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Abstract: Prony series representations have been extensively applied to characterizing the time-
domain linear viscoelastic (LVE) material functions for asphalt concrete. However, existing methods
that can generate high-quality Prony series parameters (i.e., discrete spectra) mostly involve compli-
cated programming algorithms, which poses a challenge for quick access of Prony series parameters.
Also, very limited research has been devoted to establishing methods for simultaneously determining
both retardation and relaxation spectra. To resolve these issues, this study presented a practical
approach to fast acquiring high-quality Prony series parameters for both relaxation modulus and
creep compliance of asphalt concrete by using the complex modulus test data. The approach adopts
the analytical representations of the continuous relaxation and retardation spectra from the Havriliak-
Negami (HN) and 2S2P1D complex modulus models to directly determine the discrete spectra,
and the elastic constants, Ee and Dg, for both LVE modulus and compliance functions are further
calculated by fitting the corresponding generalized Maxwell model representations to smoothed
data from the storage modulus representations of the HN and 2S2P1D complex modulus models. In
this way, all the procedures in the proposed method can be easily implemented in Microsoft Excel.
The results showed that the HN and 2S2P1D models yielded slightly different continuous spectral
patterns at shorter relaxation times and longer retardation times. However, at the region covered by
the test data, the continuous spectra of the two complex modulus models were very close to each
other. Thus, the two models can generate comparable Prony series parameters within the time or
frequency range covered by the test data. Considering that the quality of the resulting Prony series
parameters are closely related to the master curve models used for presmoothing, the HN and 2S2P1D
models were compared with the conventional Sigmoidal model. Additionally, the Black diagram was
recommended for examining the quality of the complex modulus test data before constructing the
master curves.

Keywords: asphalt concrete; Prony series; Havriliak-Negami (HN) model; 2S2P1D model; continuous
relaxation and retardation spectra

1. Introduction

Asphalt concrete, which has been paved on most roadways in the world, is a typical
particulate composite with a viscoelastic matrix. In engineering applications, it is commonly
regarded as a linear viscoelastic (LVE) material [1–3]. As such, many mechanical tests based
on the LVE theory, like the static relaxation and creep tests and the dynamic complex
modulus test, can be used for characterizing its LVE behavior. Theoretically, the properties
from these tests such as the relaxation modulus, creep compliance and complex modulus
are equivalent [4–6]; however, for a practical purpose, the uniaxial compressive complex
modulus test has been widely accepted as a standard LVE material characterization test.
After the complex modulus test data is obtained, it is usually required to extract the LVE
information from the test data through mathematical models.
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In the LVE theory, the generalized Maxwell model and generalized Kelvin model ap-
pear to be the most commonly used models for describing both time- and frequency-domain
material functions, and they have been implemented into many commercial numerical sim-
ulation programs, e.g., ABAQUS, ANSYS and COMSOL Multiphysics [7–11]. This can be
primarily attributed to their high computational efficiency and wide applicability [3,12,13].
The two models are composed of linear springs and dashpots linked in different configura-
tions, and mathematically yield the so-called Prony series expressions for the relaxation
modulus and creep compliance in time domain [3,12,14]. The Prony series expressions
are not only very convenient to be converted analytically into the frequency-domain com-
plex modulus and compliance, but also can considerably facilitate the computation of
the convolution integrals for the LVE constitutive equations due to the presence of decay-
ing exponential terms. Therefore, accurate and efficient identification of the Prony series
parameters (i.e., discrete relaxation and retardation spectra) is crucial to the subsequent
performance analysis and prediction of asphalt pavement or mixtures.

To date, researchers have proposed various methods for determining the Prony series
parameters. Several representative approaches that apply directly to raw data in the time
or frequency domain have been widely used for LVE materials, e.g., the collocation method
by Schapery [15], the multidata method by Cost and Becker [16], and the windowing
method by Tschoegl and Emri [17]. Nonetheless, these classic schemes would encounter
difficulties when utilized for asphalt concrete. Two major issues, namely negative spectrum
strengths and local spectrum oscillations, occur frequently due to the narrowband nature
of the Prony series terms and significant scatters in test data. To address these problems,
presmoothing techniques have been introduced by using broadband functions, like the
Sigmoidal model [2], power-law series [3], Huet-Sayegh model [18], Havriliak-Negami
(HN) model [14] and 2S2P1D model [19,20]. The use of these broadband functions not
only improves the quality of the test data, but facilitates the data shift in accordance with
the time-temperature superposition principle (TTSP) during the construction of master
curves. In view of the equivalence of the LVE material functions, some interconversion
algorithms [13,21,22] were also presented to calculate the Prony series parameters of the
relaxation functions from the retardation functions, or vice versa.

On the other hand, the continuous spectrum-based methods attract increasing atten-
tion from the asphalt paving research community in that they are able to eliminate negative
spectrum strengths and excessive parameters. Levenberg [23] developed a continuous
relaxation spectrum model for asphalt concrete by using a lognormal distribution function.
However, this model is symmetrical on the logarithmic timescale and thus may not be
appropriate for all mixtures. Zhao et al. [2] established a confining pressure dependent
continuous relaxation spectrum by considering the relationship between the relaxation
spectrum and storage modulus. Luo et al. [24] and Lv et al. [25] respectively deduced
continuous relaxation spectra from a modified power law-based relaxation modulus model
and a generalized Sigmoidal model-based storage modulus model. Nevertheless, these
works were all concentrated on the relaxation spectrum, and thus may be inconvenient for
those who need fast solutions for both retardation and relaxation functions. Aiming at this
issue, Sun et al. [26] presented a numerical approach to determining a continuous spectrum
from the other. Bhattacharjee et al. [27] and Zhang et al. [28] calculated the two continuous
spectra from storage modulus and storage compliance separately based on the Sigmoidal
function and the generalized Sigmoidal function; however, due to the inconsistency of the
model parameters of the storage modulus and storage compliance, the LVE relationship
cannot be strictly satisfied.

Although there have been so many methods developed for determining the Prony
series parameters as mentioned above, most of them involve complicated programming
algorithms, which poses a challenge for quick access of Prony series parameters. Further-
more, very limited research has been devoted to establishing approaches for determining
both retardation and relaxation spectra at the same time. To deal with these problems, this
study gave a practical approach by adopting analytical representations of the continuous
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relaxation and retardation spectra from two complex-valued models, and all the procedures
in the method can be easily implemented in Microsoft Excel.

2. Materials and Complex Modulus Test

Two dense-graded asphalt mixtures, denoted as Mix-13.2 and Mix-9.5 herein, were
prepared for the complex modulus testing. Mix-13.2 had a nominal maximum aggregate
size (NMAS) of 13.2 mm. The coarse aggregates and asphalt binder used were limestone
and PG 58-22 unmodified asphalt, respectively. Mix-9.5 had a NMAS of 9.5 mm. The coarse
aggregates and asphalt binder used were granite and PG 64-22 neat asphalt, respectively.
The asphalt contents of Mix-13.2 and Mix-9.5 were 3.9% and 5.7%, respectively. Figure 1
presents the aggregate gradations of the two asphalt mixtures.

Figure 1. Aggregate gradations of Mix-13.2 and Mix-9.5.

The complex modulus tests were performed on all specimens of the two mixtures in
accordance with the standard testing method AASHTO T342 [29]. The two mixtures were
first compacted using the Superpave Gyratory Compactor and then trimmed into the final
cylindrical specimens (150 mm in height and 100 mm in diameter) containing an air void
content of 4 ± 1%. For each mixture, three replicate specimens were fabricated.

The complex modulus testing was conducted on a universal testing machine (UTM). A
stress-controlled compressive mode was employed for all the complex modulus tests. For
Mix-13.2, five testing temperatures (−10, 5, 20, 35 and 50 ◦C) and seven loading frequencies
(0.1, 0.5, 1, 5, 10, 20 and 25 Hz) were adopted, and for Mix-9.5, five testing temperatures
(−16, 4, 24, 40 and 50 ◦C) and six loading frequencies (0.1, 0.5, 1, 5, 10 and 25 Hz) were
adopted. During testing, the strain was kept between 50~150 µε and the accumulated strain
was controlled below 1500 µε to ensure LVE measurements. By means of the obtained
stress and strain data, two quantities, i.e., the dynamic modulus |E*| and phase angle ϕ,
can be calculated as follows:

|E∗| = σ0

ε0
(1)

ϕ =
∆t
tp
× 360◦ (2)

where σ0 and ε0 are the amplitudes of the axial stress and strain; ∆t is the time lag of the
strain curve behind the stress curve; tp is the loading period. The dynamic modulus |E*|,
which is the absolute value of the complex modulus E*, characterizes the resistance to
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deformation of a viscoelastic material, whereas the phase angle ϕ characterizes the extent
to which the viscoelastic material behaves like a viscous liquid (ϕ = 90◦) or an elastic solid
(ϕ = 0◦).

3. Methodology
3.1. Viscoelastic Master Curve Models

In this study, two models, i.e., the HN model and the 2S2P1D model, were employed
to build the complex modulus master curves of the asphalt mixtures. The HN model has
five parameters and is represented by [30]:

E∗(ω) = Eg +
Ee − Eg[

1 + (iωτ0)
α]β

(3)

where Eg is the glassy modulus; Ee is the equilibrium modulus; ω = 2πf is the angular fre-
quency; f is the frequency; i =

√
−1; α, β and τ0 are model parameters and they respectively

control the width, asymmetry and horizontal position of the relaxation spectrum.
The real part E′ and imaginary part E” of the complex modulus E* have the following

relationship with the dynamic modulus |E*| and phase angle ϕ:

E∗ = E′ + iE′′ = |E∗| cos ϕ + i|E∗| sin ϕ (4)

where E′ is the storage modulus; E” is the loss modulus. Thus, the dynamic modulus |E*|
and phase angle ϕ can be calculated using the storage modulus E′ and the loss modulus E”,
as follows

|E∗| =
√

E′2 + E′′ 2 and ϕ = arctan
E′′

E′
(5)

From the HN model, the representations of the storage modulus and loss modulus
can be analytically separated out according to De Moivre’s formula, as the following [30]:

E′ = Eg +

(
Ee − Eg

)
cos(βψ)[

1 + 2ωατα
0 cos(απ/2) + ω2ατ2α

0
]β/2 (6)

E′′ =

(
Eg − Ee

)
sin(βψ)[

1 + 2ωατα
0 cos(απ/2) + ω2ατ2α

0
]β/2 (7)

ψ = arctan
ωατα

0 sin(απ/2)
1 + ωατα

0 cos(απ/2)
(8)

Obviously, with the analytical expressions of the storage and loss moduli, those for
the dynamic modulus and phase angle are also available according to Equation (5).

The 2S2P1D model, composed of two spring elements, two parabolic elements and a
dashpot element, possesses seven parameters and has the following mathematical form [19]:

E∗(ω) = Ee +
Eg − Ee

1 + α(iωτ0)
−k + (iωτ0)

−h + (iωβτ0)
−1 (9)

where α, k and h (0 < k < h < 1) are the parameters of the two parabolic elements; τ0 is
a temperature-dependent parameter; β is the parameter associated with the Newtonian
viscosity of the dashpot element, η = (Eg − Ee) βτ0.

According to De Moivre’s formula, the storage and loss moduli representations of the
2S2P1D model can also be derived, as follows:

E′ = Ee +

(
Eg − Ee

)
(1 + A)

(1 + A)2 + B2
(10)
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E′′ =

(
Ee − Eg

)
B

(1 + A)2 + B2
(11)

A = α(ωτ0)
−k cos(kπ/2) + (ωτ0)

−h cos(hπ/2) (12)

B = −α(ωτ0)
−k sin(kπ/2)− (ωτ0)

−h sin(hπ/2)− (ωβτ0)
−1 (13)

Since the storage and loss moduli of the HN and 2S2P1D models can all be derived
analytically from the corresponding complex-valued models, they accurately meet the
Kronig–Kramers relation that correlates the real and imaginary parts of the response to a
harmonic load to each other theoretically [31].

Besides, in the viscoelastic theory, when the representation of the complex modulus E*
is known, the complex compliance D* can be analytically obtained by taking the inverse of
the complex modulus, as follows:

D∗ = D′ − iD′′ = 1/E∗ (14)

D′ =
E′

E′2 + E′′ 2
(15)

D′′ =
E′′

E′2 + E′′ 2
(16)

where D′ is the storage compliance; D” is the loss compliance.

3.2. Continuous Relaxation and Retardation Spectra

For a LVE material, the modulus functions in the time and frequency domains can
be uniformly expressed using the continuous relaxation spectrum H(ρ) through integral
forms [31]:

E′(ω) = Ee +
∫ ∞

−∞
H(ρ)

ω2ρ2

1 + ω2ρ2 d ln ρ (17)

E′′ (ω) =
∫ ∞

−∞
H(ρ)

ωρ

1 + ω2ρ2 d ln ρ (18)

E(t) = Ee +
∫ ∞

−∞
H(ρ)e−t/ρd ln ρ (19)

where ρ is the relaxation time; E(t) is the relaxation modulus; t is the loading time.
Similarly, the compliance functions of a LVE material in the time and frequency

domains can be uniformly expressed using the continuous retardation spectrum L(τ)
through integral forms [31]:

D′(ω) = Dg +
∫ ∞

−∞
L(τ)

1
1 + ω2τ2 d ln τ (20)

D′′ (ω) =
∫ ∞

−∞
L(τ)

ωτ

1 + ω2τ2 d ln τ (21)

D(t) = Dg +
∫ ∞

−∞
L(τ)

(
1− e−t/τ

)
d ln τ (22)

where τ is the retardation time; D(t) is the creep compliance.
The continuous relaxation spectrum H(ρ) and continuous retardation spectrum L(τ)

essentially contain identical time- and frequency-dependent material information; thus,
they are equivalent of characterizing the LVE behavior of a material. As can be seen from
Equations (17)–(22), once the continuous relaxation and retardation spectra are determined,
both modulus and compliance functions in the time and frequency domain can be attained.
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In accordance with the LVE theory, the continuous spectra have the following relationships
with the complex modulus E* [31]:

H(ρ) = ±π−1ImE∗(iω)
∣∣∣iω→ρ−1e±iπ = ±π−1ImE∗

(
ρ−1e±iπ

)
(23)

L(τ) = ∓π−1ImD∗(iω)|iω→τ−1e±iπ = ∓π−1ImD∗
(

τ−1e±iπ
)
= ∓π−1Im

[
E∗
(

τ−1e±iπ
)]−1

(24)

where Im represents the operation of retaining the imaginary part of a complex-valued
function.

For the HN model, Havriliak and Negami [30] presented the analytical expression of
H(ρ) through Equation (23), as follows:

H(ρ) =

(
Eg − Ee

)
(ρ/τ0)

αβ sin(βφ)

π
[
1 + (ρ/τ0)

2α + 2(ρ/τ0)
α cos(απ)

]β/2 (25)

φ = arctan
sin(απ)

(ρ/τ0)
α + cos(απ)

(26)

Analogously, Sun et al. [26] derived the close-form solution for L(τ) of the HN model
through Equation (24), as follows:

L(τ) =
Ω
(
Eg − Ee

)
sin(βφ)

π
{[(

Ee − Eg
)

cos(βφ) + EgΩ
]2

+
[(

Ee − Eg
)

sin(βφ)
]2} (27)

Ω =
[
1 + (τ0/τ)2α + 2(τ0/τ)α cos(απ)

]β/2
(28)

For the 2S2P1D model, Alavi et al. [32] obtained the analytical representation of H(ρ)
through Equation (23), as follows:

H(ρ) =

(
Eg − Ee

)
X

π(X2 + Y2)
(29)

X = 1 + ατ−k
0 ρk cos(kπ) + τ−h

0 ρh cos(hπ)− β−1τ−1
0 ρ (30)

Y = ατ−k
0 ρk sin(kπ) + τ−h

0 ρh sin(hπ) (31)

Sun et al. [33] successfully deduced the analytical expression for L(τ) of the 2S2P1D,
as follows:

L(τ) =
Y(Eg − Ee)(X2 + Y2)

π
{[

Ee(X2 + Y2) + X(Eg − Ee)
]2

+
[
Y(Eg − Ee)

]2} (32)

It is noted that ρ in X and Y of Equation (32) should be replaced by τ.
Evidently, for the HN and 2S2P1D models, the corresponding relaxation modulus E(t)

and creep compliance D(t) in the time domain can be readily calculated with the continuous
relaxation and retardation spectra according to Equations (19) and (22). Further, in terms of
the Boltzmann superposition integrals, the constitutive relationships for the LVE material
can be determined [31].

3.3. Construction of Master Curves

Asphalt concrete is a typical thermorheologically simple material in the LVE region;
therefore, the master curves for various LVE material functions in both frequency and
time domains can be constructed in accordance with the time–temperature superposition
principle (TTSP). During this process, viscoelastic test data measured at different temper-
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atures is shifted horizontally along the frequency or time axis on the logarithmic scale,
thus generating a smooth master curve at a given reference temperature Tr. By means
of the constructed master curve, the LVE behavior over a wider range of loading time or
frequency than that offered by the test instrument can be predicted. The reduced angular
frequency ωr and reduced time tr for the shifted test data are represented by:

ωr = ω× αT (33)

tr =
t

αT
(34)

where αT is the time-temperature shift factor. The time–temperature shift factors can be
represented using a function of temperature, e.g., the Williams–Landel–Ferry (WLF) or
the Arrhenius equation, or in a non-functional form. To avoid the effect of the functional
expression of αT, the non-functional method was adopted for constructing the master curve
of the complex modulus in the present study.

The parameters of the complex modulus model and time-temperature shift factors
were determined simultaneously through a nonlinear optimization process. To fully extract
the LVE information, both dynamic modulus and phase angle test data were taken into
account, and the target error function to minimize was as the following:

F =
1
N

√√√√√√ N

∑
i=1


∣∣∣E∗m,i

∣∣∣− ∣∣∣E∗c,i

∣∣∣∣∣∣E∗m,i

∣∣∣
2

+
1
N

√√√√ N

∑
i=1

(
ϕm,i − ϕc,i

ϕm,i

)2

(35)

where N is the number of the dynamic modulus or phase angle data points;
∣∣∣E∗m,i

∣∣∣ and
ϕm,i are the measured values for the dynamic modulus and phase angle, respectively;∣∣∣E∗c,i

∣∣∣ and ϕc,i are the calculated values for the dynamic modulus and phase angle from the
master curve model used, respectively. The optimization operation can be easily completed
using the Solver in Microsoft Excel. Before this, initial values for both master curve model
parameters and shift factors should be given. The reference temperatures for Mix-13.2 and
Mix-9.5 were set to 20 and 24 ◦C, respectively.

3.4. Determination of Prony Series Parameters

As stated above, once the parameters of the complex-valued models, like HN and
2S2P1D models, are known, the corresponding H(ρ) and L(τ) can be automatically deter-
mined due to the existence of their analytical expressions with the same parameters as the
original complex modulus models. Although all the modulus and compliance functions
can further be straightforward calculated with H(ρ) and L(τ) through Equations (17)–(22),
the integral forms based on the continuous spectra are actually inconvenient to implement
in numerical simulation techniques, e.g., the finite element method. Instead, the Prony
series expressions on the basis of discrete spectra have been extensively utilized due to
their advantage at computation efficiency.

The relaxation modulus expression derived from the generalized Maxwell model and
the creep compliance expression derived from the generalized Kelvin model are two typical
Prony series representations. For the generalized Maxwell model, the modulus functions
can be formulated by [31]:

E(t) = Ee +
n

∑
j=1

Eje
−t/ρj (36)

E′(ω) = Ee +
n

∑
j=1

Ej
ω2ρ2

j

1 + ω2ρ2
j

(37)
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E′′ (ω) =
n

∑
j=1

Ej
ωρj

1 + ω2ρ2
j

(38)

where Ej is the modulus of the spring or the relaxation strength; ρj = ηj/Ej is the discrete
relaxation time; ηj is the viscosity of the dashpot; the set of Prony series parameters [ρj, Ej]
is called the discrete relaxation spectrum.

For the generalized Kelvin model, the compliance functions can be represented by [31]:

D(t) = Dg +
n

∑
j=1

Dj

(
1− e−t/τj

)
(39)

D′(ω) = Dg +
n

∑
j=1

Dj
1

1 + ω2τ2
j

(40)

D′′ (ω) =
n

∑
j=1

Dj
ωτj

1 + ω2τ2
j

(41)

where Dj is the compliance of the spring or the retardation strength; τj = λjDj is the discrete
retardation time; λj is the viscosity of the dashpot; the set of Prony series parameters [τj, Dj]
is called the discrete retardation spectrum.

In fact, when the discrete relaxation and retardation spectra become infinitely dense,
they evolve into the so-called continuous relaxation and retardation spectra. As such,
Equations (36)–(41) can be interpreted as discretizations of Equations (17)–(22). For the
storage modulus E′(ω), H(ρ)dlnρ in Equation (17) represents the contribution of the model
to the modulus function in the interval of lnρ and lnρ+dlnρ, which leads to the following
derivation:

E′(ω) = Ee +
∫ ∞
−∞H(ρ)

ω2ρ2

1+ω2ρ2 d ln ρ

≈ Ee +
n
∑

j=1

[
H
(
ρj
)
× ∆ ln ρj

] ω2ρ2
j

1+ω2ρ2
j

= Ee +
n
∑

j=1
Ej

ω2ρ2
j

1+ω2ρ2
j

(42)

Likewise, for the storage compliance D′(ω), the integral form based on the continuous
retardation spectrum and the series expression based on the discrete retardation spectrum
have the following relationship:

D′(ω) = Dg +
∫ ∞
−∞L(τ) 1

1+ω2τ2 d ln τ

≈ Dg +
n
∑

j=1

[
L
(
τj
)
× ∆ ln τj

] 1
1+ω2τ2

j

= Dg +
n
∑

j=1
Dj

1
1+ω2τ2

j

(43)

During the determination of the Prony series parameters, the discrete time constants,
ρj and τj, are commonly preselected. Specifically, they are set to values with equal intervals
on the logarithmic scale according to Equation (44):

ρi = τi = b× 10d+i/M (44)

where b and d are specified according to the logarithmic time range covered by the shifted
test data, and generally b = 1; M is the number of the discrete times assumed in each decade
on the logarithmic scale.
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It can be observed that with the discrete time constants (ρj and τj) known, the Prony
series coefficients, namely the relaxation and retardation strengths (Ej and Dj), can be
quickly and easily calculated using the following equations:

Ei = H(ρi)× ∆ ln ρi (45)

Di = L(τi)× ∆ ln τi (46)

∆ ln ρi = ∆ ln τi =
1
M

ln 10 (47)

Finally, the remaining two elastic constants Ee and Dg can be determined by fitting
Equations (37) and (40) to the corresponding real part expression of the original complex
modulus model, like Equation (6) or (10), over the range covered by the shifted test data
through the Excel Solver. In such a manner, all the Prony series parameters can be fast
acquired. Actually, Ee and Dg have an analytical relationship, as follows:

Dg =
1

Eg
=

1

Ee +
n
∑

j=1
Ej

(48)

Therefore, once the elastic constant Ee along with the discrete relaxation strengths Ej is
available, Dg can be obtained accordingly.

4. Results and Discussion
4.1. Examination of Test Data Quality of Asphalt Concrete

Before constructing the master curves, it is crucial to examine the quality of the complex
modulus measurements. In the present study, the Black diagram [34] was employed to
conduct this manipulation, in which the dynamic modulus |E*| is plotted against the
phase angle ϕ in a single plane. Since for a thermorheologically simple material, all the
components of the complex modulus are the functions of the reduced angular frequency,
any two of them can form a unique curve in a complex plane. In the Black diagram, the
angular frequency axis can be treated as an additional axis perpendicular to the complex
plane in accordance with the right-hand rule. Thus, the testing temperatures would have
no effect on the analysis of the overlapping behavior of the test data during the construction
of master curves in the Black diagram. A smoother Black curve generally represents a
higher quality of the test data. In such a manner, the Black diagram allows an effective and
efficient detection of inconsistency with thermorheological simplicity.

Figure 2 shows the resulting Black diagrams for the two asphalt mixtures. It can
be observed that in both diagrams, the complex modulus test data obtained at different
temperatures basically formed unique curves, indicating the compliance with thermorhe-
ological simplicity under the test conditions as well as the applicability of the TTSP. In
addition, the test results at lower temperatures exhibited better overlapping behavior,
whereas those at higher temperatures showed slightly higher dispersion. This is mainly
because nonlinear behaviors (e.g., the viscoplastic deformation) of asphalt concrete occur
more easily at higher temperatures, which impact the measurement of LVE responses of
the material to a certain degree.
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Figure 2. Black diagram of the complex modulus test data set: (a) Mix-13.2; (b) Mix-9.5.

4.2. Analysis of Results from the Developed Method

Figures 3 and 4 present the master curves of the dynamic modulus and phase angle
respectively developed from the HN and 2S2P1D models. As observed, both models fitted
to the test data of the two mixtures very well. Tables 1 and 2 list the resulting model
parameters and fitting errors. For Mix-13.2, the two complex modulus models contributed
to very close fitting errors, whereas for Mix-9.5, the 2S2P1D model yielded slightly lower
fitting error than that from the HN model. This may be because the 2S2P1D model has
more parameters and thus higher flexibility. Besides, the time-temperature shift factors
calculated using the HN and 2S2P1D methods were found very close as well, as shown in
Figure 5.
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Figure 3. Master curves of dynamic modulus and phase angle from the HN model: (a) Mix-13.2;
(b) Mix-9.5.

Figure 4. Cont.
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Figure 4. Master curves of dynamic modulus and phase angle from the 2S2P1D model: (a) Mix-13.2;
(b) Mix-9.5.

Table 1. HN model parameters and fitting errors.

Mix Type Tr/◦C; Eg/MPa Ee/MPa α β τ0/s F/%

Mix-13.2 20 73,132 92.0 0.398 0.193 0.013 1.943
Mix-9.5 24 43,707 37.5 0.431 0.175 0.011 2.461

Table 2. 2S2PD model parameters and fitting errors.

Mix Type Tr/◦C; Eg/MPa Ee/MPa α k h β τ0/s F/%

Mix-13.2 20 80,329 126.2 1.805 0.104 0.412 38,400 2.485 × 10−4 1.961
Mix-9.5 24 34,132 49.1 2.329 0.205 0.493 41,666 1.558 × 10−3 2.204

Figure 5. Time-temperature shift factors obtained using the HN and 2S2P1D methods.
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As mentioned previously, with the obtained complex modulus model parameters,
both continuous relaxation and retardation spectra can be analytically developed [see
Equations (25)–(32)]. Figure 6 shows the continuous spectra of the two asphalt mixtures.
It can be observed that for both mixtures, the HN and 2S2P1D models exhibited slightly
different continuous spectral patterns, particularly at shorter relaxation times and longer
retardation times. However, at the time range of 10−8 to 104 s, which is approximately
corresponding to the angular frequency range of 10−4 to 108 rad/s, that is, the region
mostly covered by the test data (Figures 3 and 4), the continuous spectra for the HN and
2S2P1D models were very close to each other.

Figure 6. Continuous spectra of the two asphalt mixtures: (a) Relaxation; (b) Retardation.

Based on the continuous spectra developed, the corresponding discrete spectra can
be fast determined using Equations (44)–(47). Although the relaxation and retardation
times of the discrete spectra can be preset at any time regions of interest with any widths,
it is a common practice that they are selected at regions covered by test data [3,12,35]. In
this way, the numbers of the Prony series parameters can be reduced reasonably without
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losing significant computation accuracy. Consequently, the range of the discrete spectra
was selected at 10−8 to 104 s in this study.

Figures 7 and 8 display the calculated discrete relaxation and retardation spectra for
the two mixtures. Three densities of the discrete spectrum lines, namely, M = 1, 2 and
3, were considered. As can be seen, the resulting discrete spectra from both HN and
2S2P1D models were very smooth without any local oscillations. Also, since the discrete
spectrum strengths were all calculated from the corresponding positive continuous spectra,
no negative strength values were produced.

Figure 7. Discrete spectra of Mix-13.2: (a) Relaxation; (b) Retardation



Materials 2022, 15, 716 15 of 24

Figure 8. Discrete spectra of Mix-9.5: (a) Relaxation; (b) Retardation.

To establish the Prony series representations for the relaxation modulus E(t) and creep
compliance D(t) in Equations (36) and (39), the elastic constants Ee and Dg need to be
further determined. To this end, Equation (37) for the storage modulus E′ was fitted to
Equations (6) and (10) separately for the real parts of the HN and 2S2P1D models. Before
fitting, smoothed data points were generated from Equations (6) and (10), equally spaced
on the logarithmic scale within the region covered by the test data. With Ee determined, Dg
can be fast obtained by Equation (48).

Figure 9 gives the developed master curves of the storage modulus for Mix-9.5 using
the discrete relaxation spectrum, i.e., using the generalized Maxwell model, with M = 1 from
the HN and 2S2P1D models, respectively. Obviously, both methods yielded satisfactory
results over the region where the spectrum lines were selected. Similar observations were
made for Mix-13.2. It should be mentioned that, traditionally, one spectrum line per decade
(M = 1) is extensively accepted for generating the Prony series representation. The higher
density of the spectrum lines would generate higher accuracy for fitting but would produce
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more Prony series parameters. Thus, in the following sections, only the results for M = 1
are presented.

Figure 9. Master curves of storage modulus for Mix-9.5 using the discrete relaxation spectrum with
M = 1 from: (a) HN model; (b) 2S2P1D model.

Figure 10 gives the master curves of the relaxation modulus and creep compliance for
Mix-9.5 in the Prony series forms from the HN and 2S2P1D models. To verify the quality
of the calculated Prony series parameters, the corresponding curves developed through
the continuous spectra are also presented. Figure 11 gives the relative errors between the
master curves from the Prony series forms and continuous spectra for Mix-9.5. It should
be mentioned that since the spectrum lines were selected only at the time range covered
by the test data, only the relative errors at 10−8 to 104 s were calculated. To achieve the
infinite integrals in Equations (19) and (22), an integral interval of 10−40 to 10+40 s was
employed to approximately represent the infinite one through the trapezoidal rule, in which
100 increments per decade were equidistantly selected on the logarithmic time scale. It can
be seen that the curves from the Prony series parameters were in good agreement with
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those from the continuous spectra for both HN and 2S2P1D models over the region where
the spectrum lines were selected, thus demonstrating the effectiveness of the proposed
method in this study. Equally desirable results were also found for Mix-13.2.

Figure 10. Master curves of relaxation modulus and creep compliance for Mix-9.5 in the Prony series
forms from: (a) HN model; (b) 2S2P1D model.
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Figure 11. Relative errors between the master curves from Prony series forms and continuous spectra
for Mix-9.5.

4.3. Comparison to the Conventional Sigmoidal Model Method

Considering that the quality of the resulting Prony series parameters are dependent on
the master curve models used for presmoothing, the results obtained were compared with
those from the Sigmoidal model, which has been adopted by MEPDG [36]. The Sigmoidal
model with four parameters can be expressed by:

lg(|E∗|) = a1 +
a2

1 + ea3+a4lgω
(49)

where a1 is the on the minimum logarithmic value of the dynamic modulus; a2 is the
difference of the maximum and minimum logarithmic values of the dynamic modulus; a3
and a4 are model parameters governing the curve shape.

Unlike the HN and 2S2P1D models, the Sigmoidal function is a real-valued model
for the dynamic modulus, and thus does not have an accurate analytical model for the
corresponding phase angle. To deal with this issue, Rowe [37] developed a representation
for the phase angle using an approximate Kronig–Kramers relation [38], as follows:

ϕ ≈ 90× dlg(|E∗|)
dlgω

= −90a2a4
ea3+a4lgω(

1 + ea3+a4lgω
)2 (50)

Table 3 shows the calculated Sigmoidal model parameters and fitting errors for the two
mixtures. It can be observed that both HN and 2S2P1D models generated lower fitting errors
than the Sigmoidal model, indicating their higher applicability to the complex modulus test
data. To gain an in-depth insight into their advantages, the master curves of the dynamic
modulus and phase angle for the three models were plotted in Figures 12 and 13. It can be
found that for the dynamic modulus, the curves from both HN and 2S2P1D models are non-
centrosymmetric, that is, they offer asymmetric inflection points, whereas the Sigmoidal
model is centrosymmetric on the log-log scale. As a result, the HN and 2S2P1D models
exhibit higher flexibility than the Sigmoidal model in modeling the dynamic modulus
of asphalt concrete. Additionally, the phase angle master curves of the HN and 2S2P1D
models are non-axisymmetric, while that for the Sigmoidal is axisymmetric. Evidently,
non-axisymmetric curves are more suitable for simulating the phase angle test data of
asphalt concrete.
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Table 3. Sigmoidal model parameters and fitting errors.

Mix Type Tr/◦C; a1 a2 a3 a4 F/%

Mix-13.2 20 1.647 3.089 −0.246 −0.460 2.089
Mix-9.5 24 1.152 3.370 −0.233 −0.459 2.471

Figure 12. Comparison of master curves of dynamic modulus and phase angle for Mix-13.2:
(a) dynamic modulus; (b) phase angle.
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Figure 13. Comparison of master curves of dynamic modulus and phase angle for Mix-9.5:
(a) dynamic modulus; (b) phase angle.

As a representation for the dynamic modulus, the Sigmoidal model does not have
corresponding close-form solutions for H(ρ) or L(τ). Thus, the Prony series parameters for
the relaxation modulus and creep compliance cannot be analytically yielded. To obtain the
Prony series parameters, only the numerical approach can be used, in which the storage
modulus representation from the generalized Maxwell model in Equation (37) is directly
fitted to smoothed data produced from Equations (49) and (50). Similarly, the Prony
series for the creep compliance also needs to be numerically computed. In this regard, the
complex-valued models adopted in this study, like the HN and 2S2P1D models, have the
prominent advantage over real-valued models.

Figure 14 displays the Black diagrams plotted using the Sigmoidal model for the two
asphalt mixtures. For a comparison purpose, the generalized Maxwell model developed
using the storage modulus data generated from the Sigmoidal model is also shown. To
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guarantee a good consistency of the generalized Maxwell model to the smoothed storage
modulus data, the recursive fitting method developed by Sun et al. [14] was utilized. It
can be clearly seen from Figure 14 that the curves from the two models diverge around the
peaks of the phase angle, which indicates a noncompliance of the Sigmoidal model method
with the LVE theory. This is ascribed to the use of approximate Kronig–Kramers relation.
In this connection, the HN and 2S2P1D models employed in the presented approach
can accurately satisfy the Kronig–Kramers relation due to the presence of the analytical
representations of both the real and imaginary parts of the complex modulus.

Figure 14. Black diagrams from the Sigmoidal model for the two asphalt mixtures: (a) Mix-13.2;
(b) Mix-9.5.

5. Summary and Conclusions

This study presented a practical approach to fast acquiring high-quality Prony se-
ries parameters for both relaxation modulus and creep compliance of asphalt concrete
based on the complex modulus test data. The approach can directly determine Prony
series parameters through the analytical representations of the continuous relaxation and
retardation spectra from the HN and 2S2P1D complex modulus models. With the model
parameters determined in constructing dynamic modulus and phase angle master curves,
the Prony series parameters can be immediately obtained with required accuracy. The
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elastic constants, Ee and Dg, for both LVE modulus and compliance functions can further
be readily calculated through the smoothed data from the storage modulus representations
of the HN and 2S2P1D complex modulus models. To offer an in-depth interpretation for
the approach, the performance of the HN, 2S2P1D and conventional Sigmoidal models
in fitting the complex modulus master curves were compared. Based on the results and
analysis from this study, main conclusions can be drawn as follows:

(1) The HN and 2S2P1D models yielded slightly different continuous spectral patterns at
shorter relaxation times and longer retardation times. However, at the region covered
by the test data, the continuous spectra of the two complex modulus models were
very close to each other. Thus, the two models can generate comparable Prony series
parameters within the time or frequency range covered by test data.

(2) By means of the positive analytical expressions of the continuous spectra, local spec-
trum oscillations and undesirable negative spectrum strengths were successfully
eliminated, thus generating high-quality Prony series parameters.

(3) The HN and 2S2P1D models provide non-centrosymmetric curve patterns for the
dynamic modulus master curves on the log-log scale and non-axisymmetric curve
patterns for the phase angle master curves on the logarithmic angular frequency scale.
Therefore, they performed better than the traditional Sigmoidal model in fitting to the
complex modulus test data.

(4) The Black diagram is recommended for examining the quality of the complex modulus
test data before constructing the master curves, because it can effectively avoid the
effect of testing temperatures.

(5) The analytical expressions of the storage and loss moduli for both HN and 2S2P1D
models accurately meet the Kronig–Kramers relation, and therefore the master curves
constructed are consistent with the LVE theory.

(6) All the procedures in the proposed method can be easily achieved even only by
Microsoft Excel, successfully avoiding sophisticated expertise for programming in
implementation process. Thus, the proposed method furnishes a practical way to fast
acquiring high-quality Prony series parameters.

Further studies are required to develop predictive models of the complex modulus
master curve of asphalt concrete based on the HN and 2S2P1D models by using statistical
relationships between the model parameters and the constituent and volumetric properties
of asphalt concrete, and the work is ongoing.
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