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Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and
brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar
appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of
magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate,
convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics
analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven
pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced
T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the
volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences
(TIW, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model)
radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and Fl-score values. In this study, we
have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and Fl-score, respectively, which have
yielded a better result than the first model. In most investigated models, there were significant improvements in the
multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet
transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are
highly correlated with the model accuracy.

strategies for these tumors differ; total en bloc resection
is preferred for MET, while stereotactic radiosurgery can
be used for MET less than 3 to 4cm, whereas GBM

Glioblastoma multiforme (GBM) and brain metastases
(MET) are the most common malignant brain tumors in
adults [1, 2]. The distinction between these two types of
tumors is crucial to subsequent diagnostic and therapeutic
planning [3, 4]. An accurate diagnosis of the tumor’s
source and extent is crucial [5, 6]. In addition, treatment

should be treated with maximal resection followed by
molecular classification and simultaneous chemoradiother-
apy [7-9]. Diagnosis of GBM and MET is based on histo-
pathology biopsy [9, 10]. It is particularly dangerous for
older adults and tumors near eloquent areas [9, 10]. In
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routine magnetic resonance imaging (MRI), GBM and MET
show peripheral edema and ring enhancement [11, 12]. Even
though the two lesions had different treatment strategies,
similar radiological appearances made it difficult to differenti-
ate them. Many years of radiological research have focused on
accurately distinguishing these two lesions [11, 13, 14].

A radiomics study may provide pathophysiological
insights otherwise hidden in quantitative imaging data
[12]. In radiomics research, some features are used, such as
size, shape, image intensity, and voxel relationships [4-8].
A wide range of problems can be solved using multidimen-
sional wavelets [15, 16]. An effective way to reveal hidden
characteristics of signals is to use discrete wavelets (DWT)
[15, 16].The wavelet transform is a robust tool in signal pro-
cessing, and it could provide us with deep and precise insight
into the structure of the signals [15, 16].

With new machine learning algorithms (ML), radio-
mics analysis could be more precise, accurate, and conve-
nient for clinical reports [1-4, 6]. Predictive model can be
created based on the unique patterns found in the data by
using these algorithms [6-10]. Following training, the
machine can accurately identify the tumor type in a new
sample and support clinical decisions significantly. In
MRI images, brain tumors can be categorized in many
ways [10-14]. One of the most prominent ones is fuzzy
clustering means (FCM), support vector machine (SVM),
artificial neural network (ANN), knowledge-based tech-
niques, and the expectation-maximization (EM) algorithm
methodology [14, 17-19].

It has been reported that advanced techniques of MRI,
such as perfusion-weighted imaging (PWI), diffusion tensor
imaging (DTI), MR spectroscopy (MRS), and amide proton
transfer-weighted imaging, play vital roles in the diagnosis of
GBMs compared with MET; however, these advanced tech-
niques may not be included in all standard MRI protocols
[3, 12, 20]. Any single finding cannot guide clinical practice
in some cases due to diagnostic uncertainty. Many previous
studies showed that combined conventional MRI (cMRI),
diffusion-weighted imaging (DWI), and 18F-FDG-PET
images to establish different radiomics models to differentiate
MET from GBM and found that the integrated model based
on cMRI, DWI, and 18F-FDG-PET had the best discrimina-
tory power. In contrast, advanced sequences like DWI are
not widely available in the clinic as cMRI [3, 12, 20]. Conse-
quently, the radiomics literature shows that different classifiers
have different outputs [1-6]. Choosing the best model is com-
plex [3-6]. It is necessary to build various models to achieve a
more excellent result [3, 12, 20].

In this study, we have used standard MRI sequences (T1-
weighted imaging (T1WI), contrast-enhanced T1-weighted
imaging (T1C), T2-weighted imaging (T2WI), and fluid-
attenuated inversion recovery (FLAIR)) to extract the fea-
tures from the dataset. By combining these simple features
with DWT, we developed suitable feature vectors that can
be used in machine learning algorithms to differentiate
between GBM and MET patients. The objective of our study
was to develop a convenient, accurate, and stable predictive
model to aid clinical investigations in differentiating MET
from GBM without surgery.
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2. Materials and Methods

2.1. Dataset and Patient Population. This retrospective study
was approved by the Tarbiat Modares University Institu-
tional Review Board, and informed consent from the
patients was waived (IR MODARES.REC.1400.076).

In all cases, the pathology diagnosis was based on WHO
standards and was obtained from Hazrate Rasool Akram
Hospital, affiliated with Tarbiat Modares University [21].
We have collected MRI data from 91 patients (GBM: 51,
MET: 40) based on their pathological confirmation.

Patients with biopsy confirmation of GBM or MET were
excluded if they had any of the following conditions:

(1) Strokes and infections of the intracranial space

(2) The use of antitumor treatments prior to MR scan-
ning, such as brain surgery, chemotherapy, or
radiation

(3) Inadequate electronic medical records

2.2. Image Acquisition. The MR scans were performed
using the 1.5T Siemens Trio Scanners in the MR Research
Center. In this work, we have concentrated on conven-
tional MR sequences, including T1-weighted imaging
(T1WI), contrast-enhanced T1-weighted imaging (T1C),
T2-weighted imaging (T2WI), and fluid-attenuated inver-
sion recovery (FLAIR). Patients with intracranial tumors
undergo these examinations regularly.

2.3. Segmentation and Feature Extraction. All T1WI,
T2WI, FLAIR, and TIC images (matrix size:512 x 512,
slice thickness =5 mm, and slice interval=0 mm) have
been transferred from the picture archiving and communi-
cation system (PACS) to 3D Slicer [1-6]. Using these
images, two radiologists (Reader 1 and 2; 10 years of expe-
rience) were blind to grouping manually selected regions
of interest (ROIs) along the edge of the tumor. The
tumors separately were segmented on all MRI images
(T1-weighted imaging (T1WI), contrast-enhanced TI-
weighted imaging (T1C), T2-weighted imaging (T2WI),
and fluid-attenuated inversion recovery (FLAIR)) to form
the volume of interest (VOI). [7-12]. In each slice, ROIs
were drawn along the tumor margin to encompass the
entire tumor area [14, 17, 22-24]. The preprocessing and
feature extraction of the images were performed using
Pyradiomics  (http://pyradiomics.readthedocs.io/en/latest/
index.html) [20, 24-28]. The voxel size resampling (1*1*
1) and bin width (64) were applied to the images. Pyradio-
mics was used to extract radiomic features from each ROI
based on its three-dimensional region of interest (3D ROI)
[29-34]. From each sequence, 107 features were extracted
(Table 1), and these features were grouped into three cat-
egories: first-order statistics (n=18), shape-based features
(n=14), and textural features. The textural feature cate-
gory includes GLCM (n=24), GLRLM (n=16), GLSZM
(n=16), GLDM (n=14), and NGTDM (n=75) [34-37].
Both the training (70% data) and validation groups (30%
data) were normalized using Z-scores. Intraobserver and
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TaBLE 1: Feature extracted from the 3D Slicer.

Feature groups

Feature type

Shape features

First-order statistics

Gray-level dependence
matrix (GLDM)

Gray-level run length
matrix (GLRLM)

Gray-level cooccurrence
matrix (GLCM)

Gray-level size-zone matrix

(GLSZM)

Neighboring gray tone
difference matrix NGTDM)

Elongation, Flatness, LeastAxisLength, MajorAxisLength, Maximum2DDiameterColumn,
Maximum2DDiameterRow, Maximum2DDiameterSlice, Maximum3DDiameter, MeshVolume,
MinorAxisLength, Sphericity, SurfaceArea, SurfaceVolumeRatio, VoxelVolume

10Percentile, 90Percentile, Energy, Entropy, InterquartileRange, Kurtosis, Maximum,
MeanAbsoluteDeviation, Mean, Median, Minimum, Range, RobustMeanAbsoluteDeviation,
RootMeanSquared, Skewness, TotalEnergy, Uniformity, Variance

DependenceEntropy, DependenceNonUniformity, DependenceNonUniformityNormalized,
DependenceVariance, GrayLevelNonUniformity, GrayLevelVariance, HighGrayLevelEmphasis,
LargeDependenceEmphasis, LargeDependenceHighGrayLevelEmphasis,
LargeDependenceLowGrayLevelEmphasis, LowGrayLevelEmphasis, SmallDependenceEmphasis,
SmallDependenceHighGrayLevelEmphasis, SmallDependenceLowGrayLevelEmphasis

GrayLevelNonUniformity, GrayLevelNonUniformityNormalized, GrayLevelVariance,
HighGrayLevelRunEmphasis, LongRunEmphasis, LongRunHighGrayLevelEmphasis,
LongRunLowGrayLevelEmphasis, LowGrayLevelRunEmphasis, RunEntropy, RunLengthNonUniformity,
RunLengthNonUniformityNormalized, RunPercentage, RunVariance, ShortRunEmphasis,
ShortRunHighGrayLevelEmphasis, ShortRunLowGrayLevelEmphasis

Autocorrelation, ClusterProminence, ClusterShade, ClusterTendency, Contrast, Correlation,
DifferenceAverage, DifferenceEntropy, DifferenceVariance, inverse difference (ID), inverse difference
moment (IDM), inverse difference moment normalized (IDMN), inverse difference normalized (IDN),
informal measure of correlation (IMC) 1, informal measure of correlation (IMC) 2, InverseVariance,
JointAverage, JointEnergy, JointEntropy, MCC, MaximumProbability, SumAverage, SumEntropy,
SumSquares

GrayLevelNonUniformity, GrayLevelNonUniformityNormalized, GrayLevelVariance,
HighGrayLevelZoneEmphasis, LargeAreaEmphasis, LargeAreaHighGrayLevelEmphasis,
LargeAreaLowGrayLevelEmphasis, LowGrayLevelZoneEmphasis, SizeZoneNonUniformity,
SizeZoneNonUniformityNormalized, SmallAreaEmphasis, SmallAreaHighGrayLevelEmphasis,
SmallAreaLowGrayLevelEmphasis, ZoneEntropy, ZonePercentage, ZoneVariance

Busyness, Coarseness, Complexity, Contrast, Strength
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F1GURE 1: Flowchart of the process of radiomics. The tumors were segmented on all MRI images to form the volume of interest (VOI). The
machine learning algorithm was then used to fit the best predictive model.
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F1GURE 2: Flowchart of the process of wavelet radiomics. The tumors were segmented on all MRI images to form the volume of interest
(VOI). Different filter banks are applied to them and the machine learning algorithm was used to fit the best predictive model.

TaBLE 2: Performance models in test data (feature without
wavelet).

Models Accuracy AUC Fl-score
MLP 0.90 0.90 0.90
RF 0.92 0.94 0.94
SVM 0.57 0.55 0.71
LR 0.93 0.88 0.90
DT 0.91 0.92 0.91
Nb 0.64 0.86 0.52
Knn 0.79 0.90 0.79
Ada 0.90 0.92 0.91

interobserver intraclass correlation coefhicients (ICCs) were
applied to measure the reproducibility of each feature [18,
19]. Reader 1 and Reader 2 performed image segmentation
independently twice weekly to assess intraobserver reliabil-
ity. Using the following steps, we selected significant radio-
mic features [18, 19]. ICCs over 0.75 were kept for
intraobserver and interobserver features. Following that,
LASSO logistic regression was performed with 10-fold
cross-validation. In order to generate machine learning
inputs, all selected features from all series of images were
registered in one row after dimensionality reduction.

2.4. First Radiomics Model Establishment. Eight ML algo-
rithms were imported from the scikit-learn library in

Python software to establish models [15, 16, 25, 26, 38].
These algorithms included Support Vector Machine (SVM),
Naive Bayes (NB), Multilayer perceptron (MLP), Decision
Tree (DT), Ada Boost (ADA), K-nearest neighbor (K.N.N.),
Logistic Regression (LR), and Random Forest (RF) [15, 16,
25, 26, 38].

Selected features from LASSO were imported to this ML,
and the predictive ability of each algorithm was primarily
assessed using the AUC of receiver operating characteristic
(ROC) curve analysis [15, 16, 25, 26, 38].

2.5. Second Radiomics Model Establishment (Wavelet-Based
Features). Multidimensional wavelet transforms were cre-
ated by importing selected features from LASSO. This
means that the low pass filter generates the approximate
coefficient, and the high pass filter would result in the
detail coeflicients. The approximate coefficient is the most
similar signal to the original signal. The detail coefficient
consisted of three matrices: vertical, horizontal, and diago-
nal [15, 16]. We have considered 31 different wavelet filter
banks from four distinct families to provide a wide range
of feature vectors from different wavelet filter banks. The
31 different wavelet filter banks “ biorl.3, biorl.5, bior2.2,
bior2.4, bior2.6, bior3.1, bior3.3, bior3.5, bior3.7, bior4.4,
bior5.5, db2, db3, db4, db5, db6, db7, db8, db9, sym2,
sym3, sym4, sym>5, sym6, sym7, syms8, coifl, coif2, coif3,
coif4, coif5” were among the most conventional filter
banks that are available in Python compiler. Features
extracted from the 3D Slicer were initially considered as
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TaBLE 3: Accuracy in 31 different filter banks.
Ada Knn Nb LR SVM RF MLP

biorl.3 0.933189 0.891721 0.61068 0.905832 0.941758 0.912761 0.945032 0.950985
biorl.5 0.965257 0.94742 0.646329 0.914328 0.956465 0.832176 0.973847 0.947466
bior2.2 0.923965 0.866087 0.645475 0.899008 0.924443 0.704708 0.94095 0.907554
bior2.4 0.94369 0.90734 0.695714 0.912643 0.948408 0.777932 0.942614 0.922503
bior2.6 0.95082 0.920852 0.693796 0.886444 0.931135 0.767052 0.952591 0.947212
bior3.1 0.927787 0.907053 0.60877 0.880337 0.893043 0.799389 0.958945 0.909473
bior3.3 0.925133 0.943487 0.656289 0.876967 0.953993 0.796909 0.968925 0.932868
bior3.5 0.930002 0.936131 0.604197 0.903743 0.947655 0.792489 0.944739 0.950133
bior3.7 0.927571 0.943129 0.634732 0.886911 0.948263 0.799461 0.945879 0.93021

bior4.4 0.93232 0.95518 0.62868 0.917023 0.938454 0.797078 0.947979 0.947715
bior5.5 0.933369 0.941989 0.612398 0.906204 0.934667 0.801717 0.956616 0.954862
coifl 0.922405 0.902193 0.608189 0.89412 0.930878 0.872911 0.946356 0.962986
coif2 0.943946 0.955792 0.635985 0.900505 0.958749 0.813401 0.954382 0.948507
coif3 0.9467 0.945316 0.629187 0.900545 0.964684 0.889525 0.952297 0.964193
coif4 0.920573 0.927746 0.61435 0.883489 0.946937 0.934528 0.964741 0.958771
coif5 0.944292 0.875767 0.599845 0.869593 0.898315 0.865067 0.959446 0.927132
db2 0.928196 0.903953 0.588558 0.849616 0.932377 0.950546 0.950244 0.940636
db3 0.918309 0.942918 0.631876 0.873505 0.907149 0.746167 0.947854 0.936909
db4 0.932921 0.926325 0.632563 0.892192 0.939004 0.776472 0.937961 0.916678
dbs 0.926129 0.941244 0.619148 0.923357 0.988745 0.796044 0.951191 0.952799
dbe6 0.936539 0.951273 0.616145 0.904428 0.932609 0.806208 0.941486 0.939429
db7 0.922993 0.953972 0.643097 0.893853 0.954054 0.818546 0.959917 0.953336
db8 0.95857 0.929108 0.642418 0.90545 0.938197 0.863222 0.969784 0.929326
db9 0.924636 0.944797 0.645315 0.875302 0.929999 0.945966 0.969645 0.935359
sym2 0.933876 0.893567 0.565925 0.850802 0.933613 0.920392 0.946448 0.939357
sym3 0.916029 0.943786 0.628778 0.871188 0.936641 0.810063 0.946932 0.930468
sym4 0.947051 0.953057 0.655627 0.903845 0.948039 0.845584 0.956469 0.9603

sym>5 0.933549 0.919176 0.647675 0.896683 0.928433 0.806217 0.954992 0.910095
symoé6 0.933247 0.947034 0.636997 0.88298 0.936826 0.815107 0.943306 0.910482
sym7 0.942203 0.94351 0.634277 0.901731 0.967642 0.825141 0.959545 0.952585
sym$8 0.922269 0.924227 0.647042 0.886828 0.925618 0.805148 0.951747 0.907678

4-Dimensional signals. These signals were then considered
as input signals to multidimensional discrete wavelets. The
approximate and detail coefficients were substantially gen-
erated and saved in a python array. Approximate coeffi-
cients were the most similar signal to the primary signal,
and the detail coefficients consisted of horizontal, vertical,
and diagonal details (cH1, c¢V1, c¢D1). These approximate
coeflicients and detail coefficients were generated by low
and high pass filters, respectively. We calculated eleven
different criteria for approximation and detail coefficient
matrixes. Seven of these criteria were: maximum, mini-
mum, average, median, standard deviation, Shannon
entropy, and signal energy applied to entire approximate
coefficient and detail coefficients matrices and led to 28
different feature vectors (7*4). The other two were the
standard error and slope between approximate coefficient
and detail coefficient matrixes generating six other features
(2*3). Eventually, two signal energy and wavelength cri-

teria were used for the whole signal (original input signal),
which led to 2 other features and a total of 36 features for
every single 3D Slicer output sample. These features were
saved in the text file and used as the input file for the
machine learning model. These procedures have been
done for 31 different wavelet filter banks mentioned ear-
lier, and for each filter bank, we have made a separated
feature vectors file. To be more precise, each filter bank
had a unique profile; hence, we had 31 different profiles
for each sample. Eight ML used these profiles separately
as an input file. Finally, we have reported our best result
as our proposed model.

2.6. Evaluation Method. Regarding the dataset size, we used
the 5-fold cross-validation. To avoid bias, we repeated the 5-
fold cross-validation test 100 times. Eventually, the iteration
average was considered the model’s outputs. The classifica-
tion influence can be evaluated using three indicators: area
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TABLE 4: Fl-score in 31 different filter banks.
Ada Knn Nb LR SVM RF MLP

biorl.3 0.933189 0.891721 0.61068 0.905832 0.941758 0.912761 0.945032 0.950985
biorl.5 0.965257 0.94742 0.646329 0.914328 0.956465 0.832176 0.973847 0.947466
bior2.2 0.923965 0.866087 0.645475 0.899008 0.924443 0.704708 0.94095 0.907554
bior2.4 0.94369 0.90734 0.695714 0.912643 0.948408 0.777932 0.942614 0.922503
bior2.6 0.95082 0.920852 0.693796 0.886444 0.931135 0.767052 0.952591 0.947212
bior3.1 0.927787 0.907053 0.60877 0.880337 0.893043 0.799389 0.958945 0.909473
bior3.3 0.925133 0.943487 0.656289 0.876967 0.953993 0.796909 0.968925 0.932868
bior3.5 0.930002 0.936131 0.604197 0.903743 0.947655 0.792489 0.944739 0.950133
bior3.7 0.927571 0.943129 0.634732 0.886911 0.948263 0.799461 0.945879 0.93021

bior4.4 0.93232 0.95518 0.62868 0.917023 0.938454 0.797078 0.947979 0.947715
bior5.5 0.933369 0.941989 0.612398 0.906204 0.934667 0.801717 0.956616 0.954862
coifl 0.922405 0.902193 0.608189 0.89412 0.930878 0.872911 0.946356 0.962986
coif2 0.943946 0.955792 0.635985 0.900505 0.958749 0.813401 0.954382 0.948507
coif3 0.9467 0.945316 0.629187 0.900545 0.964684 0.889525 0.952297 0.964193
coif4 0.920573 0.927746 0.61435 0.883489 0.946937 0.934528 0.964741 0.958771
coif5 0.944292 0.875767 0.599845 0.869593 0.898315 0.865067 0.959446 0.927132
db2 0.928196 0.903953 0.588558 0.849616 0.932377 0.950546 0.950244 0.940636
db3 0.918309 0.942918 0.631876 0.873505 0.907149 0.746167 0.947854 0.936909
db4 0.932921 0.926325 0.632563 0.892192 0.939004 0.776472 0.937961 0.916678
db5s 0.926129 0.941244 0.619148 0.923357 0.988745 0.796044 0.951191 0.952799
db6 0.936539 0.951273 0.616145 0.904428 0.932609 0.806208 0.941486 0.939429
db7 0.922993 0.953972 0.643097 0.893853 0.954054 0.818546 0.959917 0.953336
db8 0.95857 0.929108 0.642418 0.90545 0.938197 0.863222 0.969784 0.929326
db9 0.924636 0.944797 0.645315 0.875302 0.929999 0.945966 0.969645 0.935359
sym2 0.933876 0.893567 0.565925 0.850802 0.933613 0.920392 0.946448 0.939357
sym3 0.916029 0.943786 0.628778 0.871188 0.936641 0.810063 0.946932 0.930468
sym4 0.947051 0.953057 0.655627 0.903845 0.948039 0.845584 0.956469 0.9603

sym>5 0.933549 0.919176 0.647675 0.896683 0.928433 0.806217 0.954992 0.910095
symoé6 0.933247 0.947034 0.636997 0.88298 0.936826 0.815107 0.943306 0.910482
sym7 0.942203 0.94351 0.634277 0.901731 0.967642 0.825141 0.959545 0.952585
sym$§ 0.922269 0.924227 0.647042 0.886828 0.925618 0.805148 0.951747 0.907678

under the receiver operating characteristic curve (AUC),
accuracy (ACC), and Fl-score. Finally, a pairwise test was
applied to compare the obtained ROC curves, and the
ROC curves of the wide variety of classifiers were then inves-
tigated. According to the analysis, p < 0.05 illustrates that the
two ROC curves were statistically significant differences [20,
24, 25, 38-40]. Workflows are shown in Figures 1 and 2.

3. Result

3.1. First Radiomics Model Result. We have reported the
result of our proposed model by a set of conventional
parameters, including F1-score, accuracy, and AUC. These
parameters could best express the model’s performance in
machine learning research. As mentioned in the first model,
we have used the selected features obtained from 3D Slicer
and used SVM, NB, MLP, DT, ADA, KNN, LR, and RF to
establish our predictive model. The highest accuracy for

these models is achieved by random forest algorithms,
shown in Table 2.

3.2. Second Radiomics Model Result. We used the selected
feature vector from the 3D Slicer as the multidimensional
DWT input for the second model and extracted the approx-
imate and detailed coefficients. After concatenating the
approximate coeflicient and detail coefficient matrices, par-
ticular criteria have been calculated. The same eight ML
were applied to establish the predictive model. We calculated
accuracy, Fl-score, and AUC of ROC in 31 different filter
banks, as presented in Tables 3-5.

Our result proved that the second model could perform
better than the first model (sig <0.05). This model’s DB5 fil-
ter bank and Logistic Regression achieved the highest result.
We have gained 0.98, 0.99, and 0.98 percent for accuracy,
AUC-roc, and Fl-score, respectively. We introduce the
DB5 wavelet and Logistic regression as our proposed model
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TaBLE 5: AUC of ROC in 31 different filter banks.

Ada Knn Nb LR SVM RF MLP
biorl.3 0.936 0.900667 0.670833 0.9075 0.946 0.920833 0.947167 0.955333
biorl.5 0.968417 0.950083 0.715833 0.92325 0.95825 0.8265 0.975583 0.9505
bior2.2 0.927417 0.881417 0.694417 0.903667 0.927833 0.563917 0.942 0.912833
bior2.4 0.9445 0.916083 0.74525 0.912833 0.949167 0.753333 0.9425 0.925083
bior2.6 0.95275 0.93025 0.747333 0.890833 0.93675 0.757083 0.952 0.950083
bior3.1 0.93375 0.911583 0.658083 0.886417 0.895333 0.809167 0.959 0.913417
bior3.3 0.93 0.947667 0.71075 0.87775 0.959417 0.784583 0.969333 0.936583
bior3.5 0.93325 0.938917 0.669167 0.904333 0.952667 0.779583 0.94325 0.952833
bior3.7 0.933083 0.946833 0.6945 0.888 0.9525 0.784167 0.946667 0.933167
bior4.4 0.9355 0.9555 0.68875 0.914917 0.938917 0.776917 0.947417 0.94925
bior5.5 0.938 0.940917 0.683917 0.905417 0.937167 0.786833 0.95575 0.95675
coifl 0.928 0.904917 0.673167 0.896667 0.930333 0.881 0.948667 0.964
coif2 0.944833 0.960417 0.694583 0.89725 0.95975 0.799167 0.95275 0.950417
coif3 0.9485 0.945833 0.690417 0.9005 0.9625 0.883333 0.950583 0.96375
coif4 0.924167 0.933417 0.670917 0.891333 0.949833 0.93825 0.964583 0.958917
coif5 0.9485 0.87825 0.660833 0.876083 0.901667 0.879417 0.959167 0.927667
db2 0.933417 0.913583 0.637167 0.855167 0.933833 0.955667 0.95225 0.9435
db3 0.920917 0.94925 0.690417 0.878083 091175 0.707583 0.948917 0.937833
db4 0.93575 0.92925 0.69525 0.889333 0.943 0.765 0.93825 0.921583
db5 0.927667 0.941583 0.68125 0.920833 0.991333 0.779167 0.949 0.954667
db6 0.939333 0.948167 0.681 0.903 0.932833 0.79375 0.94175 0.938
db7 0.927 0.955083 0.711167 0.894417 0.952583 0.806917 0.958417 0.952417
db8 0.961833 0.931917 0.700083 0.90575 0.939 0.862583 0.970583 0.931833
db9 0.929083 0.945333 0.7005 0.878667 0.929583 0.944083 0.969167 0.934583
sym2 0.938667 0.89875 0.626667 0.85375 0.935667 0.92275 0.949583 0.940333
sym3 0.917583 0.951583 0.6835 0.875917 0.940333 0.806917 0.949917 0.9325
sym4 0.950083 0.957833 0.7125 0.909167 0.950417 0.8325 0.953833 0.96075
sym>5 0.937167 0.921917 0.702833 0.895917 0.933167 0.785833 0.9555 0.913667
symoé6 0.938417 0.950417 0.700667 0.886167 0.935667 0.803667 0.941583 0.912917
sym7 0.944 0.945167 0.698083 0.902083 0.967333 0.806667 0.957917 0.9535
sym8 0.925417 0.928167 0.709 0.89 0.928167 0.783 0.950417 0.910083

for identifying the GBM and MET in MRI sequences. These
differences are shown in Tables 6-8.

4. Discussion

We explored the diagnostic performance of radiomics using
traditional machine learning classifiers for differentiating
GBM from single MET. The wavelet radiomics performed
better than the best-performing traditional radiomics and
demonstrated good generalizability in the testing data. Four
imaging modes were used, 107 features were extracted from
each sequence, and all 428 parameters were used as LASSO
inputs to select the best features. The selected features are
used in two different ways. First, used in ML input, then
transferred to 31 wavelet filter banks, and lastly imputed
to ML. For the best combination of classification proce-
dures, extensive comparative studies were performed for
31 types of wavelet features and eight classification algo-

rithms (Adaboost, KN.N., Gaussian NB, DT, LR, SVM,
RF, and MLP).

Moreover, the multidimensional discrete wavelet could
reveal the hidden feature of the data. Multidimensional dis-
crete wavelets provide us with approximate and detailed
coeflicient matrices. The approximate coeflicient is the most
similar wave to the original signal, while the detailed coeffi-
cient includes horizontal, vertical, and diagonal details. We
found that wavelet feature extraction, a critical classification
component, enables us to distinguish different tumor char-
acteristics using different feature types.

According to our findings, wavelet radiomics-based ML
can successfully discriminate GBM and MET. LR was judged
to be the most effective model. Another important finding
from our research was the diagnostic performance of the
top models with wavelet features outperformed models
without wavelet features (Tables 6-8).

Our study’s most important outcome was identifying
appropriate discriminative models for lesions in the brain.
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TaBLE 6: Comparing AUC in the first and second model.
Best results of models Ada Knn Nb Dt LR SVM RF MLP
Wavelet tvoe biorl.5 coif2 bior2.6 biorl.5 db5 db2 db8 coifl
V! P 0.97 0.96 0.75 0.92 0.99 0.96 0.97 0.96
Without wavelet 0.92 0.90 0.86 0.92 0.88 0.55 0.94 0.90
%increase (significant: **, no significance *) +5.5%** +6.6%"* -12.7%** 0* +12.5%** +74.5%** 3.19% 6.6%"*
TasLE 7: Comparing accuracy in the first and second model.
Best results of models Ada Knn Nb Dt LR SVM RF MLP
Wavelet tvpe dbs8 coif2 bior2.6  biorl.5 db5 db2 biorl.5 coif3
P 0.96 0.96 0.70 0.92 0.99 0.95 0.97 0.96
Without wavelet 0.90 0.79 0.64 0.91 0.94 0.57 0.92 0.90
%increase (significant: **, no significance *)  +%6.6""  +%21.5"*  +%9.3"" +%1* +%5.3""  +%66.6"* +%3* +%6.6"*
TaBLE 8: Comparing Fl-score in the first and second model.
Best results of models Ada Knn Nb Dt LR SVM RF MLP
Wavelet tvpe biorl.5 coif2 bior2.4 db5s db5 db2 biorl.5 coif3
P 0.96 0.96 0.69 0.92 0.99 0.95 0.97 0.96
Without wavelet 0.91 0.79 0.52 091 0.90 0.71 0.94 0.90
% increase (significant: **, no significance *)  +%5.5""  +%21.5""  +%32**  +%1* +%10"*  +%33.82""  +%3.19"  +%6.6™"

LR (AUC 0.99) and RF (AUC 0.97) are both high-
performing models for GBM and MET classification.

A number of previous studies have used multiparametric
MRI data to discriminate between GBM tumors and MET,
including advanced imaging methods such as diftusion, per-
fusion, and MR spectroscopy [1-6]. It should be noted that
advanced imaging is not incorporated into all MRI protocols
across all sites and is highly dependent on the acquisition
and analysis method [14, 34, 41]. Therefore, it is important
to be able to classify brain tumors based on common
sequences [14, 34, 41]. Some previous studies attempted to
distinguish between different types of brain tumors based
on a single contrast; however, these studies were carried
out on relatively small populations and were limited to data
obtained from a specific MRI system [14, 34].

Chol et al. [42] studied radiomics and ML in glioma
grading classification, which showed that RF and LR were
high-performing models. In our investigation, the LR model
with db5 wavelet feature performed better (AUC 0.99) than
the LR model in a previous study by Cho et al., which had an
AUC of 0.95. These findings demonstrate that the proposed
model has an impact on model performance. Our results
were better than the previous study that looked at various
ML. Priya et al. [22] used the LASOO and Elastic Net model
to classify brain tumors; we have higher results in wavelet
base feature (0.99 vs. 095) and worse in part without wavelet
base features (0.95 vs. 0.93).

Ning et al. [43] examined seven ML classifiers and five
feature reduction techniques using radiomics features pro-
duced from TI-CE and T2W pictures and obtained an
AUC of 0.890 with an accuracy of 83 percent. The second

part of their work used deep neural networks, which had
an AUC of 0.95 and an accuracy of 89%. Even though
we did not analyze deep neural networks (DNN) due to
their computational cost, our findings were comparable
to Ning et al.

Su et al. [17] extracted features from the T1-CE
sequence, then evaluating 30 model combinations and fea-
ture reduction for their radiomics obtained an AUC of
0.80. Using 248 combinations of wavelet feature series and
classifier, we achieved a higher AUC of 0.99 and an accuracy
of 98 percent. The fact that we extracted wavelet features
from MRI sequences improved our results.

Wavelet feature is an essential element of this model per-
formance. The improved effectiveness of 31 types of wavelet
features compared to a priori feature (without wavelet) was a
key conclusion of our research. LR and RF models provide a
more significant generalizability benefit than other ML
models. We have found the essential type of wavelets for
Ada, Knn, Nb, Dt, LR, SVM, RF, and MLP were db8, coif2,
bior2.6, biorl.5, db5, db2, biorl.5, and coif3 consequently.

Adding wavelets to the analysis confirms that it can bet-
ter distinguish MET and GBM than the radiomics model
based solely on ¢ MRI features. Therefore, our study pro-
vides a good solution to the problem of poor model perfor-
mance in radiomics research. We propose a unique, helpful
prediction model based on MRI sequences (T1-W, T2-W,
T1C-W, and Flair-W) that can be used in clinical practice.

4.1. Limitation. Our research has a few limitations that need
to be addressed. First, due to the retrospective nature of the
investigation, several patients’ clinical information and MRI
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sequences were missing, resulting in a smaller sample size.
Second, although normalization was implemented during
data preprocessing, variation across MRI scan protocols
was unavoidable. Third, the picture segmentation approach
utilized in this work relied on manual delineation, which
might be replaced by automated delineation of ROIs using
deep learning methods in the future to enhance the model’s
reliability. Fourth, since our conclusion that radiomics char-
acteristics may represent changes in the tumor microenvi-
ronment was based on circumstantial evidence, further
validation and experimental confirmation are required.
Finally, our study did not include advanced sequences, such
as DWI or perfusion MR imaging.

5. Conclusion

We found that radiomics-based ML can accurately classify
GBM and MET. Also, in this study, the best results were in
the LR algorithm and wavelet db5, which can be considered
acceptable in data with few samples. The performance of a
model might vary based on the mix of classifier and feature
types used. Thus a complete model selection method should
be used. Also, the result of the models applied to the
extracted features’ composition is very suitable compared
to their separate modes.
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