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BACKGROUND Patients with an implantable cardioverter-
defibrillator (ICD) are at a high risk of malignant ventricular arrhyth-
mias. The use of remote ICD monitoring, wearable devices, and
patient-reported outcomes generate large volumes of potential
valuable data. Artificial intelligence–based methods can be used
to develop personalized prediction models and improve early-
warning systems.

OBJECTIVE The purpose of this study was to develop an integrated
web-based personalized prediction engine for ICD therapy.

METHODS This international, multicenter, prospective, observa-
tional study consists of 2 phases: (1) a development study and
(2) a feasibility study. We plan to enroll 400 participants with an
ICD (with or without cardiac resynchronization therapy) on remote
monitoring: 300 participants in the development study and 100 in
the feasibility study. During 12-month follow-up, electronic health
record data, remote monitoring data, accelerometry-assessed phys-
ical behavior data, and patient-reported data are collected. By using
machine- and deep-learning approaches, a prediction engine is
developed to assess the risk probability of ICD therapy (shock and
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antitachycardia pacing). The feasibility of the prediction engine
as a clinical tool, the SafeHeart Platform, is assessed during the
feasibility study.

RESULTS Development study recruitment commenced in 2021. The
feasibility study starts in 2022.

CONCLUSION SafeHeart is the first study to prospectively collect a
multimodal data set to construct a personalized prediction engine
for ICD therapy. Moreover, SafeHeart explores the integration and
added value of detailed objective accelerometer data in the predic-
tion of clinical events. The translation of the SafeHeart Platform to
clinical practice is examined during the feasibility study.
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Introduction
Implantable cardioverter-defibrillator (ICD) implantation is
the cornerstone of the prevention of sudden cardiac death
through the termination of ventricular arrhythmias for either
primary prevention or secondary prevention.1 Despite im-
provements in pharmacological and nonpharmacological
treatments,2,3 a meta-analysis of 5 clinical trials with 5516
participants showed that 18% received appropriate ICD ther-
apy and 10% received inappropriate ICD therapy during an
average follow-up time period of 2.4 years.4 Aside from
the potential harm related to ICD shock on the myocardium
itself, ICD therapy has an adverse psychological impact
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and may reduce quality of life (QoL).5 Also, ICD therapy—
both appropriate and inappropriate—poses a burden on clin-
ical staff and affects health care expenditure.6 Several risk
prediction and stratification models have been developed to
assess the risk of ICD therapy (Online Supplemental
Appendix Table A1). External validation of 3 previously
developed risk stratification models for benefit of ICD im-
plantation (ie, risk of death before first ICD intervention)
rendered C statistics between 0.66 and 0.75.2,7–9 The
recently published Multicentre Autonomic Defibrillator
Implantation Trial-ICD and The Dutch outcome in ICD ther-
apy prediction scores have demonstrated similar discrimina-
tive performance; the external validation of both scores
yielded C statistics of 0.75 and 0.60, respectively.2,10

Although these models could aid in the risk stratification
for ICD implantation, there are considerable differences in
these models in terms of the included variables and predictive
performance. Also, these aforementioned scores are merely
based on clinical variables marked by significant collinearity
and lack the ability for real-time prediction of arrhythmic
events.

In addition to conventional patient data (eg, electrocardi-
ography, imaging, laboratory biomarkers, and medical his-
tory), the digital health landscape is increasingly shaped by
the continuous collection of health data through wearable de-
vices and telehealth and mHealth apps. The increasing avail-
ability of and expertise in analytical techniques based on
artificial intelligence (AI), such as machine learning and
deep learning, enable the analysis of multiple time series
data.11 By leveraging these AI-based techniques and exploit-
ing various novel data sources (eg, wearable devices, remote
device monitoring, and patient-reported outcomes), we aim
to develop a prediction algorithm for ICD therapy integrated
into a web-based clinician’s dashboard. Together with data
from a patient app, wearable accelerometry, and remote
ICD monitoring, this constitutes the SafeHeart Platform: an
early warning system for the prediction of ICD therapy,
alarming 30 days in advance; and a clinical decision support
system that informs the clinician of the most important pa-
rameters affecting the likelihood of an event.
Methods
Study design
The SafeHeart study is an international, multicenter, prospec-
tive, observational study consisting of 2 phases: (1) a devel-
opment study and (2) a feasibility study. A total of 400
participants with an ICD or cardiac resynchronization ther-
apy with defibrillator (CRT-D) will be enrolled: 300 in the
development study and 100 in the feasibility study. During
the 12-month development study, data are collected from 4
sources: (1) electronic health records (EHRs), (2) remote
ICD monitoring data, (3) wearable accelerometry, and (4)
patient-reported outcome measures. The study flow chart
can be seen in Figure 1. A prediction algorithm will be devel-
oped that provides the probability of impending ICD therapy
(shock or antitachycardia pacing [ATP]) and displays the
feature importance for each individual prediction trigger.
Subsequently, during the 6-month feasibility study, the clin-
ical utility, acceptability, safety, and feasibility of the Safe-
Heart Platform is assessed by exploiting both quantitative
and qualitative methods from the perspectives of clinicians
and participants. The feasibility study is not designed to spe-
cifically evaluate the outcome of interest—the prediction ac-
curacy of the primary end point—but investigates the
potential for the translation of the SafeHeart Platform to clin-
ical practice (Figure 2).

Study setting
The study is conducted at 2 cardiology departments at univer-
sity hospitals in the Netherlands (Amsterdam University
Medical Center location Academic Medical Center, Univer-
sity of Amsterdam) and Denmark (Copenhagen University
Hospital-Rigshospitalet). Ethics approval was obtained at
the 2 participating institutions, and the study is conducted
in accordance with the Declaration of Helsinki as revised in
2013. The study is registered at the National Trial Registra-
tion in the Netherlands (Trial NL9218; https://www.
trialregister.nl). Informed consent will be obtained for all par-
ticipants.

Participant selection
In order to have sufficient events in our patient cohort, we aim
to target the ICD carriers that are at a high risk of therapy, that
is, patients who have already experienced an arrhythmia
event or received (in)appropriate therapy. Therefore, the
following eligibility criteria are applied:

Inclusion criteria

� ICD or CRT-D implantation for either primary or second-
ary prevention less than 5 years before enrollment

� Having received appropriate or inappropriate ICD therapy
or proof of ventricular arrhythmias in the last 8 years
before enrollment

� Participation in the remote monitoring program
� Participant 18 years or older

Exclusion criteria

� Life expectancy of less than 1 year
� Participants with circumstances that prevent follow-up

(emigration, change of hospital for follow-up, and drop-
ping out of the remote monitoring program)

� Participants who are unable to wear the accelerometer
wristband (eg, allergic to the material)

� Clinically unstable participants
� End stage of heart failure (New York Heart Association

[NYHA] class IV)
� Participants unable to complete a questionnaire
� Participants who do not understand the local language

(Dutch or Danish)
� Serious physical disability (eg, wheelchair bound)
� Planned ablation for ventricular tachycardia (VT)
� Significant movement disorder (ie, hemiplegia or Parkin-

son disease or similar)

https://www.trialregister.nl
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Figure 1 Study flowchart of the SafeHeart study. ICD 5 implantable cardioverter-defibrillator.
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� Unwillingness to participate

The study population for the development study and feasi-
bility study is similar applying the same inclusion and exclu-
sion criteria, but participants are allowed to take part in 1 of
the 2 studies only.
Figure 2 The Safe
Study end points
The primary study end point during the development study is
a composite of both appropriate and inappropriate ICD ther-
apies (defibrillator shock or ATP). Secondary end points
include appropriate ICD therapy alone, heart failure–related
hospitalization, supraventricular arrhythmia onset, and
Heart Platform.



Table 1 Data sources and variables in the SafeHeart study

Modality Source

Baseline/time-varying data

Baseline (static) Dynamic (temporally varying)

Clinical data Electronic health records � Demographic variables
� Left ventricular functionality
� (Cardiac) history
� Comorbidities
� Medication usage
� Genetic predisposition
� Diagnostic imaging, ECG
� Laboratory examination

� Worsening of LV functionality
� Change in medication
� Heart failure hospitalization
� MACE
� Change in laboratory examinations

Remote monitoring Research database
(all vendors included)

N/A � (Transient) ventricular arrhythmia
� Supraventricular arrhythmia
onset/burden

� Pacing percentages
� Device diagnostics
o Device-measured activity
o Fluid index
o Heart rate variability*

Physical behavior Wearable accelerometry � N/A � Worsening of functional capacity
� Lifestyle changes
� Change in rest-activity patterns
� Sleep behavior changes

� Patient-reported
outcomes

� Participant diary
� Questionnaires (EQ5D-5L, KCCQ)

� NYHA class at baseline � Symptomatic heart failure
� Quality of life over time

ECG5 electrocardiography; EQ5D-5L5 European Quality of Life Scale- 5 Dimensions- 5 Levels; KCCQ5 Kansas City Cardiomyopathy Questionnaire; LV5 left
ventricular; MACE 5 major adverse cardiac events; N/A 5 not available; NYHA 5 New York Heart Association.
*Availability of these parameters differs per vendor.
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mortality. During the feasibility study, the feasibility is as-
sessed on the basis of clinical utility, acceptability, safety,
and implementation of the SafeHeart Platform.

Data collection
Data are collected from 4 data sources during both the devel-
opment study and the feasibility study: (1) electronic health
records, (2) remote ICD monitoring, (3) wearable accelerom-
etry, and (4) patient-reported data as summarized in Table 1.

Clinical data from EHRs
Clinical data are collected prospectively from EHRs. Clinical
data include demographic characteristics, comorbidities, car-
diac history, cardiac imaging examinations, laboratory eval-
uations, and medications. These data are collected at the time
of device implantation, study baseline, and end of follow-up.

Remote ICD monitoring data
The second type of data are prospectively collected remote
ICD monitoring data, where information is communicated
from the ICD or CRT-D device to the health care team in
real time by using wireless technology and a Bluetooth-
enabled device. Devices from all vendors are used. The met-
rics include, but are not limited to, the time of transmission,
onset of an arrhythmic episode, heart rate, heart rhythm {ie,
ventricular arrhythmia (VT, ventricular fibrillation [VF])
and supraventricular arrhythmia}, arrhythmia duration, ther-
apy (shock, ATP, and aborted shocks), device function (lead
impedance and battery), and other device-measured metrics
(physical activity measured by the device and percentage of
pacing). Transmissions sent from the device include sched-
uled routine device controls and participant-activated or
device-activated transmissions.
Wearable accelerometry data
Body-worn accelerometers are activity trackers that enable
continuous measurement of long-term physical behavior in
a free-living environment. Physical behavior encompasses
an individual’s behavior and activities throughout the day
and night, including physical activity (intensity, frequency,
volume, and type), gait, posture, sleep behavior, and rest-
activity patterns.12 Raw data are collected from the acceler-
ometers, after which open and proprietary algorithms are
applied for the conversion of raw data into specific metrics
such as sleep time, sleep efficiency, sleep duration, time spent
in moderate-to-vigorous physical activity, and sedentary time
(Table 2). In this study, accelerometry data are collected
through research-grade, wrist-worn, triaxial accelerometers:
GENEActiv and Activinsights Band (Activinsights Ltd.,
Kimbolton, UK; specifications of both wearables are dis-
played in Table 3).13 Unlike GENEActiv, the Activinsights
Band accelerometer is compatible with a mobile application
that will facilitate real-time data collection, making it suitable
for integration within the SafeHeart Platform.



Table 2 Taxonomy of digital clinical measures derived from wrist-worn accelerometry for the SafeHeart study

Measure class and description Digital clinical measures

Seconds/minutes
Data characterization measures
Statistical measures calculated from raw sensor data over short
periods of time (events)

� Acceleration magnitude
� Principal frequency
� Arm elevation and wrist rotation (mean, variance, and MAD)
� Step interval
� Mean environment light
� Near body temperature

Behavioral and physiological classification measures
Behavior measures inferred from characterized data events using
models, heuristics, and meta-data

� Sleep, inactive, and sitting/lying
� Standing, active, walking, and exercising bouts

,1 d (including nocturnal and diurnal separation)
Short-term summary measures
Summaries of

� data characteristics or
� behavioral and physiological classifications

� Sit-to-stand transitions
� Mean activity intensity

Daily summary measures
Summaries of

� data characteristics or
� behavioral and physiological classifications

� Sedentary/light/moderate/vigorous time
� Six-minute maximum intensity
� Daytime sleep
� Total steps per day
� High cadence steps
� Entropy
� Sleep onset and rise times
� Mid-sleep time
� Sleep duration and efficiency
� Sleep interruption and fragmentation
� Wear time

Multiple days
Long-term summary measures
Summaries of

� data characteristics or
� behavioral and physiological classifications

� Rest-activity rhythm (acrophase, mesor, amplitude, and
robustness)

� Sleep and activity level trends
� Sleep duration variability

Months
Population measures
Statistics describing

� distribution of data characteristics
� behavioral and physiological classifications
� summary measures for a population

� Activity intensities
� Step cadence and sleep parameters by age, sex, clinical history,
and self-reported quality of life

Acrophase 5 time of peak activity; amplitude 5 range of activity; MAD 5 mean amplitude deviation; mesor 5 mean activity.
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Patient-reported outcomes
The fourth data type is patient-reported outcomes consisting of 2
questionnaires and participants’ diaries. The questionnaires are
the generic health-related European Quality of Life Scale- 5 di-
mensions-5 levels and the disease-specific Kansas City Cardio-
myopathy Questionnaire filled out at baseline and at 6-month
intervals.14,15 The European Quality of Life Scale- 5 dimen-
sions-5 levels questionnaire assesses the patient-reported health
status and consists of 5 domains—mobility, self-care, usual ac-
tivities, pain/discomfort, and anxiety/depression—along with a
visual analog scale where participants rate their health on a scale
of 0 (worst score) to 100 (best score). The Kansas City Cardio-
myopathy Questionnaire is a questionnaire specifically devel-
oped to assess the health-related QoL in participants
diagnosed with cardiomyopathy. It consists of 23 items and do-
mains (symptoms, physical limitations, self-efficacy, QoL,
symptom stability, and social limitation). Participants’ diaries
concerning self-reported cardiac symptoms (eg, vertigo, palpita-
tions, and chest pain), weight, and blood pressure (if available
through private possession of a measuring device) will be
collected togetherwith thewearables biweekly during the devel-
opment study and electronically retrieved during the feasibility
study. A 2-week sleep diary is also completed by the participant
at 3 time points during the development study.

Follow-up
Follow-up is done periodically in the outpatient department or
by telephone interview every 6months. During these follow-
ups, changes in medication use and NYHA class will be eval-
uated and participants will be asked to fill out QoL question-
naires. The primary and secondary end points are evaluated by
the investigator through monitoring of EHRs (Table 4).

Prediction algorithm development
The SafeHeart prediction algorithm is an extension of a pre-
decessor model developed from a larger data set that



Table 3 Wrist-worn wearable accelerometers used in the SafeHeart study

Use during the
SafeHeart study Sensor output Size and weight Data analytics Data extraction Battery life

GENEActiv
Development
study (0–6 mo)

Acceleration between
10 and 100 Hz,
near body temperature,
and light exposure

40 mm wide !
13 mm deep, 27 g

Raw data
measurement. Features
and measures can be
created with standard
time-domain statistics,
frequency domain
approaches, pattern/
structure detection, or
dedicated algorithms

Via a USB connection Can record data
continuously for 1 wk
and 1 mo depending on
the sample frequency

Activinsights Band
Development (6–12 mo)
and feasibility study

Behavioral event output
(eg, sit, stand,
walk, and sleep)

23 mm wide !
13 mm deep, 25 g

Infer time spent in a range
of behavioral states
using algorithms

Wirelessly to a
computer or phone

Can record and
communicate data
continuously for up
to 1 y
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Table 4 Overview of data collection during the SafeHeart study

Variable

Retrospective Prospective

T1
(implantation)

T0
(baseline)

T1a (reaching
of
the study
end point)

T1b
(6-mo FU)

T1a (reaching
of
the study
end point)

T2
(12-mo FU)

Informed consent U
Demographic characteristics U
Medication log U U U U U
Clinical history U U
Blood samples U U U
Cardiac imaging and diagnostics* U U U
Implant characteristics† U
Device characteristics (eg, model) U
Device settings/programming U U U U U
NYHA class U U U
EQ5D-5L U U
Kansas City Cardiomyopathy Questionnaire U U U
Patient-reported outcomes U U U
Remote monitoring U U U U U U
GENEActiv wearable U U
Activinsights Band wearable U U U
Clinical events U U U U U

EQ5D-5L 5 European Quality of Life Scale- 5 dimensions-5 levels; FU 5 follow-up; NYHA 5 New York Heart Association.
*For instance, electrocardiography, exercise electrocardiography, echocardiography, coronary angiography, and cardiac magnetic resonance imaging.
†Procedure times, adverse events, vitals, etc.
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consisted of 11,921 transmissions from 1251 participants
with an ICD, followed over a 4-year period from 2015 to
2019 at Copenhagen University Hospital-Rigshospitalet.
This model was trained on transmission data from remote de-
vice monitoring to predict the risk of VT and VF. The data set
contained 74,149 arrhythmia episodes, each characterized by
7 variables such as the type of arrhythmia (eg, VT, VF, sup-
raventricular tachycardia, and atrial fibrillation), ICD treat-
ment of the arrhythmia, duration of the episode, and
maximum heart rate reached during the episode. The random
forest machine learning prediction method provided optimal
results compared with other classifier methods (supervised,
unsupervised, and deep learning methods) when considering
the trade-offs between model performance and explainabil-
ity. Other models tested included KNeighborsClassifier, Gra-
dientBoostingClassifier, AdaBoostClassifier, SVC (Support
Vector Classifier), and LSTM (Long Short-Term Memory)
neural network. The algorithm was subsequently tested on
2342 of the transmissions, achieving an accuracy of 0.96
with a positive predictive value of 0.67 and a negative predic-
tive value of 0.97 for the prediction of VT and VF 30 days in
advance. In the SafeHeart study, this previously developed
model is expanded with prospectively collected data during
the development study to assess and improve the predictive
performance. The aim is to fix the prediction model for the
feasibility testing. In the present study, multiple models,
including those previously examined, will be evaluated on
the basis of several aspects: accuracy, explainability, and
generalizability, and the best performing model will be
used for the further development of the SafeHeart Platform.
For the development of the SafeHeart prediction model, we
will use data previously gathered from transmissions and
enhance this with prospectively enriched data sources: accel-
erometry, the electronic health records, and patient-reported
outcomes derived from questionnaires. This will allow the
evaluation of the previous model using the new data as
well as testing the new model on the original data containing
only transmission data. The end product of the development
study is a new prediction model. In case of a new testing and
validation of the new data set during the development study,
we will use repeated random splits of the data into training
and test data sets.

After the development study, we will use the best perform-
ing model and validate it in a fixed feasibility study with 100
patients in total.
Sample size
As proposed by Figueroa et al,16 the sample size calculation
for prediction algorithms can be estimated using weighted
fitting of learning curves on a smaller annotated training
set. However, in this early exploratory study where novel
data are added to an existing model of which the predictive
value is uncertain, it is unrealistic to accurately define the
required sample size. With regard to the primary end point
(ICD therapy), the number of days of accelerometer data
collection is critical for sample size estimation. A prior study
by Almehmadi et al17 demonstrated a cumulative incidence
of appropriate ICD therapy (ATP and shock) of 28.5% at 1
year after de novo ICD implantation for secondary preven-
tion. With respect to inappropriate ICD therapy, in a com-
bined primary and secondary prevention ICD patient
cohort, a cumulative incidence of 7% was seen for
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inappropriate ICD shock in the first year after implantation.18

Therefore, we assume an incidence of the primary end point
of total ICD therapy—both appropriate and inappropriate
ICD therapies—of 25% (equivalent to a daily incidence of
0.0685%). With a targeted sensitivity of 95%, a total of
106,580 days of accelerometer data is required, met by
following 292 patients for a year. Considering the 300 pa-
tients included in the development study alone, we exceed
the minimum required sample size. In addition to accelerom-
etry data, we expect to collect up to 3000 transmissions from
remote device monitoring, 900 patient-reported outcome data
points, and a minimum of 40 clinical variables from the EHR
(eg, sociodemographic, medication usage, and comorbid-
ities).

Statistical analysis and covariates
The model performance is evaluated on the basis of the accu-
racy, sensitivity (recall), specificity, positive predictive value
(precision), negative predictive value, and the area under the
curve. The accuracy of the models is compared using a 2-
sided McNemar test, and a 1-sided binomial test is used to
test model performance compared to baseline class probabil-
ities. The significance level is initially set to .01. The covari-
ates added to the models include demographic characteristics
(eg, age and sex), medication usage (eg, digoxin, angiotensin
receptor blocker/angiotensin-converting enzyme inhibitor, b-
blocker, and aldosterone), severity of heart failure (eg,
NYHA class, left ventricular ejection fraction [LVEF], and
number of hospitalizations per year), comorbidities (eg, hy-
pertension, renal disease, frequency of nonsustained VTs,
atrial fibrillation, peripheral artery disease, and diabetes mel-
litus), left ventricular functionality (eg, LVEF and synchro-
nicity of myocardial contraction), presence of
cardiomyopathy, presence of late gadolinium enhancement,
vital parameters (eg, blood pressure, weight, and heart
rate), laboratory findings (eg, estimated glomerular function
rate, sodium, and potassium), and accelerometry-assessed
physical behavior.19,20
Results
Ethics approval was obtained on December 18, 2020, and
recruitment commenced in 2021. Complete recruitment for
the development study is believed to be reached by 2022.
Initiation of the feasibility study will begin thereafter.
Discussion
This article outlines the rationale and design of a prospective
international study aimed to develop a multimodal predic-
tion algorithm facilitating real-time personalized prediction
of ICD therapy. The integration of the prediction algorithm
in a web-based clinician’s dashboard (SafeHeart Platform)
serves as an early warning system and clinical decision sup-
port system that identifies participants at risk of developing
life-threatening arrhythmia in time to enable preventive
intervention such as medicine alterations or device (re)pro-
gramming. Also, clinical decision support is achieved
through display of critical factors that increase the partici-
pant’s risk of ICD therapy and prioritization of incoming
participants’ data from the remote ICD monitoring system.
Over the past decade, there has been a steep increase in
the number of AI studies, albeit prospective validation of
the actual benefit of these AI tools is often lacking.21,22

Instead, the focus has predominantly been on accuracy
and validation, without answering the question of whether
the AI tools have achieved an expected change in clinical
practice.23 The choice of a 2-phased prospective study
combining algorithm development and clinical feasibility
testing was therefore designed in order to safeguard the clin-
ical applicability of the SafeHeart Platform.

Accelerated by the wide implementation of telemonitor-
ing and the increasing popularity of consumer-lead and
research-grade wearable devices over the past decade, novel
data streams have become available for the prediction of clin-
ical events. In addition, contemporary ICD devices are equip-
ped with sensors that can capture specific metrics (eg,
thoracic impedance, respiration, and heart sounds), including
an accelerometer capable of capturing physical activity.24

Several studies have demonstrated the potential of algorithms
on the basis of remote ICD monitoring data for the prediction
of heart failure events.24–26 Exploiting a combination of both
static and dynamic variables as input to an AI-based predic-
tion algorithm for ICD therapy has been examined by Wu
et al,27 who showed that the incorporation of both baseline
and dynamic (temporally varying) parameters in a random
forest statistical method for the prediction of appropriate
ICD therapy rendered better model performance compared
to a model based on baseline predictors alone. Regarding
the predictive value of accelerometry data specifically, a
random forest model for the prediction of impending electri-
cal storms by Shakibfar et al28 demonstrated ICD-measured
physical activity to be among the most relevant features.
However, ICD-embedded accelerometers are limited by their
ability to capture only “time being active” as a sole
parameter, instead of the broader concept of short-term and
long-term physical behaviors (eg, sit-to-stand transitions,
rest-activity patterns, sleep and activity level trends, and
sleep duration variability) captured by wearable accelerome-
ters. Prior studies have shown that wearable accelerometer–
derived metrics correlate with LVEF,29 QoL,30 and an
increased risk of hospitalization and mortality in patients
with advanced heart failure.31 Amplified by advances in the
field of AI, SafeHeart aims to expedite and improve real-
time prediction of ICD therapy by using static and dynamic
variables including both high-quality accelerometer-derived
metrics and remote ICD monitoring data on top of clinical
and patient-reported outcomes.
Strengths and limitations
SafeHeart is the first study to predict ICD therapy by
applying AI on multimodal data in a live clinical setting.
Apart from clinical expertise, third-party expert knowledge
in the field of wearable accelerometry and digital health



Frodi et al Rationale and Design of the SafeHeart Study S19
technology development is used. An important limitation to
the study could be suboptimal compliance with the wear-
ables; however, prior studies have indicated high compli-
ance with accelerometers when used for shorter time
periods than in our study.32 It is yet uncertain what noncom-
pliance rate generally applies specifically to a population
with an ICD. Furthermore, SafeHeart examines a high-risk
population, potentially limiting the generalizability to pri-
mary prevention patients or lower risk patients. Related to
this, the power to predict arrhythmia is dependent on the
occurrence and distribution of clinical end points between
participants in this specific patient population. A sample
size calculation was made on the basis of expected event
rates, but the risk remains of receiving few end points aggre-
gated in the same few participants affecting the generaliz-
ability of the results. Last, although AI-based prediction
tools have clear advantages over more classical statistical
models in terms of accuracy, these “black-box algorithms”
are limited in their interpretability, which hinders clinical
application. Through the display of feature relevance, pre-
senting reasons for an alarm being triggered and use of the
local interpretable model-agnostic explanation procedure,
more insight into the algorithm is given.
Conclusion
The SafeHeart study is the first to prospectively develop a
platform consisting of a patient app, remote device moni-
toring, wearable accelerometry, and a clinician’s dashboard.
The prediction algorithm for ICD therapy is based on a multi-
modal data set integrating clinical data, remote monitoring,
high-resolution accelerometer data, and patient-reported out-
comes. Clinical implementation of the results will be facili-
tated by combining a development and a feasibility study
in 1 prospective study design. With the SafeHeart study we
aim to provide clinicians with a clinical decision support sys-
tem that assists in follow-up care for ICD carriers. The Safe-
Heart study will inform the design of a future randomized
controlled trial that compares standard of care to the Safe-
Heart Platform.
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