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Abstract

The genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of
approximately 60 species from across the northern hemisphere. It is the world’s most valuable horticultural crop with
~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species
during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding
programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate
admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection
using genome-wide polymorphism data. We find that grape breeders have backcrossed to both the domesticated V.
vinifera and wild Vitis species and that reasonably accurate genome-wide ancestry estimation can be performed on
interspecific Vitis hybrids using a panel of fewer than 50 ancestry informative markers (AIMs). We compare measures
of ancestry informativeness used in selecting SNP panels for two-way admixture estimation, and verify the accuracy
of our method on simulated populations of admixed offspring. Our method of ancestry deconvolution provides a first
step towards selection at the seed or seedling stage for desirable admixture profiles, which will facilitate marker-
assisted breeding that aims to introgress traits from wild Vitis species while retaining the desirable characteristics of
elite V. vinifera cultivars.
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Introduction

The genus Vitis (the grapevine) is a group of highly diverse,
diploid woody perennial vines consisting of approximately 60
species from across the northern hemisphere [1]. According to
the archaeological record, cultivation of the domesticated
grapevine, Vitis vinifera, began 6000-8000 years ago in the
Near East [2]. Today, the grape is the world’s most valuable
horticultural crop with ~8 million hectares planted, most of
which is processed into wine (http://faostat.fao.org; Accessed
2013 October 21). Grapes from the domesticated species, V.
vinifera, account for more than 95% of the grapes grown
worldwide [1] and the world’s vineyards are dominated by a
small number of closely related V. vinifera cultivars that have
often been vegetatively propagated for centuries [3]. Because

they are perpetually propagated, elite grape cultivars require
increasingly intense chemical applications to combat evolving
pathogen pressures. It is widely recognized that the
exploitation of wild Vitis species’ resistance to disease is crucial
to the continued success and expansion of the grape and wine
industries, and that the grape is well-poised to benefit from the
use of marker-assisted breeding for this purpose [1,4,5].

In plant breeding, marker-assisted backcrossing can be used
to incorporate traits into elite cultivars while minimizing the
transfer of undesirable alleles from the donor genome [6]. This
process involves both foreground and background selection.
Foreground selection refers to the screening and selection of
offspring based on the presence or absence of a specific allele
that is associated with a trait of interest. In contrast,
background selection is the selection of offspring on the basis
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of genomic ancestry estimates. A breeder may wish to
introgress a specific trait from a wild species into an elite
cultivar, while minimizing the genomic contribution from the
wild species unrelated to that trait [4,5]. Recombinant selection
(through backcrossing) aims to reduce the size of the
chromosomal segment carrying the desired locus. Wild species
often possess genes that negatively affect crop performance,
making it advantageous to remove any additional background
contribution from these wild species to the genomes of the
resulting progeny [6]. While backcrossing in many crops is
performed by crossing offspring back to one of the parents,
“pseudo-backcrossing” is the method used to perform
backcrosses in grapes. Pseudo-backcrossing involves crossing
hybrid offspring back to a cultivated V. vinifera cultivar that is
not one of the parents from the original cross. This form of
backcrossing is performed because grapes suffer from severe
inbreeding depression and thus crosses between closely
related cultivars must be avoided [5]. Background selection
relies on accurate estimation of the percentages of the donor
and recurrent parental genomes present in the resulting
progeny.

To gain insights into the use of wild Vitis species during the
past century of interspecific grape breeding and to provide a
foundation for background selection in marker-assisted
breeding programmes, we present a principal components
analysis (PCA) based ancestry estimation method to calculate
admixture proportions of hybrid grapes in the US Department
of Agriculture (USDA) grape germplasm collection using
genome-wide polymorphism data from the Vitis9kSNP
microarray [3]. We find that grape breeders have backcrossed
to both V. vinifera and wild Vitis species and that reasonably
accurate genome-wide ancestry estimation can be achieved in
interspecific Vitis hybrids using a panel of fewer than 50
ancestry informative markers (AIMs). Our method of ancestry
deconvolution provides a first step towards selection at the
seed or seedling stage for desirable admixture profiles, which
will facilitate marker-assisted breeding that aims to introgress
traits from wild Vitis species while retaining the desirable
characteristics of elite V. vinifera cultivars.

Materials and Methods

Sample Collection and Genotype Calling
Leaf tissue was collected from the USDA grape germplasm

collections in Davis, California and Geneva, New York.
Permission for tissue collection was obtained from the local
USDA authority. DNA was extracted using commercial
extraction kits. Genotype data were generated from the custom
Illumina Vitis9KSNP array, which assays 8,898 single
nucleotide polymorphisms (SNPs). After quality filters
(GenTrain Score ≥ 0.3 and GenCall ≥ 0.2) 6114 SNPs in 1817
Vitis samples remained for analysis [3].

Data curation
Samples with >10% missing data were removed, and SNPs

with >10% missing data and minor allele frequency (MAF)
<0.10 were removed using PLINK [7]. After these filters, 1599
samples and 2959 SNPs remained. PCA was performed on

this data set using SMARTPCA [8] and 60 samples were
removed due to mislabeling. For example, some samples
labeled as V. vinifera clustered with wild species and some
samples labeled as hybrids clustered with wild or V. vinifera
(Figure S1). DNA sample mix-up is an unlikely explanation for
these errors because sample processing was done primarily
with robotics and no genotype discordance for 145 pairwise
comparisons between replicate samples placed randomly
across sample plates was observed [3]. Thus, the cases of
mislabeling are likely due to curation error. Our ancestry
estimates of putatively mislabeled individuals are currently
being verified by direct observation in the vineyard and the
USDA Germplasm Resources Information Network (GRIN)
online database [9] will be updated accordingly. The data are
available from the Dryad Digital Repository: http://dx.doi.org/
10.5061/dryad.45hh0.

Our PCA plot of the full data set revealed a clear separation
of North American wild species from V. vinifera along the first
principal component (PC1; Figure S1). Eurasian wild species
fell between these two groups. Although they are occasionally
used in grape breeding, we excluded Eurasian wild species
and hybrids with known Eurasian wild ancestry from the
remaining analysis because the number of samples was low
and their position in PC space complicates ancestry estimation.
The present study thus focuses on hybrids with ancestry from
North American wild Vitis species (hereafter referred to simply
as wild Vitis) and V. vinifera.

Admixture analyses
Principal components were computed using 333 wild Vitis

samples and a random sample of 333 V. vinifera samples.
Equal sample sizes (N = 333) for ancestral populations were
selected as this has been shown to be a crucial factor in
accurately inferring genetic relatedness based on PCA [10].
After establishing the PC axes based on these ancestral
populations, all 1599 samples were subsequently projected on
to these axes, and individuals between -0.02 and 0.02 on PC1
(with the exception of Eurasian wild samples and hybrids with
known Eurasian wild ancestry) were considered hybrids for the
remainder of the analysis (N = 127 hybrids; Figure 1A). These
conservative thresholds were chosen because the projection
space between them included all samples labeled as “hybrid” in
the USDA Germplasm Resources Information Network
database [9].

Our method of calculating ancestry coefficients employs the
approach described in [11,12], where admixture proportions
are equal to the coordinate distance in PC space between the
admixed individual (hybrid) and the two ancestral populations
(V. vinifera and wild Vitis). For each purported hybrid grape, the
genome-wide proportion of V. vinifera is estimated as P = b/(a
+b), where b and a are the chord distances from the wild Vitis
and V. vinifera centroids, respectively, for the given hybrid
along PC1 (Figure 1B). We also estimated ancestry proportions
using the model-based software STRUCTURE [13].
STRUCTURE was run with a burn-in period of 20,000 iterations
followed by 100,000 iterations using the admixture model
where each sample draws some fraction of its genome from
each of the K populations where K = 2. As with previous work
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[14], our PCA-based ancestry estimates are highly similar to
those generated from STRUCTURE (R2 = 0.998; Figure S2).

Measures of Ancestry Informativeness
We ranked 2959 SNPs according to four measures of

ancestry informativeness: PC1 Weight, PC1 Positive Weight,
FST and a linear model described below. We evaluated the
ability of reduced marker sets (1-100 SNPs) based on these
measures to predict ancestry relative to the full set of 2959
SNPs. The “classification accuracy” of a set of AIMs is the R2

value generated from a Pearson correlation between the hybrid
ancestry estimates based on the reduced marker set and the
estimates based on the full set of 2959 SNPs. PC1 Weight is
the absolute value of the PC1 loading given to each SNP by
SMARTPCA, whereas PC1 Positive Weight excludes any
values given a negative loading by the software. FST, a
measure of allele frequency difference between the ancestral
populations, was calculated according to [15] for each SNP
using allele frequencies output by PLINK. For the Linear Model
(LM) measure, linear regression was performed in R [16] using
genome-wide V. vinifera content (estimated from all 2959
markers) as a response variable and genotypes for a given
SNP across wild Vitis, V. vinifera and hybrid samples as an
explanatory variable (0 = homozygous reference allele; 1 =
heterozygous; 2 = homozygous non-reference allele). SNPs
were ranked according to their R2 from the linear model as a
measure of ancestry informativeness.

Simulations of Admixture
To evaluate the accuracy of our PCA-based ancestry

estimation method, in silico crosses between V. vinifera and
wild species were simulated in R. Simulated F1 offspring were
generated by randomly sampling one of the 333 V. vinifera and
one of the 333 wild Vitis as parents. Parental genotypes were
combined to produce offspring genotypes by sampling one
allele at random from each parent at each SNP. Linkage
disequilibrium between SNPs was ignored. This procedure was
repeated 10,000 times to generate 10,000 F1 offspring. To
generate simulated F2 populations this process was repeated,
using the F1 individuals as one ancestral population and either
wild or V.vinifera accessions as the other to simulate
backcrossing (n = 10000 for F1 backcrossed to wild, and n =
10000 for F1 backcrossed to V. vinifera).

Results and Discussion

PCA-based ancestry estimation
PCA is a useful tool for revealing patterns of population

structure and relatedness among samples for which genome-
wide SNP data are available [17-19]. A genotyping microarray
for the grape, the Vitis9KSNP array, was recently developed
with probes designed for SNPs segregating within the
domesticated species, V. vinifera, and a small number of
probes designed to assay variation among Vitis species [20].
When PCA is applied to Vitis9KSNP array data from a diverse

Figure 1.  PCA based ancestry estimation.  (A) PC axis 1 (PC1) and PC2 were calculated using 2959 SNPs from 333 V. vinifera
and 333 wild Vitis samples. The proportion of the variance explained by each PC is shown in parentheses along each axis.
Subsequently, 1599 samples, including various Vitis species and hybrids, were projected onto these axes (green dots). Samples
lying between the dotted vertical lines were considered hybrids for the remaining analyses. (B) Boxplots show the range of PC1
values for the two ancestral populations (V. vinifera and wild Vitis) and the hybrids identified in (A). Boxes denote upper and lower
quartiles and whiskers extend to 2.7 SD. Below the boxplots, an illustration of how ancestry proportions are calculated is provided
(see Methods for details).
doi: 10.1371/journal.pone.0080791.g001
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collection of V. vinifera cultivars, wild Vitis species and hybrid
cultivars, PC1 clearly separates wild Vitis species from V.
vinifera while hybrid cultivars lie between these two groups
(Figure 1A, S1). This observation motivated us to apply
methods developed previously [11,12] to use a hybrid cultivar’s
projected position along PC1 to estimate the proportion of its
ancestry derived from V. vinifera and wild Vitis species (Figure
1B). Our PCA-based method provides highly similar ancestry
estimates to those generated from the model-based approach
in STRUCTURE (Figure S2).

For the present study, we considered a sample a “hybrid” if
its projected position along PC1 was between -0.02 and 0.02.
After removing obvious errors (see Methods), all samples
labeled as “hybrid” in the USDA Germplasm Resources
Information Network (GRIN) online database [9] fall within this
range, but many samples labeled as either wild Vitis species or
V. vinifera fall within this range as well (Figure S1). Our
ancestry estimates are therefore being used to improve the
accuracy of the ancestry assignments associated with each
accession in the USDA grape germplasm collection. We
acknowledge, however, that samples outside of our defined
“hybrid” range may in fact represent hybrid samples that
resulted from extensive backcrossing to either V. vinifera or
wild Vitis species. Further studies will be required to verify the
ancestry of such hybrid samples and distinguish them
unequivocally from the ancestral groups.

Verification of ancestry estimation method
To verify the accuracy of our PCA-based ancestry estimation

method, we simulated F1 (V. vinifera x wild Vitis) and F2
hybrids (F1 simulated hybrids backcrossed to V. vinifera or wild
Vitis) using real genotype calls from the ancestral populations.
The PCA plot of the simulated progeny and ancestral
populations is shown in Figure 2A. The mean estimated
genome-wide proportion of V. vinifera in the simulated F1
hybrids was 0.499, 95% CI [0.460, 0.537]. We expect the
proportion of V. vinifera in these individuals to be 0.5, with the
remainder of the genome (0.5) being contributed from the wild
Vitis population. For offspring of the simulated F1 x V. vinifera
cross we estimate the mean genome-wide proportion of V.
vinifera at 0.743, 95% CI [0.699, 0.782], with an expected value
of 0.75. For offspring of the simulated F1 x wild Vitis cross, we
estimate the mean genome-wide proportion of V. vinifera at
0.257, 95% CI [0.222, 0.294], with an expected value of 0.25.
Distributions of the estimated V. vinifera genomic content of the
three simulated crosses using PCA-based ancestry estimation
are shown in Figure 2B. These results demonstrate that our
PCA-based method provides reasonably accurate ancestry
estimates for F1 and F2 backcrossed hybrid grape cultivars
generated from a highly diverse collection of grape germplasm.

Grape ancestry estimation
Genome-wide V. vinifera content was estimated for the 127

samples identified as being hybrids with V. vinifera and wild
Vitis ancestry (Figure 3; Table S1). The mean proportion of V.

Figure 2.  Verification of PCA-based ancestry estimates through simulation.  (A) 10,000 F1 hybrids (green) were generated by
simulating V. vinifera x wild Vitis crosses. Using the simulated genotype data, these hybrid samples were then projected onto the
PC axes defined by the 333 V. vinifera (red) and 333 wild Vitis samples (blue) and the proportion of each F1 hybrid’s ancestry
derived from each ancestral population was estimated using our PCA-based approach. The same method was applied to F2
populations derived from backcrossing F1 hybrids to V. vinifera (pink) and backcrossing F1 hybrids to wild Vitis (light blue). (B) The
distribution of V. vinifera ancestry proportions for the F1 and F2 populations.
doi: 10.1371/journal.pone.0080791.g002
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vinifera content for these hybrids is 0.474 (Min: 0.2506, Max:
0.7508). The range of observed admixture estimates in hybrid
grapes suggests that backcrossing to both wild Vitis and V.
vinifera has occurred in the past century of interspecific grape
breeding. The relatively large number of samples with
approximately 50% V. vinifera contribution to their genome
suggests the existence of many first-generation interspecific
hybrids in the USDA grape collection. An F1 hybrid included in
this analysis, Baco Noir, is a cross between Folle Blanche (V.
vinifera) and an accession of Vitis riparia (North American wild
Vitis species). Based on its pedigree, we expect ancestry
proportions of 50% wild and 50% V. vinifera, and our method
using the full 2959 SNPs provides estimates of 49% and 51%,
respectively. The cultivar Alicante Ganzin is the result of a
cross between Alicante Bouschet (V. vinifera) and Ganzin No.
4. Ganzin No. 4 is an F1 hybrid between V. rupestris (North
American wild Vitis) and Aramon Noir (V. vinifera). This
pseudo-backcross pedigree suggests the genome-wide V.
vinifera content for Alicante Ganzin should be 75%. Our
method provides an estimate of 75.1% V. vinifera for this
sample (Table S1).

According to the distribution in Figure 3, it appears that,
unlike breeders of many other crops, grape breeders have not
explicitly aimed to introgress specific genetic loci from wild Vitis
species by repeatedly backcrossing to the domesticated
species, V. vinifera. In fact, the large number of cultivars with
low % V. vinifera ancestry suggests that backcrossing to wild
Vitis may have been more frequent than backcrossing to V.
vinifera. However, hybrids with V. vinifera content outside a
particular range are not included in this analysis due to
thresholds established in PC space for hybrid classification

Figure 3.  Estimated V. vinifera content in grape
hybrids.  The distribution of V. vinifera ancestry proportions in
127 hybrids from the USDA germplasm repository. Estimates
are based on the full set of 2959 SNPs. A table of cultivar
names, information and proportion V. vinifera ancestry is
provided in Table S1.
doi: 10.1371/journal.pone.0080791.g003

(see Methods). If breeders have historically aimed to minimize
wild Vitis content in hybrid grapes by backcrossing extensively
to V. vinifera, it is possible that commercially successful hybrid
cultivars fall outside our established thresholds and thus may
be underrepresented here. In addition, the sample of hybrids
from the USDA collection genotyped in the present study may
not be representative of interspecific grape breeding in general.
Thus, ancestry estimation of a large sample of hybrid grape
cultivars from breeding programmes worldwide is currently
underway to verify this claim.

When PCA is applied to the genotypes generated from the
Vitis9KSNP array, there is a clear distinction between V.
vinifera and wild North American Vitis species along the first
principal component (Figure 1A, Figure S1). The genotype data
are also sufficient to enable the various wild species to be
distinguished from each other. For example, wild Vitis samples
clearly cluster by species along PC2 (Figure S1). This suggests
that our present method could be extended to identify the
precise wild Vitis species that has contributed to a hybrid’s
ancestry: a hybrid’s position on PC2 is likely an indicator of the
wild Vitis species that has contributed to its ancestry. However,
many hybrid grape cultivars have complex pedigrees with
genetic contributions from multiple wild Vitis species. For
example, the hybrid Brianna derives its ancestry from seven
different wild Vitis species and V. vinifera [21]. Extensions of
the present method beyond a simple 2-way admixture model
and higher density genotype data will be required to generate
accurate estimates of the genetic contributions of each
individual wild Vitis species in complex hybrids. A high-density
set of SNPs for this purpose could be generated using a
genotyping by sequencing (GBS) approach [22].

Selection of Ancestry Informative Markers (AIMs)
To enable ancestry estimation in grapes not included in this

study, we investigated several methods for identifying a small
number of SNPs, or ancestry informative markers (AIMs), that
most effectively capture the ancestry information contained
within the full set of 2959 SNPs. In admixed populations, an
ideal AIM should have alleles that are fixed between the two
ancestral populations and thus have an FST = 1.0 [23]. In
addition, PCA generates weights for each SNP indicating the
degree to which a SNP contributes to each PC. SNPs with
extreme PC1 weights differentiate V. vinifera from wild Vitis
along PC1 and are thus also good candidate AIMs [11]. We
find that Fst values and PC1 weights are highly correlated (R2 =
0.979; Figure S3) and that both metrics are useful for the
selection of AIMs (Figure 4A). This relationship between Fst
and the first principal component has been previously
described in [10].

We reasoned that the effectiveness of an AIM should not
only depend on its frequency difference between the ancestral
populations, but also on the extent to which the segregation
pattern of its alleles in the hybrid population correlates with the
ancestry of the hybrids. Thus, we developed a linear model of
informativeness (LM; see Methods) and found that it
outperformed both Fst and PC1 weights when fewer than 20
SNPs are used, but failed to improve when additional SNPs
were added (Figure 4A).

Grape Ancestry Estimation
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The PC1 weight of a SNP can be interpreted as a scaled
regression coefficient that takes on negative values when PC1
values are negatively correlated with genotypes and positive
values when this correlation is positive. The sign of the weight
depends on how the genotypes are encoded in the input file.
For the present study, genotypes were encoded as follows: 0 =
homozygous reference allele; 1 = heterozygous; 2 =
homozygous alternative allele. Because the grape reference
genome is V. vinifera [24], reference alleles are more frequent
in the V. vinifera samples which occupy the lower values along
PC1 (Figure 1). This results in a PC1 weight distribution that is
highly skewed towards positive values (Figure S4). Thus, SNPs
with extreme negative PC1 weights, where V. vinifera are
homozygous for the alternative allele and wild Vitis species are
homozygous for the reference allele, are rare. We reasoned
that most of the useful ancestry information would therefore be
contained within the positive PC1 weights. We therefore not
only tested the ancestry informativeness of markers based on
the absolute value of the PC1 weights as is normally done
[8,11,25], but also ranked SNPs by their positive PC1 weights
only. We found that ignoring the negative weights and only
considering the positive weights significantly reduced the
number of AIMs required to accurately infer ancestry (Figure
4A). This observation should serve as a cautionary note to
future uses of PC1 weights for the purposes of AIM
identification.

The physical coordinates of the AIMs identified in the present
study can be found in Table S2. Each of the four measures we
used to rank SNPs by ancestry informativeness resulted in a

different set of AIMs. The overlap in the top 100 AIMs identified
by each measure is shown as a Venn diagram in Figure 4B.
Within the four sets of 100 markers, 55 and 41 SNPs were
unique to LM and PC1 Positive Weight, respectively. The PC1
Weight and FST panels had 93 SNPs in common. Thus, the
selection of AIMs on the basis of PC1 weight and FST produce
highly similar marker panels, however additional informative
markers are overlooked if other measures are not taken into
consideration. Although each measure is useful in identifying a
set of AIMs, there is clearly a need for a method that can
conclusively identify the optimal set of AIMs that maximizes
ancestry informativeness.

Conclusions

Over the past century, grape breeders have generated
interspecific hybrid grapes by crossing cultivars of the
cultivated V. vinifera species with numerous wild Vitis species.
Our PCA-based ancestry estimates of 127 hybrid cultivars
indicate that F1 hybrids (V. vinifera x wild Vitis) are common
and that backcrossing to wild Vitis was equally or even more
frequent than backcrossing to V. vinifera. However, estimates
from a representative sample of commercial hybrids with
known pedigrees are required to verify this claim. Our method
provides a framework for enabling marker-assisted breeding of
seedling populations based on ancestry estimates, but the
application of such background selection in bi-parental
populations will require higher marker densities than those
provided by the Vitis9KSNP array.

Figure 4.  Comparison of measures of informativeness for identifying AIMs.  (A) Each measure used to rank AIMs is shown in
the legend. For each measure, the proportion of V. vinifera ancestry across the 127 hybrids was estimated using 1-100 SNPs
ranked according to that measure and the result was compared to the proportion of V. vinifera ancestry estimated from the full set of
2959 SNPs. The classification accuracy (Y axis) is the squared Pearson correlation coefficient (R2) between the estimate derived
from the reduced set of AIMs and the estimate from the full set of SNPs. (B) A Venn diagram showing the overlap of the top 100
AIMs identified using each of the measures.
doi: 10.1371/journal.pone.0080791.g004
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We identify sets of AIMs and demonstrate that genotypes
from only ~50 SNPs are sufficient to accurately estimate the
proportion of ancestry a hybrid grape derives from V. vinifera
and wild Vitis species. Not only can the AIMs identified here be
employed to curate germplasm collections, but they can also
be used for forensic purposes. Regulatory and appellation
systems around the world like the AOC (France), DOC (Italy),
QmP (Germany) and VQA (Canada) exist to verify and
guarantee the authenticity of the origin of their wines. Often,
these systems only approve the use of cultivars with 100% V.
vinifera ancestry, yet the ancestry inferences they employ are
often based on questionable morphological analyses, error-
prone breeding records or pure conjecture. Although it is widely
recognized by the scientific community that the restriction of
cultivar use by these organizations poses a serious threat to
the future of the wine and grape industry [4], the set of AIMs
and the method presented here provide a robust forensic tool
that can be used to definitively verify the ancestry criteria these
regulatory agencies attempt to apply.

Supporting Information

Figure S1.  PCA of 1599 samples from USDA grape
germplasm collection. (A) PC axis 1 (PC1) and PC2 were
calculated using 2959 SNPs from 333 V. vinifera and 333 wild
Vitis samples. The proportion of the variance explained by
each PC is shown in parentheses along each axis.
Subsequently, 1599 samples, including various Vitis species
and hybrids, were projected onto these axes. This is the same
plot as Figure 1 in the main manuscript, but each sample is
labeled with the species identifier associated with that sample.
Species identifiers were obtained from the Germplasm
Resources Information Network (GRIN) database managed by
the USDA. It is evident that many samples are mislabeled. For
example, some samples labeled as V. vinifera clearly cluster
far to the right of PC1 with the wild species. In cases where
there was an obvious error and it interfered with downstream
analyses, the samples were removed from analysis (N = 60).
Eurasian wild Vitis samples and hybrids with known ancestry
from Eurasian wild species were removed from the analysis.
See Materials and Methods on how we defined “hybrid” for the
present study.
(PDF)

Figure S2.  A comparison of ancestry estimates derived
from our PCA-based method and the model-based method
STRUCTURE. The proportion V. vinifera ancestry estimated
using the PCA-based method and the programme

STRUCTURE are shown on the X and Y axes, respectively, for
the 127 hybrid samples analysed in the present study.
(PDF)

Figure S3.  (A) FST and the absolute value of PC1 weights
are highly correlated. (B) The classification accuracy of AIMs
ranked by Fst and PC1 absolute weight are highly similar.
(PDF)

Figure S4.  The distribution of PC1 weights from running
SMARTPCA on 333 V. vinifera and 333 wild Vitis samples.
The distribution is skewed towards positive values.
(PDF)

Table S1.  A list of the 127 accessions from the USDA
grape germplasm collection considered “hybrid” in the
current study based on their positions along PC1 and
associated cultivar name for these accessions from the
USDA Germplasm Resources Information Network (GRIN)
database.
(XLS)

Table S2.  A list of the AIMs identified in the present study.
The top 100 AIMs are listed for each of the four measures used
in the present study. The AIMs are ranked according to the
measure listed at the top of each column. The name of each
SNP contains the physical coordinates of the SNP according to
the 8x Pinot Noir reference genome, where the chromosome
name is separated by the physical position by a colon.
Chromosome numbers outside of the range of 1-19 refer to the
unanchored contigs found in the 8x Pinot Noir reference
genome.
(XLS)
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