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Abstract: In recent years, increasing human data comes from image sensors. In this paper, a novel
approach combining convolutional pose machines (CPMs) with GoogLeNet is proposed for human
pose estimation using image sensor data. The first stage of the CPMs directly generates a response
map of each human skeleton’s key points from images, in which we introduce some layers from
the GoogLeNet. On the one hand, the improved model uses deeper network layers and more
complex network structures to enhance the ability of low level feature extraction. On the other hand,
the improved model applies a fine-tuning strategy, which benefits the estimation accuracy. Moreover,
we introduce the inception structure to greatly reduce parameters of the model, which reduces the
convergence time significantly. Extensive experiments on several datasets show that the improved
model outperforms most mainstream models in accuracy and training time. The prediction efficiency
of the improved model is improved by 1.023 times compared with the CPMs. At the same time,
the training time of the improved model is reduced 3.414 times. This paper presents a new idea for
future research.

Keywords: human pose estimation; convolutional pose machines; GoogLeNet; fine-tuning;
image sensor

1. Introduction

Human pose estimation is mainly used to detect the key points of the human body (such
as the joints and trunk) from images or videos that come from an image sensor or video sensor.
Through human pose estimation, human skeleton information can be described by several key points.
For example, given photos of the human body as inputs, a pose estimation model can generate the
coordinates of the key points of a human skeleton in these photos. It can be easily seen that human pose
estimation plays a very important role in describing human posture and predicting human behavior.

Human pose estimation is not only one of the basic algorithms of computer vision, but is also a
fundamental one in many related fields, such as behavior recognition, action recognition [1], character
tracking, and gait recognition. Specific applications mainly focus on intelligent video surveillance,
patient monitoring systems, human-computer interactions, virtual reality, human animation, smart
homes, intelligent security, athlete training, and so on. Human pose estimation algorithms can be
divided into three categories: Algorithms based on global features, algorithms based on graphical
model, and algorithms based on deep learning [2,3]. After decades of research, human pose estimation
methods have achieved good results. However, human pose estimation algorithms based on global
features or graphical models [4–6] use hand-crafted image features, which mainly rely on the prior
knowledge of the designer. Because of the dependence on manual tuning parameters, a lot of manual
parameters are very cumbersome to adjust. So, image features only allow a small number of parameters,
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thus making it difficult to comprehensively capture true human body features. The biggest difference
between deep learning (DL) and traditional pattern recognition is that DL automatically learns features
from large data rather than using hand-crafted features. So, DL can accurately represent true human
body features. At the same time, due to its deeper level, DL has a stronger expression ability [7].
Beginning in 2014, the focus of human pose estimation has shifted to the utilization of DL. In 2015,
Pfister proposed Convnet [8], which formulated the human pose estimation as a detection problem
and treated the output as a heatmap. However, the model can only detect human skeleton key points
of the upper half body and the detection range is limited. In 2016, DeepCut [4] and the later improved
DeeperCut [9], were used to detect key points of the human skeleton throughout the body. Both the
detection accuracy and speed were improved. Convolutional pose machines (CPMs) [10] have a strong
robustness and the detection accuracy is very high on the standard datasets of human pose estimation,
such as the Max Planck Institut Informatik (MPII) Human Pose dataset [11] and Leeds Sports Pose
(LSP) dataset [12]. However, CPMs have a relatively long training time and low detection speed,
which prevents its application in real-time tasks. The Stacked Hourglass [13] of the same period also
achieved very good detection results on the standard datasets of human pose estimation. The models
of Multi-context [14], Self Adversarial Training [15], and Learning Feature [16] of 2017 and the excellent
models, which have further improvements in accuracy, of 2018 are basically new models based on the
improved Stacked Hourglass. However, the common drawback of these models is that the models
have a great number of parameters, which makes the training time quite long. Besides, the accuracy of
the models is still unsatisfactory. Therefore, the following research mainly includes improvements of
the network structure to boost the accuracy of human pose estimation, reduce the cost of the model
training, and reduce the model parameters.

The CPMs proposed in 2016 have a strong robustness and the detection accuracy is very high on
the standard datasets of human pose estimation. Many subsequent methods are based on this model.
In the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition, GoogLeNet [17]
won first place. Its success proved that more convolutions and a deeper network can obtain better
prediction results. Thanks to its inception structure, GoogLeNet has fewer parameters than other
models in the same period. To design a new human pose estimation model with fewer parameters
and a higher detection accuracy, in this paper, we choose the CPMs as a base and combine it with
GoogLeNet. The first stage of the CPMs is a basic convolutional neural network that directly generates
a response map of each human skeleton’s key points from images. We redesign some layers in the
GoogLeNet to redesign the first stage of the CPMs. On the one hand, the improved model uses deeper
network layers and a more complex network structure to enhance the ability of the first stage to
extract low level features, and apply a fine-tuning strategy. On the other hand, the improved model
uses the inception structure to greatly reduce the parameters of the model. Thanks to the inception
structure characteristics of GoogLeNet, there are fewer parameters and a more complex network
structure. Finally, experiments show that our improved model has a higher detection accuracy, fewer
model parameters, and a faster detection speed than CPMs and most other mainstream human pose
estimation models.

The innovations of this paper are as follows: (1) Our improved model uses deeper network layers
and more complex network structures to enhance the ability of low-level feature extraction; and (2) our
improved model applies a fine-tuning strategy.

The rest of this paper is structured as follows. The main idea of the CPMs, and the design,
training, and testing of the improved CPMs is illustrated in Section 2. The experiments’ results
for two benchmark datasets are presented and discussed in Sections 3 and 4, respectively. Finally,
the conclusions of this work are summarized in Section 5.
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2. Improved Convolutional Pose Machines

This chapter is divided into two parts. In the first part, we provide a brief introduction to the
main idea of convolution pose machines. In the second part, we describe the details of the design,
training, and testing of the improved CPMs.

2.1. Convolutional Pose Machines

In this section, we provide a brief introduction to the major idea of convolution pose machines.

2.1.1. Pose Machines

We denote the pixel location of the q−th (the q is between 0 and 14 in this paper) anatomical
landmark (which we refer to as a part), Yq ∈ U ⊂ R2, where U is the set of all (x, y) locations of
an image. We aim to predict the image locations, Y =

(
Y1, Y2, . . . , YQ

)
, for all Q parts. A pose

machine [18] (see Figure 1a,b) consists of a sequence of multi-class predictors, gs(·), that are trained to
predict the location of each part in each level of the hierarchy. In each stage s ∈ {1, . . . , S}, the classifiers,
gs, predict the beliefs for assigning a location to each part, Yq = u, ∀u ∈ U, based on features extracted
from the patch of the location, u, denoted by vu ∈ Rc and contextual information from the preceding
classifier in the neighborhood around each in stage s. A classifier produces the following belief values
in the stage, s = 1:

g1(vu)→
{

dq
1
(
Yq = u

)}
q∈{0,...,Q}, (1)

where dq
1
(
Yq = u

)
is the score predicted by the classifier, g1, for assigning the qth part in the stage, s = 1,

at the image location, u. We represent all the beliefs of part q evaluated at every location, u = (x, y)S,
in the image as dq

s ∈ Rw×h, where w and h are the width and height of the image, respectively. That is:

dq
s [x, y] = dq

s
(
Yq = u

)
. (2)

In the follow-up stages, the classifier, gs, predicts a belief for assigning a location to each part,
Yq = u, ∀u ∈ U, based on (1) features of the image data, vs

z ∈ Rc, again, and (2) contextual information
from the preceding classifier, gs−1, in the neighborhood around each Yq:

gs
(
v′u, Fs(u, ds−1)

)
→
{

dq
s
(
Yq = u

)}
q∈{0...Q+1}, (3)

where Fs>1(·) is a mapping from the beliefs, ds−1, to context features. In each stage, the computed
beliefs provide an increasingly accurate estimate for the location of each part. Note that we permit
image features, v′u, for the follow-up stage to be different from the image feature, v, used in the stage,
s = 1. The pose machine proposed in [10] used boosted random forests for prediction ({gs}), fixed
hand-crafted image features across all stages (v′ = v), and fixed hand-crafted context feature maps
(Fs(·)) to capture the spatial context across all stages.
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2.1.2. Convolutional Pose Machines

The CPM is a convolutional neural network for human pose estimation on single 2D human
pose estimation datasets, such as MPII, LSP, and Frames Labeled In Cinema (FLIC). The model uses
CNN [19–21] for human pose estimation. Its main contribution lies in the use of sequential convolution
architecture to express spatial information and texture information [10]. The sequential convolution
architecture can be divided into several stages in the network. Each stage has a part of the supervised
training [17,22], which avoids the problem of gradient disappearance in the deep network [23–26].
In the first stage, the original image is used as input. In the later stages, the feature map of the first
stage is used as input. The main purpose is to fuse spatial information, texture information, and central
constraints. In addition, the use of multiple scales to process the input feature map and response
map for the same convolution architecture not only ensures accuracy, but also considers the distance
relationship between the key points of each human skeleton.

The overall structure of the CPMs is shown in Figure 2. In Figure 2, the “C”, “MC1, MC2, . . . ”
means different convolution layers, and the “P” means different pooling layers. The “Center map”
is the center point of the human body picture, and it is used to aggregate the response maps to the
image centers. The “Loss” is the minimum output cost function, and it is the same as the “Loss” of the
subsequent figures.

Sensors 2018, 18, x FOR PEER REVIEW 4 of 15 

convolution architecture can be divided into several stages in the network. Each stage has a part of 
the supervised training [17,22], which avoids the problem of gradient disappearance in the deep 
network [23–26]. In the first stage, the original image is used as input. In the later stages, the feature 
map of the first stage is used as input. The main purpose is to fuse spatial information, texture 
information, and central constraints. In addition, the use of multiple scales to process the input 
feature map and response map for the same convolution architecture not only ensures accuracy, but 
also considers the distance relationship between the key points of each human skeleton. 

The overall structure of the CPMs is shown in Figure 2. In Figure 2, the “C”, ”MC1, MC2, ……” 
means different convolution layers, and the “P” means different pooling layers. The “Center map” 
is the center point 

Figure 2. The overall structure of the convolutional pose machines. 

The first stage of the CPMs is a basic convolutional neural network (white convs) that directly 
generates the response map of each human skeleton’s key points from images. The whole model has 
the response maps of 14 human skeleton key points and a background response map, with a total of 
15 layers of response maps. 

The network structure with the stage ≥ 2 is completely consistent. A feature image with a depth 
of 128, which is from stage 1, is taken as the input and three types of data (texture features, spatial 
features, and center constraints (the center point of the human body picture is used to aggregate the 
response maps to the image centers)) are fused by the concat layer. 
The original color image and some feature maps with a depth of 128 (the overlay of 128 heatmaps) 
are shown in Figure 3 below. 

Figure 3. The original color image and some feature maps with a depth of 128. 

C P C P CPC CC C C

MC3MC2MC1 MC4 MC5

Stage 1

Stage≥2 concat

Loss

Center 
map

…

Loss

Ori 
Image

Figure 2. The overall structure of the convolutional pose machines.

The first stage of the CPMs is a basic convolutional neural network (white convs) that directly
generates the response map of each human skeleton’s key points from images. The whole model has
the response maps of 14 human skeleton key points and a background response map, with a total of
15 layers of response maps.

The network structure with the stage ≥2 is completely consistent. A feature image with a depth
of 128, which is from stage 1, is taken as the input and three types of data (texture features, spatial
features, and center constraints (the center point of the human body picture is used to aggregate the
response maps to the image centers)) are fused by the concat layer.

The original color image and some feature maps with a depth of 128 (the overlay of 128 heatmaps)
are shown in Figure 3 below.
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2.2. Improved Convolutional Pose Machines

2.2.1. Design of the Improved Convolutional Pose Machines

There are two types of CPMs models designed by Shih-En Wei. One is the original CPM-Stage6
model and the other is the VGG10-CPM-Stage6 model based on the VGGNet-19 design (they
are both models that the authors publicly exposed). In the author’s publicly trained models,
the VGG10-CPM-Stage6 model has a faster model training speed, fewer model parameters, and
higher accuracy on the same verification dataset than the CPM-Stage6 model. Even so, the feature
extractor of the VGG10-CPM-Stage6 model used for fine-tuning is still large and after combining
multiple large nuclear layers of multiple stages, the computational complexity of the model becomes
very significant both in deployment and training. It is more difficult. The VGG10-CPM-Stage6 model
has many parameters and its convergence speed is not fast enough. Besides, its network layer is not
deep enough, so its learning ability is not strong enough. To improve the detection accuracy of the
model and speed up the convergence of the model, an effective way is to increase the depth of the
network and the number of convolution layers, while reducing the parameters of the network model.

In the 2014 ILSVRC competition, GoogLeNet achieved first place. Its success proved that more
convolutions and a deeper network can obtain better prediction results. Because of its inception
structure, the GoogLeNet model has fewer parameters than other models in the same period.
To design a new human pose estimation model with fewer parameters and a higher detection accuracy,
we attempted to combine CPMs with GoogLeNet. In this paper, we redesigned some layers of
GoogLeNet to redesign stage 1 of CPMs. Specifically, we selected different inception layers, Inc(4a) (the
first nine layers of GoogLeNet), Inc(4b) (the first 11 layers of GoogLeNet), Inc(4c) (the first 13 layers of
GoogLeNet), Inc(4d) (the first 15 layers of GoogLeNet), and Inc(4e) (the first 17 layers of GoogLeNet),
of GoogLeNet separately for stage 1 of the new human pose estimation models. So, there are five new
models. The overall structure of these improved models is shown in Figure 4. In Figure 4, the “C”,
“4-3C, 4-4C . . . ”, “MC1, MC2, . . . ” means different convolution layers, and the “P” means different
pooling layers. The “Center map” is the center point of the human body picture, and it is used to
aggregate the response maps to the image centers. Most of the new models increase the number of
convolution layers and use a more complex network structure to enhance the ability of stage 1 to extract
low level features of images. At the same time, they apply a fine-tuning strategy. Thus, they can further
improve the accuracy of detection. Besides, the new models use the inception structure to greatly
reduce the parameters of model. Thus, the convergence speed of the model training is also significantly
improved. These models use fine-tuning training on multiple real human pose estimation datasets
and then the Extended LSP verification dataset is selected for verification. Finally, the experiments
show that these new models can not only further improve the accuracy of detection, but also greatly
reduce the amount of parameters, and shorten the model training time.
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The main data changes of the stage 1 network of the improved models are shown in Table 1.

Table 1. The main data change of the stage 1 network.

Type Kernel Size/Stride Size Depth Output Size

conv1 7 × 7/2 1 184 × 184 × 64
max pool 3 × 3/2 0 92 × 92 × 64

conv2 3 × 3/1 2 92 × 92 × 192
max pool 3 × 3/2 0 46 × 46 × 192

Inception(3a) - 2 46 × 46 × 292
Inception(3b) - 2 46 × 46 × 480
Inception(4a) - 2 46 × 46 × 512
Inception(4b) - 2 46 × 46 × 512
Inception(4c) - 2 46 × 46 × 512
Inception(4d) - 2 46 × 46 × 528
Inception(4e) - 2 46 × 46 × 832

conv4_3_CPM 3 × 3/1 1 46 × 46 × 256
conv4_4_CPM 3 × 3/1 1 46 × 46 × 256
conv4_5_CPM 3 × 3/1 1 46 × 46 × 256
conv4_6_CPM 3 × 3/1 1 46 × 46 × 256
conv4_7_CPM 3 × 3/1 1 46 × 46 × 128
conv5_1_CPM 1 × 1/1 1 46 × 46 × 512
conv5_2_CPM 1 × 1/1 1 46 × 46 × 15

The main data changes of the stage ≥2 network of the new models are shown in Table 2.

Table 2. The main data change of the stage ≥2 network.

Type Kernel Size/Stride Depth Output Size

conv4_7_CPM 3 × 3/1 1 46 × 46 × 128
pool_center_lower 9 × 9/8 0 46 × 46 × 1

conv5_2_CPM 1 × 1/1 1 46 × 46 × 15
concat_Stage2 - 0 46 × 46 × 144

Mconv1_Stage2 7 × 7/1 1 46 × 46 × 128
Mconv2_Stage2 7 × 7/1 1 46 × 46 × 128
Mconv3_Stage2 7 × 7/1 1 46 × 46 × 128
Mconv4_Stage2 7 × 7/1 1 46 × 46 × 128
Mconv5_Stage2 7 × 7/1 1 46 × 46 × 128
Mconv6_Stage2 1 × 1/1 1 46 × 46 × 128
Mconv7_Stage2 1 × 1/1 1 46 × 46 × 15
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Tables 1 and 2 show the changes of the feature maps with the depth of the network. Specifically,
the structure of the different stages (stage ≥ 2) are exactly the same, except that the content of the
concat_Stage fusion has changed locally.

The verification accuracy comparisons (verification on the LSP dataset; we used PCK@0.2 for
the evaluation of the GoogLeNet13-CPM-Stage6) between the improved models based on different
inception layers and Shih-En Wei’s VGG10-CPM-Stage6 model are shown in Figure 5 below.Sensors 2018, 18, x FOR PEER REVIEW  7 of 15 
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We observed that the parameters of the new human pose estimation models designed by different
layers of GoogLeNet are much fewer than the parameters of Shih-En Wei’s VGG10-CPM-Stage6 model.
Thus, it requires less training time and less training cost at the training stage, as well as the verification
accuracy being promoted. The above experiments also validate the influence of different Inception
layers on the detection effect of the designed human pose estimation model. We found that with
the increase of the number of layers of inception, the accuracy of the human pose estimation model
showed a trend of slowly rising to a certain extent and then slowly declining after reaching the peak.
The accuracy was maintained above 0.8770, with the highest accuracy of 0.8841. After analysis of
the reasons, the GoogLeNet was originally a successful model for image classification [27] and our
improved model is a model for human pose estimation. With the increasing number of inception
layers used in the new human pose estimation models, the new models enhance the ability to extract
low level features on human pose estimation datasets to improve the detection effect. However, as the
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number of inception layers in the GoogLeNet continues to increase, the simple and low level features
that are learning in the GoogLeNet slowly transform into the learning of deep complex and specific
image classification features. It is very different from the features of deep complex and specific human
pose estimation. Thus, this is influential. In the experiments, the previous layers of GoogLeNet,
Inc(4c) (the first 13 layers of GoogLeNet), were chosen to redesign the GoogLeNet13-CPM-Stage6
with the highest accuracy. Therefore, this model is also the best model to be used in the following
experimental chapters.

2.2.2. Training and Testing

In the actual training process, if the models are trained from the beginning, the problem of
gradient dispersion easily occurs. Therefore, this paper uses the method of fine-tuning [28,29] to train
the models on the MPII Human Pose training dataset or the Extended LSP training dataset, and then
the trained models were used to perform verification tests on the Extended LSP verification dataset.
The whole process is mainly divided into the following steps:

(1) After construction of the improved models, the GoogLeNet’s parameters are used, which
is trained in the ImageNet competition to initialize the parameters of the previous layers of the
improved models;

(2) the MPII training dataset or the Extended LSP training dataset is input into the improved
models according to the batch_size, and “stepsize=120,000” is used to adjust the learning rate. As the
models continue to train, the learning rate is adjusted every 120,000 times;

(3) during the training process, the loss value of each stage of the new models is continuously
reduced until it is stable. The verification or test requires a separate code, so the accuracy of the models’
detection is not verified during training;

(4) the loss value of each stage and the total loss value of the improved models is output, and the
models are saved once every 5000 iterations; and

(5) each trained model is selected and is verified on the Extended LSP verification dataset, and the
accuracy of the 1000 image verification and other verification index information records is completed.
The model with the best verification indicators is selected.

The setting of the main parameters during the training of the improved models is shown in
Table 3.

Table 3. The setting of the main parameters.

Parameters Meaning

batch_size = 16 The size of the training data for a single iteration
Backend = LMDB Database format
lr_policy = “step”
stepsize = 120,000

Learning strategy is step
The times of iterations required to adjust the learning rate

weight_decay = 0.0005 Weight attenuation coefficient
base_lr = 0.000080 Initial value of learning rate
momentum = 0.9

max_iter = 350,000
Momentum

Maximum iterations

Compared with the Shih-En Wei optimal state VGG10-CPM-Stage6, the improved models can
increase the depth of the network and greatly reduce the parameter quantity of the previous layers of
the network. Thereby, the expression ability of the improved models can be enhanced and the time of
the models’ training can be effectively shortened.

2.3. Learning in GoogLeNet13-CPM-Stage6

Deep neural networks that are training tend to produce gradient disappearance. As mentioned in
Bradley [24] and Bengio et al. [25], the intensity of the gradient decline in backpropagation is affected
by the number of intermediate layers between the input and output layers.



Sensors 2019, 19, 718 9 of 15

Fortunately, the sequence prediction framework of GoogLeNet13-CPM-Stage6 naturally trains
deep models and each stage continuously generates a response map of the key points of each human
skeleton. We define a loss function, f , at the output of each stage, s, to minimize the l2 distance between
the predictive response maps of each key points of the human skeleton and its true annotated response
maps, thus guiding the network model to achieve a desired effect. The true annotated response map for
a part, q, is recorded as dq

∗
(
Yq = u

)
. The true annotated response map can be constructed by placing

a Gaussian peak at the true coordinate position of each human skeleton key point, q. We define the
minimum output cost function of each stage as:

fs = ∑Q+1
q=1 ∑u∈U ||d

q
s (u)− dq

∗(u)|| 2
2. (4)

The overall objective for the full architecture is obtained by setting the losses at each stage and is
given by:

F = ∑S
s=1 fs. (5)

In the actual training process, we use the standard stochastic gradient descent method to train
all the S stages in the network. To share the image feature, v’, in all follow-up stages, we share the
weights of the corresponding convolutional layers (see Figure 2) in the stages, s ≥ 2.

3. Experimental Results

3.1. Experimental Environment and Datasets

In our experiments, we used an Intel Xeon E5-2698 V4 (20 cores) processor with a 50 GB memory.
We used a single NIVDIA Tesla P100 graphics card. We selected the 64-bits Ubuntu 14.04 operating
system, Caffe deep learning framework, and Python 2.7 as the development environment. We also
utilized the following tools: PyCharm 2017.1.2.

In this paper, we used three benchmark datasets for human pose estimation, the MPII Human
Pose dataset [11], Extended LSP dataset [30], and LSP dataset [12], which came from an image sensor
and labelled well.

The MPII Human Pose dataset includes around 25,000 images containing over 40,000 people
with annotated body joints. The images were systematically collected using an established taxonomy
of every day human activities. Overall, the dataset covers 410 human activities and each image is
provided with an activity label. The MPII Human Pose dataset is divided into 25,000 training human
samples and 3000 validated human samples. Each sample contains the identification (ID) of the sample
image, the coordinate information of the center points of the sample, the true coordinate information
of the key points of the human skeleton, and so on.

The Extended LSP dataset contains 10,000 images gathered from Flickr searches for the tags,
’parkour’, ’gymnastics’, and ’athletics’, and consists of poses deemed to be challenging to estimate.
Each image has a corresponding annotation gathered from Amazon Mechanical Turk and as such
cannot be guaranteed to be highly accurate. Each image was annotated with up to 14 visible joint
locations. The LSP dataset contains 2000 pose annotated images of mostly sports people gathered from
Flickr using the tags shown above. The Extended LSP dataset and the LSP dataset were divided into
11,000 training human samples and 1000 validated human samples. Each sample also contains the ID
of the sample image, the true coordinate information of the key points of human skeleton, and so on.

The basic information of the datasets is shown in Table 4.

Table 4. The basic information of the datasets.

Dataset Name Category Num of Key Points Training/Validation

MPII Whole body 14 25,000/3000
Extended-LSP + LSP Whole body 14 11,000/1000
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3.2. Experimental Procedure

To validate the generalization capabilities [31] and prediction accuracy of our improved model,
we designed three sets of comparative experiments.

In the first set of experiments, we trained our GoogLeNet13-CPM-Stage6 on the MPII Human
Pose training dataset and then validated it on the Extended LSP validation dataset. In the contrast
experiment, two models trained by Shih-En Wei on the MPII Human Pose training dataset, CPM-Stage6
and VGG10-CPM-Stage6, were selected.

In the second set of experiments, we trained our GoogLeNet13-CPM-Stage6 on the Extended
LSP training dataset and then validated it on the Extended LSP validation dataset. In the contrast
experiment, most leading models of human pose estimation on the Extended LSP verification dataset
were selected.

In the third set of experiments, we trained our GoogLeNet13-CPM-Stage6 on the MPII Human
Pose training dataset and then validated it on the MPII Human Pose validation dataset. In the
contrast experiment, most leading models of human pose estimation on the MPII Human Pose dataset
were selected.

To evaluate these models, we used the proportion of correctly predicted key points (PCK) as a
metric on the validation dataset.

Generally speaking, when the distance between the predicted coordinates of the key points of a
human skeleton and the true coordinates of the key points of a human skeleton is less than a certain
proportion (a) of the pixel length of the human head or trunk in the image, it is considered to be correct.
This evaluation method is called PCK@a.

According to PCK@a, the total number of key points of a human skeleton that are predicted to be
correct is recorded as TP and the total number of key points of a human skeleton that are predicted to
be incorrect is recorded as FN, so the calculation formula of the verification accuracy is as shown in (6):

accuracyPCK@a =
TP

TP + FN
. (6)

For the Extended LSP validation dataset, the validation accuracy on PCK@0.2 is the main
criterion for the evaluation of the GoogLeNet13-CPM-Stage6, and for the MPII Human Pose
validation dataset, the validation accuracy on PCKh@0.5 is the main criterion for the evaluation
of the GoogLeNet13-CPM-Stage6.

3.3. Experimental Results

For the first set of experiments in Section 3.2, the accuracy of the three models on the Extended
LSP verification dataset is shown in Table 5.

Table 5. The accuracy of the three models.

Models Iteration Accuracy (1000 Images)

CPM-Stage6 630,000 0.8554
VGG10-CPM-Stage6 320,000 0.8798

Improved Model 175,000 0.8823

From Table 5, we observed that our improved model, which trained 175,000 times on the MPII
Human Pose training dataset, would obtain an ideal model. It showed the fastest convergence speed
and the highest accuracy compared to those models of Shih-En Wei’s open trained one.

The speed of convergence, training time, and average detection time of the three models were
compared as shown in Table 6.
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Table 6. The contrasted details of the three models.

Models Iteration Cost Time Speed (ms/each Image)

CPM-Stage6 630,000 180 h 260.7
VGG10-CPM-Stage6 320,000 91 h 255.6

Improved Model 175,000 36.37 h 181.2

From Table 6, we observed that our improved model has the fastest convergence speed based on
the time it takes to complete the model training, the least training time, and the fastest detection speed
compared to those models of Shih-En Wei’s open trained one, because our improved model increases
the depth of the network of stage 1 and uses a more complex network structure to extract low level
features of images. Meanwhile, it applies fine-tuning strategy. Thus, it obtains a higher accuracy of
detection and enhances the generalization ability of the model. Besides, the improved model uses the
inception structure to greatly reduce the parameters of model. Thus, the convergence speed of the
model training was also significantly improved. At the same time, it greatly shortens the training time,
and reduces the average detection time of a single image.

For the second set of experiments in Section 3.2, the accuracy of the nine models on the Extended
LSP verification dataset is shown in Table 7. Although our improved model could detect 14 key
points (head, neck, right shoulder, left shoulder, right elbow, left elbow, right wrist, left wrist, right
hip, left hip, right knee, left knee, right ankle, left ankle; the 14 key points are shown in Figure 7
below.), in Table 7, we adopt a unified approach with seven key points (the results (comparisons) in the
homepage of the MPII Human Pose Dataset) to compare most mainstream models more conveniently.
This shows the average detection results of the left and right key points (e.g., left knee, right knee).

Table 7. The accuracy of the nine models.

Models Head Shoulder Elbow Wrist Hip Knee Ankle PCK

Lifshitz et al. [32] ** 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al. [4] * 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Insafutdinov et al. [9] * 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al. [10] * 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
CU-Net-8 [33] 97.1 94.7 91.6 89.0 93.7 94.2 93.7 93.4
Tang et al. [34] 97.5 95.0 92.5 90.1 93.7 95.2 94.2 94.0
Chu et al. [14] * 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Improved model 96.8 90.5 85.3 81.7 90.3 87.8 86.3 88.4
Improved model * 98.2 93.7 89.8 87.3 92.7 93.8 92.3 92.6

* models trained when adding MPII training set to the LSP training and LSP extended training set. ** models trained
when adding MPII training set to the LSP training set.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 

 

low level features of images. Meanwhile, it applies fine-tuning strategy. Thus, it obtains a higher 
accuracy of detection and enhances the generalization ability of the model. Besides, the improved 
model uses the inception structure to greatly reduce the parameters of model. Thus, the convergence 
speed of the model training was also significantly improved. At the same time, it greatly shortens the 
training time, and reduces the average detection time of a single image. 
For the second set of experiments in Section 3.2, the accuracy of the nine models on the Extended LSP 
verification dataset is shown in Table 7. Although our improved model could detect 14 key points 
(head, neck, right shoulder, left shoulder, right elbow, left elbow, right wrist, left wrist, right hip, left 
hip, right knee, left knee, right ankle, left ankle; the 14 key points are shown in Figure 7 below.), in 
Table 7, we adopt a unified approach with seven key points (the results (comparisons) in the 
homepage of the MPII Human Pose Dataset) to compare most mainstream models more 
conveniently. This shows the average detection results of the left and right key points (e.g., left knee, 
right knee). 

 

Figure 7. The 14 key points. 

Table 7. The accuracy of the nine models. 

Models Head Shoulder Elbow Wrist Hip Knee Ankle PCK 
Lifshitz et al. [32]** 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7 
Pishchulin et al. [4]* 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1 

Insafutdinov et al. [9]* 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 
Wei et al. [10]* 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 
CU-Net-8 [33] 97.1 94.7 91.6 89.0 93.7 94.2 93.7 93.4 
Tang et al. [34] 97.5 95.0 92.5 90.1 93.7 95.2 94.2 94.0 
Chu et al. [14]* 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6 

Improved model 96.8 90.5 85.3 81.7 90.3 87.8 86.3 88.4 
Improved model* 98.2 93.7 89.8 87.3 92.7 93.8 92.3 92.6 

* models trained when adding MPII training set to the LSP training and LSP extended training set. 
** models trained when adding MPII training set to the LSP training set. 

From Table 7, we observed that our improved model* achieves a high level of accuracy 
compared with most other leading human pose estimation models. Compared with Wei et al, the 
overall PCK increased by 2.1%. In the head, shoulder, elbow, and wrist, the accuracy of our improved 
model* is also at a high level compared with most other leading models. In the hip, knee, and ankle, 
there are slight gaps for the accuracy of our improved model* compared with some other leading 
models. Overall, it is one of the leading models. 

The speed of convergence, training time, and the average detection time of the six models are 
shown in Table 8. 

Figure 7. The 14 key points.



Sensors 2019, 19, 718 12 of 15

From Table 7, we observed that our improved model* achieves a high level of accuracy compared
with most other leading human pose estimation models. Compared with Wei et al, the overall PCK
increased by 2.1%. In the head, shoulder, elbow, and wrist, the accuracy of our improved model* is also
at a high level compared with most other leading models. In the hip, knee, and ankle, there are slight
gaps for the accuracy of our improved model* compared with some other leading models. Overall,
it is one of the leading models.

The speed of convergence, training time, and the average detection time of the six models are
shown in Table 8.

Table 8. The contrasted details of the six models.

Models Iteration Cost Time Speed (ms/each)

Lifshitz et al. [32] ** - - 700
Pishchulin et al. [4] * 1,000,000 - 57,995

Insafutdinov et al. [9] * 1,000,000 120 h 230
Wei et al. [10] * 985,000 280 h 260.7
Chu et al. [14] * - - -

Improved model * 275,000 82 h 180.9

* models trained when adding MPII training set to the LSP training and LSP extended training set. ** models trained
when adding MPII training set to the LSP training set.

From Table 8, we observed that our improved model* has the fastest convergence speed, the least
training time, and the fastest detection speed compared with most other leading models. The reasons
are 1) we introduced the inception structure to our improved model to greatly reduce parameters; and
2) our model applied a fine-tuning strategy. Thus, it is easier to train and detection.

For the third set of experiments in Section 3.2, the accuracy of the nine models on the MPII Human
Pose estimation verification dataset is shown in Table 9.

Table 9. The accuracy of the nine models.

Models Head Shoulder Elbow Wrist Hip Knee Ankle PCKh

Lifshitz et al. [32] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Pishchulin et al. [4] * 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Insafutdinov et al. [9] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5

Wei et al. [10] * 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Newell et al. [13] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Chu et al. [14] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
CU-Net-8 [33] 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8
Tang et al. [34] 97.4 96.4 92.1 87.7 90.2 87.7 84.3 91.2

Improved model 98.6 96.4 91.9 88.5 90.4 87.8 84.8 91.5

* models trained when adding MPII training set to the LSP training and LSP extended training set.

From Table 9, we observed that our improved model achieves a high level of accuracy compared
with most other leading human pose estimation models. Compared with Wei et al, the overall PCK
increased by 3%. In the head, shoulder, and wrist, the accuracy of our improved model is also the
highest compared with most other leading models. In the hip, knee, and ankle, there are slight gaps for
the accuracy of our improved model compared with some other leading models. Overall, it is much
better than most other leading models.

4. Discussion

Extensive experimental results show that to improve the network structure of the model to obtain
a higher detection accuracy, reduce the parameters of the model, and reduce the cost of model training,
a new network model based on the combination of a high accuracy of image classification model,
GoogLeNet, with an excellent human pose estimation model, must be designed.
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Our improved convolutional pose machines can be applied to the following areas, such as behavior
recognition, character tracking, gait recognition, etc. Specifically, it mainly focuses on intelligent
video surveillance, patient monitoring systems, human-computer interaction, virtual reality, human
animation, smart homes, intelligent security, athlete training, and so on. Although our improved
model could obtain a high accuracy and a very fast detection speed, it is still not in real-time. Because
real-time performance is required for human pose estimation in the field of videos, our improved
model is more suitable for images that are sourced from an image sensor.

Regarding novelty, we also combined the CPMs with the Resnet [35] to redesign some new models.
Unfortunately, although the depth of the Resnet is deeper than GoogLeNet, the detection results of
these new models are not ideal. At the same time, the parameters’ quantity of these new models is also
larger. Besides, the Inception v2 [36] and Inception v3 [37] were also considered by us. Because the
structure of GoogLeNet (Inception v1) is very different from them, we studied the structure of them
carefully and found that it is impossible to combine CPMs with them directly. Therefore, in the future,
we will mainly conduct the following work: (1) We will continue to try to reduce the parameters of
the model to improve the detection speed of the model; (2) the CPMs and Stacked Hourglass are both
popular methods in 2016 and we will introduce the inception modules in the Stacked Hourglass for
further research.

5. Conclusions

Our GoogLeNet13-CPM-Stage6 innovatively combines the classic GoogLeNet model, which
has a high accuracy of image classification, with the CPMs model, which is an excellent human
pose estimation model. Compared with the two models of Shih-En Wei and most other mainstream
human pose estimation models, the GoogLeNet13-CPM-Stage6 obtained a higher detection rate and
shortened the average detection time of a single image. Meanwhile, the training time of the model
was also reduced. Our improved model is the same as most mainstream human pose estimation
models, which are independent from the user. Extensive experiments on several datasets show that
our improved model has a very high detection accuracy. Besides, it also achieved perfect results in
more complex scenes.

Human pose estimation is still an active research component of the field of computer vision.
Existing algorithms of human pose estimation have not achieved perfect results and there are still
some incorrect detection cases in more complex scenes. Through experiments, we identified that the
combination of a model, with a high image classification accuracy or good image detection effect,
with an excellent human pose estimation model to design a new network and apply a fine-tuning
strategy will be more effective for human pose estimation. This conclusion provides some guidance
for future research.
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