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ABSTRACT

To confirm the activity of an initial small molecule
‘hit compound’ from an activity screening, one needs
to probe the structure–activity relationships by test-
ing close analogs. The multi-fingerprint browser pre-
sented here (http://dcb-reymond23.unibe.ch:8080/
MCSS/) enables one to rapidly identify such close
analogs among commercially available compounds
in the ZINC database (>13 million molecules). The
browser retrieves nearest neighbors of any query
molecule in multi-dimensional chemical spaces de-
fined by four different fingerprints, each of which
represents relevant structural and pharmacophoric
features in a different way: sFP (substructure fin-
gerprint), ECFP4 (extended connectivity fingerprint),
MQNs (molecular quantum numbers) and SMIfp
(SMILES fingerprint). Distances are calculated us-
ing the city-block distance, a similarity measure that
performs as well as Tanimoto similarity but is much
faster to compute. The list of up to 1000 nearest
neighbors of any query molecule is retrieved by the
browser and can be then clustered using the K-
means clustering algorithm to produce a focused list
of analogs with likely similar bioactivity to be consid-
ered for experimental evaluation.

INTRODUCTION

Small molecule drug discovery relies on the identification
and iterative optimization of bioactive compounds consid-
ering one or several activity and property parameters (1,2).
Once an initial active compound, a so-called hit, has been
identified, its optimization requires to evaluate close struc-
tural analogs (3,4). One particularly straightforward first
step in this optimization should consist in acquiring any
commercially available compounds having a relevant struc-
tural similarity to the hit, whereby the structural similarity
can be quantified using various ligand-based virtual screen-
ing (LBVS) methods (5–7), in particular those based on
comparing molecular fingerprints (8) using similarity mea-
sures (9,10). This approach is particularly relevant today
because over 13 million different drug-like molecules are
commercially available and collected in a common database

ZINC (11). However, the current options to search this
database, such as the similarity search function at the ZINC
website, or other database browsers (12–15) and visualiza-
tion tools, such as the MQN (molecular quantum number)
and SMIfp (SMILES fingerprint) browsers and mapplets
(16,17), only offer limited capabilities in terms of selecting
different fingerprint types and assembling a focused library
of analogs of a given hit compound.

The steps necessary to perform a relevant selection of
analogs of a particular hit compound in ZINC are more
complex than a simple similarity search. First, one needs
to probe the existence of hit analogs by examining simi-
larities along different aspects of molecular structure such
as pharmacophores (18–20), molecular shape (21–24), sub-
structures (25,26) or other molecular descriptors known
to be good predictors of biological activity (27–32). Sec-
ond, one must also analyze the resulting list of closest
analogs by grouping similar molecules together using clus-
tering (12,33,34), such as to assemble a cost-effective, fo-
cused yet diverse list of analogs. This search and clustering
routine should be fast and easy to use by experts and non-
experts with minimal requirement for computational infras-
tructure.

Multi-fingerprint browser

The multi-fingerprint browser presented here (http://dcb-
reymond23.unibe.ch:8080/MCSS/) provides an intuitive
user interface with a simple workflow to rapidly iden-
tify close analogs of a query molecule among commer-
cially available compounds in the ZINC database (11). The
browser provides an array of options for formulating the
query and allows for the visualization/analysis of the virtual
screening (VS) results with k-mean clustering. The search
engine of the multi-fingerprint browser uses the city-block
distance (CBD) to rank the compounds in decreasing or-
der of similarity to the input query molecule. The similar-
ity search space can be constructed from four different fin-
gerprints, each of which represents relevant structural and
pharmacophoric features in a different way. Two of them
are binary fingerprints, namely a daylight-type substructure
fingerprint (sFP) and an extended connectivity fingerprint
(ECFP4) (35), which describe substructures of the molecule
in the form of bit wise vectors where ‘1’ or ‘0’ indicates
the presence or absence of a particular substructure (25).
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sFP and ECFP4 are well-established fingerprints which are
used widely for VS. The other two property spaces are de-
rived from scalar fingerprints, namely MQNs (36), featur-
ing 42 integer value descriptors counting atoms, bonds, po-
lar groups and topological features (Supplementary Table
S1), and the SMIfp (17), featuring the counts of 34 differ-
ent characters in the SMILES representation of a molecule
(Supplementary Table S2). Both MQN and SMIfp were
recently developed in our group and have been shown to
provide reference feature spaces with capability for LBVS
and visualization of large databases (16,37). More impor-
tantly, MQN and SMIfp provide a way to identify new
chemotypes by similarity searching because they do not
search for the exact substructure information. The multi-
fingerprint browser presented here extends our previously
reported MQN and SMIfp browsers by newly including the
sFP and ECFP4 CBD similarity search, and adds the clus-
tering option as a new functionality.

MATERIALS AND METHODS

Processing and organization of ZINC

ZINC is an open-access database of commercially available
small organic molecules for drug discovery and currently
contains more than 13 million unique compounds (11). A
new version of the ZINC database is released periodically
with updated information for molecules and vendors. Ac-
cordingly, we have planned to update the compound library
in the multi-fingerprint browser every 6 months. For con-
struction of the browser, molecules from ZINC were pro-
cessed in SMILES format using an in-house-built java pro-
gram utilizing the Java Chemistry library (JChem) from
ChemAxon, Pvt Ltd. Counter ions were removed and the
ionization state of the molecules was adjusted to pH 7.4.
Each of the ZINC molecules was annotated with its molec-
ular formula, count of hydrogen-bond acceptors (HBAs),
hydrogen-bond donors (HBDs) and the numbers of oxygen
and nitrogen atoms. MQN and SMIfp were calculated us-
ing our previously reported source codes written in Java.
For sFP and ECFP4, 1024-bit hash fingerprints were cal-
culated using the JChem library. During fingerprint calcu-
lation, the path length (in sFP) was set to 7 and the bond
diameter (in ECPF4) was set to 4. Subsequently, the ZINC
database was organized in the form of hash tables (one for
each fingerprint space), where the hash key is defined as the
sum of all bit values in the fingerprint (total sum). This pre-
organization is the key to enable fast searching by CBD, be-
cause it allows one to confine the search to subsections of
the database matching the hash key of the query molecule
within a specified distance (CBD) limit. For example, when
the query molecule’s fingerprint has the total sum of 100
and the goal is to find nearest neighbors within distance of
CBD ≤ 10, one has to only look in part of the hash table
with hash key values in the range of 90 ≤ total sum ≤ 110
[for details see (38)].

Similarity metrics

The city-block distance between two points (CBDA, B), A
and B, with K dimensions is calculated as

CBDA,B =
K∑

j=1

|Aj − Bj |.

For molecules A and B represented by vectors XA and
XB with length n and attributes j, their Tanimoto similarity
coefficient (TA, B) is calculated as

TA,B =

n∑
j=1

Xj A · Xj B

n∑
j=1

(
Xj A

)2 +
n∑

j=1

(
Xj B

)2 −
n∑

j=1
Xj A · Xj B

.

Benchmarking similarity search methods

The efficiency of a similarity search method is typically
judged by its ability to recall known active compounds from
a background noise database (decoys). The sFP, ECFP4,
MQN and SMIfp fingerprints were evaluated for recovery
of active compounds of 40 target proteins from their corre-
sponding decoys available from the Directory of Useful De-
coys (DUD; data provided in Supplementary Figures S3–
S5) and from the entire ZINC database (39). The enrich-
ment results against entire ZINC are represented as aver-
age of Area Under receiver operating characteristic Curves
(AUC) (Figure 1, Supplementary Figures S1 and S2) and
average of enrichment factors at 0.1% (EF 0.1) of screened
database. MQN and SMIfp show comparable performance
for the recovery of various bioactivity classes, although they
do not match sFP/ECFP4 performance. The superior per-
formance of sFP and ECFP4 can be partly explained by the
fact that decoys were selected for low substructure similarity
to the actives. Furthermore, switching the scoring function
from city-block distance (CBDfingerprint) to Tanimoto coef-
ficient (Tfingerprint) shows no significant change in recall of
actives from decoys. The Tanimoto coefficient is a widely
recognized similarity metric for binary substructure finger-
prints (sFP and ECFP4). For the multi-fingerprint browser,
our choice was to use CBDfingerprint because it can be com-
puted as fast as the Tanimoto coefficient, but additionally it
allows for an efficient pre-organization of the database for
similarity searching.

DEFINITION OF QUERY AND SETTING SEARCH PA-
RAMETERS

The graphical user interface (GUI) of the multi-fingerprint
browser loads with the initial web page, which provides sev-
eral options for formulation of a query (Figure 2). Search
options can be broadly grouped into four parts, each of
which is discussed below.

(i) Input molecule
The JSME molecular editor from Peter Ertl et al. (40)
and MarvinSketch from ChemAxon Pvt Ltd are pro-
vided as two options to input the query molecule for
similarity searching. The query structure can be drawn,
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Figure 1. Average AUC values (A) and EF at 0.1% of screened database (B), for recovery of 40 sets of actives in the directory useful decoys (DUD) from
the ZINC database by using CBDfingerprint (blue bars) and Tfingerprint (brown bars) as scoring functions. Receiver operating characteristic curves (ROC) are
provided in Supplementary Figures S1 and S2. ROC curves, average AUC and EF at 1% for recovery of DUD actives from the corresponding set of DUD
decoys are provided in Supplementary Figures S3–S5.

Figure 2. Query page of Multi-Fingerprint browser for setting up
search parameters. Search options can be divided into four parts: (i)
molecular drawing panel for input query molecule, structure is shown
for adrenaline; (ii) selection of one of the four fingerprint spaces
(sFP/ECFP4/MQN/SMIfp) and of Max Count or Max Distance mode;
(iii) choice of specific vendors for the search (by default all vendors will
be searched); (iv) filters to fix certain molecular properties of the query
molecule.

or the molecule can be pasted as smiles/mol2/sdf for-
mat in the molecular editors. JSME\MarvinSketch ed-
itors are embedded in the HTML page as Java applets,
which demands active JavaScript and Java plugin (ver-
sion ≥1.6) in the client web browser. Additionally, an
option is available to extract the query molecule from
the Protein Data Bank (PDB) using the PDB ID of
the protein–ligand complex of interest. The PDB lig-
and data were downloaded from http://ligand-expo.
rcsb.org/ website and stored on web server, which will
be updated periodically (every 6 months).

(ii) Search method

First, one of the fingerprint spaces (sFP, ECFP4, MQN
or SMIfp) must be selected for similarity searching
from the drop down menu. Next, the search specifica-
tion Max Count (in number of molecules) or Max Dis-
tance (in CBDfingerprint) must be enabled by selection
of the respective radio button, using either the default
value or a user-specified value, whereby the Max Count
cannot exceed 1000 compounds. Upon submission of
the query, the search engine of the multi-fingerprint
browser then searches the hash table files in order of in-
creasing difference in total sum of the query molecule
until one of the Max Count or Max Distance criteria
has been reached.

(iii) Choice of vendors
Criteria can be set to retrieve nearest neighbors ei-
ther from all the vendors (>150) available in the
ZINC database or from any possible combination of
nine vendors: Princeton, Enamine, Otava, Vitas-M,
Specs, Urosy, ChemDiv, ChemBridge and Others (all
other remaining vendors). The listed vendors are our
own choice and are major contributors to the ZINC
database. By default, the multi-fingerprint browser re-
trieves compounds from all vendors. The choice of ven-
dors can be specified by selection of appropriate check
boxes.
Searching in the vendor space is enabled by using bit
mask values to store the vendor information of the
molecule. A bit mask is an integer number encoding
the information for ON (1) and OFF (0) bits in under-
lying binary equivalent. Bits were assigned to each of
the nine vendors. Depending upon availability of ven-
dors, specific bits were turned ON and the correspond-
ing bit mask value was generated and stored for each
of the database molecules. During similarity searching,
the choice of vendors made by the user is defined as
‘wanted bit mask’ and searched inside the database us-
ing Bitwise OR operation.

(iv) Molecular property filters
Nearest neighbors can be requested to have certain
molecular properties in common. For instance, lock-
ing the molecular formula option extracts compounds

http://ligand-expo.rcsb.org/
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Figure 3. Similarity search results for retrieval of 500 nearest neighbors of adrenaline in MQN space. Structures of nearest neighbors are shown in the
molecule table built with the MarvinView Applet from ChemAxon Pvt Ltd. The scatter plot showing the number of compounds as a function of CBD to
the query is constructed with the ‘Google Chart’ application. These nearest neighbors can be saved to a file (green button at bottom of page) or can be
further analyzed by clustering using K-means algorithm.

Figure 4. Visualization/analysis interface for clustering results. The list of 50 clusters for MQN analogs of adrenaline is shown in the table on the left. The
molecular table on the right displays the structures of compounds in cluster no. 9, which is selected in the table on the left. The centroid of the cluster is
displayed at position 1 in the table. The list of clusters can be saved to a file for further analysis using the ‘Save Clusters’ button. Molecules from the clusters
can be selected manually and saved to file using ‘Add to Collection’ and ‘Save Collection’ buttons, respectively.

that are at least formula isomers of the input query
molecule. Knowing the importance of HBA and HBD
atoms for the interaction of small molecules with their
target proteins, options are provided to retain HBA
and HBD atom counts of the input query molecule in
nearest neighbors. Furthermore, the atomic composi-
tion of the compounds can be tweaked by specifying
the desired number of oxygen and nitrogen atoms. The
use of property filters usually increases the search time
of the ‘Max Count’ mode because the search might
have to go through many more hash tale entries to
reach the preset number of molecules.
Once all the parameters are set, a maximum of 1000
nearest neighbors of the input query molecule can be
retrieved by clicking on the ‘Submit’ button. Typically

the execution of a search takes a few seconds to a few
minutes. Imposing more restrictive criteria on nearest
neighbors leads to a considerable increase in search
time. Similarity searches in MQN and SMIfp spaces
are usually much faster than in sFP and ECFP4 spaces
due to a smaller number of dimensions and a more ef-
ficient organization of the database.

RESULTS

Search results are exemplified with searching for 500 nearest
neighbors of 4, 5-�-trihydroxy-N-methylphenethylamine
(Adrenaline/Epinephrine) in MQN fingerprint space.
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Visualization of nearest neighbors

The structures of nearest neighbors retrieved by the search
engine are displayed in a 4xn molecular table built with the
MarvinView Applet provided by ChemAxon Pvt Ltd (Fig-
ure 3). Nearest neighbors are sorted by increasing CBD
to the query molecule. A quick overview of the similar-
ity search results is provided in the scatter plot at right
showing the count of nearest neighbors as a function of
CBDfingerprint to the query molecule. As observed from the
scatter plot, CBD for adrenaline analogs ranges from 0 to
11 with the maximum occurrence of compounds at distance
10. These nearest neighbors show overall similar compo-
sition in terms of ring, atom types and functional groups
compared to adrenaline. Each of the displayed molecules is
tagged with the ZINC id and can be linked to the parent
ZINC database website to acquire detailed information on
the molecule.

Comparative analysis of the CBD-nearest neighbors of
adrenaline in four fingerprint spaces shows that analogs
provided by MQN or SMIfp are considerably different
from those retrieved by sFP and ECPF4 similarity search.
The sFP and ECFP4 analogs mostly preserve the substruc-
ture pattern of adrenaline: phenyl ring with 1-hydroxy-2-
(methylamino) ethyl substituent at position 4. This is par-
ticularly important when the basis is to study structure–
activity relationship of the lead molecule. On the other
hand, the rearrangement of the hydroxyl, amino and other
groups proposed by the MQN and SMIfp searches suggests
substructure patterns that are substantially different from
the input query molecule, a feature desirable for the identi-
fication of new chemotypes.

Clustering of nearest neighbors

It is important to examine the initial list of nearest neigh-
bors for redundancy and structural diversity (41,42). This
knowledge can then be used to construct a focused, cost-
effective, more representative and diverse chemical library
with increased likelihood to find bioactive compounds. To
assist in this task, the multi-fingerprint browser provides a
way to group the nearest neighbors using the well-known
K-means clustering algorithm. Compounds can be grouped
into a predefined number of clusters using one of the four
similarity measures (Figure 3). Note that nearest neighbor
searching and clustering are two separate steps and different
fingerprints may be used in each step.

The clustering results obtained for adrenaline analogs in
MQN space (‘number of clusters’ parameter was set to 50)
are shown in Figure 4. The table on the left shows the list of
clusters ordered according to decreasing size. Apart from a
few small groups, clusters are rather uniformly populated in
this example, although this is not always the case. Visualiza-
tion of the various clusters of adrenaline analogs shows that
they feature different families of compounds. For example,
cluster no. 9 contains trisubstituted benzene rings with mi-
nor modifications of functional groups. The ‘Centroid’ of
the cluster is displayed at the first position in the molecu-
lar table and can be used as ‘cluster representative’ for the
final selection. Note that the centroid is not necessarily the
best cluster representative and that clusters sometimes con-

tain diverse compounds, in which case the selection of more
than one compound may be necessary.

Saving the results

The list of nearest neighbors obtained from the similarity
search can be saved to a file. This file contains the SMILES
representation of the molecules, their ZINC id and CBD
to the input query molecule in the fingerprint space used
for searching. The same list can be saved after clustering, in
which case molecules are grouped by cluster and annotated
additionally with their cluster number. This file can be used
later for further analysis/visualization using any molecular
viewer.

CONCLUSIONS

With its intuitive GUI, the multi-fingerprint browser fea-
tures a practical and versatile similarity search tool for the
ZINC database. This browser can be readily used in hit
identification or lead optimization and provides a valuable
source of information for medicinal chemists and other re-
searchers in the drug discovery field.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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