions, ensuring that the entirety of 
each node was covered by the regions.

Fig. 2   Process diagram showing the model pipeline. Images are first 
preprocessed to give slices only in the thorax. These are then fed into 
a U-Net to give a set of candidate regions. These are then divided 

into overlapping cubes, which are input into a 3D ResNet for clas-
sification. This gives a set of predictions at each coordinate, which are 
aggregated to give the final predicted pathological nodes
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Classification phase two: false positive reduction

Phase two classified the regions from phase one as nega-
tive or positive, i.e. determined if they included a cancerous 
mediastinal node. In some cases, the regions were large, 
meaning just predicting the entire region as pathological 
would not have been useful, as the location of the pathologi-
cal node would not have been precisely identified. Therefore, 
the regions were split into overlapping 3D cubes at 8-mm 
intervals in the x, y, and z axes (forming a regular grid). The 
cubes were of side length 64 mm.

This gave a total of 46,427 cubes in the training set. Any 
cubes with a pathological node within 16 mm of their cen-
tres were marked as positive, and those without were marked 
as negative (giving 4,235 positive cubes and 42,192 negative 
cubes). During training, the negative cubes were randomly 
undersampled by a factor eight. This considerably sped up 
training with a negligible effect on performance.

A 50-layer 3D ResNet architecture was used to classify 
the cubes, based on [31]. The architecture and code for this 
model are available at [32]. The network was trained for 20 
epochs with a batch size of 32 using an Adam optimiser with 
a learning rate of 10–5 and a cross-entropy loss, by which 
point the validation loss had stopped decreasing. On-the-fly 
augmentation was used in the form of random rotations and 
flips in the x, y, and z axes.

Once trained, this network was used to give a pathologi-
cal probability for each cube. As the cubes overlapped, there 
were several predictions for each coordinate. To aggregate 
these, the predictions at each coordinate were summed, and 
any coordinate above a threshold of 18 was considered posi-
tive (this threshold was found by minimising the sum of the 
false positives and false negatives on the validation set).

Performance assessment

This map of pathological locations was useful for view-
ing the locations of pathological nodes, but to compare it 
directly with the accuracy of physicians and with other stud-
ies, it needed to be converted to an appropriate metric, as 
the accuracy of cube classification is not equivalent to the 
accuracy of node classification.

To determine the node classification accuracy, each 
contiguous region that had been predicted positive was 
labelled. Any regions that had pathological nodes within 
them were classed as true positives (TPs), any without nodes 
were classed as false positives (FPs), and any pathological 
nodes that were not contained in a region were classed as 
false negatives (FNs). Using this measure, one large region 
spanning the whole scan would constitute perfect accuracy 
despite being completely useless, so the regions were visu-
ally checked to ensure that they were small enough to local-
ise the nodes. These three numbers were used to calculate 

the sensitivity and FPs/patient. These metrics are sufficient 
to give a full performance analysis of the model (the key 
points being numbers of false positives and false negatives). 
Previous works mentioned above use specificity as a bench-
mark, although there is no consistency in the number of 
nodes per patient (the CNN analysis in [24] had an average 
of 8.3 nodes per patient, whereas in a meta-analysis of physi-
cian performance [4], the number of nodes per patient varied 
from 0.8 to 12.7). We therefore did not use specificity as a 
performance metric.

The performance was first assessed using the test set of 29 
patients from the same scanner. During training, our “ground 
truth” was the labelling by an experienced physician, but as 
mentioned in the introduction, this labelling is not perfect. 
Therefore, a more informative metric is the comparison of 
the variation of our algorithm with respect to a physician to 
the variation of one physician with respect to another. Using 
the labelling by the second physician, inter-observer agree-
ment was measured using the kappa statistic [33], using the 
benchmarks of Landis and Koch [34] (0.81–1, almost per-
fect agreement; 0.61–0.8, substantial agreement; 0.41–0.6, 
moderate agreement; 0.21–0.4, fair agreement). Calculation 
of the kappa statistic requires the number of true negatives. 
This was determined by subtracting the sum of TPs, FPs, and 
FNs from 8.3 multiplied by the number of patients. This was 
for consistency with [24], where the analysis had 8.3 nodes 
per patient. Exact 95% Clopper-Pearson confidence intervals 
(CIs) were calculated for each performance metric [35].

Using data from the second scanner

Finally, the ability of the model to classify images from the 
second scanner was tested. The scanner 2 test set was first 
evaluated directly on the trained model. To see if this per-
formance could be improved, the model was then fine-tuned 
using transfer learning. After generating a set of cubes using 
the exact same U-Net from phase one, the ResNet model 
from phase two was trained for 20 more epochs, using the 
training data from scanner 2 (the U-Net model was not fine-
tuned). The training parameters were identical to those in 
phase two, but with a smaller learning rate of 10–8. This 
model was evaluated as above on the scanner 2 test data. 
This performance was compared to the performance without 
transfer learning.

Results

After phase one, the model achieved 100% sensitivity on 
the test set from the first scanner (i.e. all positive nodes 
were detected). On the test set from the second scanner, two 
positive nodes were missed in phase one (94% sensitivity). 
Overall model results are detailed in Table 2.
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Scanner 1

The results for scanner 1 correspond to a substantial agree-
ment between the physician and our model (κ = 0.77 [95% CI 
0.68, 0.87]). The agreement between the two physicians was 
also substantial (κ = 0.66 [0.54, 0.77]), as was that between 
our model and the second physician (κ = 0.71 [0.60, 0.82]). 
These results show that the agreement between our model 
and the physician is comparable to that between the two 
physicians.

Supplementary Fig. 1 shows some examples of the output 
of the model. These show how the model highlights regions 
it has predicted positive. These could aid a physician by 
quickly pointing them to suspicious areas, as well as draw-
ing attention to suspicious areas they may have missed. 
Figures 1a and 1b show nodes correctly identified by the 
model. Figure 1c shows a false positive, where the model has 
marked a left thyroid nodule. Figure 1d shows another false 
positive, where the model has marked a region of inflam-
mation next to the oesophagus. Figures 1e and 1f show two 
false negative cases. Both of these nodes show low uptake 
on the [18F]FDG-PET and do not stand out well from the 
background. These were marked by the physician because 
the sizes of the nodes are > 10 mm and the primary tumour 
is on the same side of the lungs as the nodes.

Scanner 2

The performances on the scanner 2 test data with and with-
out transfer learning are shown in Table 2. Applying our 
model directly to data from the second scanner resulted in 
a much lower sensitivity (0.53 [0.35, 0.70] vs 0.87 [0.74, 
0.94]), indicating many more false negative cases. After 
using transfer learning to fine-tune the model, the sensitiv-
ity improved significantly, to 0.88 [0.73, 0.97]. However, 
the number of FPs/patient increased (0.24 [0.10, 0.49] vs 
0.69 [0.43, 1.04]).

Discussion

The performance of our model on the first test set was good, 
better than the reported performance of physicians (a meta-
analysis of physician performance showed sensitivity and 
specificity values of 0.59 and 0.97, respectively, for lesion-
based labelling [4]). However, without having a ground 

truth, these results are not directly comparable. Addition-
ally, this meta-study showed a huge range in these results 
(sensitivity from 0.46 to 0.90 and specificity from 0.65 to 
0.98). One factor that was shown to affect the results was 
geography (some studies were in high tuberculosis-preva-
lent regions, which lead to more false positives), but other 
factors such as scanner type, centre protocols, and physi-
cian experience may have made a difference. This variation 
highlights the difficulty in comparing results across studies, 
so any comparison must be treated with care. Taking this 
into account, our model achieved a comparable sensitivity 
to previous automated mediastinal node detection studies, 
with the CNN used in [24] achieving a sensitivity of 0.84. 
Most importantly, unlike all previous reports regarding the 
identification of mediastinal cancer nodes in lung cancer 
patients, our approach only requires the full [18F]FDG-PET/
CT scan as an input and does not rely on preliminary manual 
identification of patches containing suspicious uptake, thus 
representing a significant improvement in the overall auto-
mation of the process. This complete automation increases 
the consistency and reproducibility of mediastinal lymph 
node labelling. As demonstrated in Supplementary Fig. 1, 
the model could thus be used to aid physicians by quickly 
guiding them to potential positive node sites.

Comparing the results to those between two physicians, 
the agreement between the algorithm and the first physi-
cian was similar to that between the two physicians (κ = 0.77 
[0.68, 0.87] vs κ = 0.66 [0.54, 0.77]). The agreement 
between our model and the second physician was slightly 
lower (κ = 0.71 [0.60, 0.82]). This is not surprising, as our 
model was trained using the first physician’s labelling. Only 
one study could be found reporting inter-physician agree-
ment in identifying pathological mediastinal nodes using 
[18F]FDG-PET/CT scans and reported an inter-observer 
agreement ranging from 0.48 to 0.88, depending on the type 
of mediastinal node [5]. These results are consistent with 
ours. As mentioned, however, comparisons to other studies 
should be treated with caution due to the potentially large 
variations.

When applying our model directly to data from the sec-
ond scanner, the detection sensitivity dropped (Table 2). 
More work would be needed to determine which param-
eters are most relevant to this performance drop (scanner 
hardware, reconstruction parameters, etc.). Fine-tuning the 
model using transfer learning made it possible to improve 

Table 2   Summary of results 
for both test sets with and 
without model fine-tuning. 95% 
confidence intervals are shown

Experiment Sensitivity False positives/patient

Scanner 1 0.87 [0.74, 0.94] 0.41 [0.22, 0.71]
Scanner 2 (no transfer learning) 0.53 [0.35, 0.70] 0.24 [0.10, 0.49]
Scanner 2 (with transfer learning) 0.88 [0.73, 0.97] 0.69 [0.43, 1.04]
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the sensitivity up to that observed on the scanner 1 test data, 
but at the cost of more FPs/patient.

As is usually the case with CNNs, there is no sure-fire 
way to predict which parameters will result in the best 
performance, so a range of hyperparameter combinations 
were tested to optimise the model. In addition, single-phase 
approaches were tested (going directly from the scans to 
node locations) but found to not be discriminant enough, 
leaving too many false positives. Models with [18F]FDG-
PET–only and CT-only inputs were also tested, but these 
produced poor results. This is probably because their uses 
are complimentary: the CT provides anatomical information 
to locate the nodes, and the PET provides metabolic infor-
mation to determine if the nodes are positive. Full details of 
the parameters tested for all phases of model creation are 
summarised in the Supplementary Material.

One limitation of this study, and thus problem with the 
above comparisons, was the lack of comparison with a 
gold standard. Not all pathological nodes are detectable on 
[18F]FDG-PET/CT scans (e.g. [18F]FDG-negative cases), 
so without histological analysis, it is impossible to know 
which nodes are truly positives. However, histological analy-
sis also has its limitations in this application. In standard 
clinical practice, only suspicious nodes are biopsied, and if a 
patient has several suspicious nodes, not all will be biopsied. 
Additionally, some nodal stations are easier to access and 
thus more often biopsied, leading to sampling errors. These 
problems may explain the huge range in the number of nodes 
per patient seen in the meta-analysis [4]. A consensus judge-
ment would have improved our study, making our model less 
physician-specific.

Our dataset was quite small, and more data would 
undoubtedly improve these results. In a broader sense, this 
is the key advantage of a machine learning approach. As 
clinical practice adapts and training datasets get bigger, a 
CNN can learn from a broader range of nodes, allowing it 
to become more accurate. It could be that a certain misclas-
sified node had no direct comparison in the training set, but 
with a larger training set, this would rarely happen.

Conclusion

These results show a fully automated 3D CNN-based algo-
rithm that can detect pathological mediastinal nodes with an 
inter-reader kappa score similar to that between two physi-
cians. To our knowledge, it is the first study of its kind to 
go directly from whole-body [18F]FDG-PET/CT scans to 
pathological mediastinal lymph node predictions and loca-
tions in lung cancer patients. The results also show that 
with transfer learning, the model can be adapted to per-
form well on a test set from a different scanner. With more 

comprehensive testing (e.g. using a consensus-based judge-
ment) and a larger dataset, we believe that this approach 
could be used to improve the sensitivity and reproducibility 
of mediastinal lymph node staging, while also reducing radi-
ologist workload.
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