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The mystery of the ketogenic diet: benevolent pseudo-diabetes
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ABSTRACT
Designed a century ago to treat epilepsy, the ketogenic diet (KD) is also effective against obesity and
diabetes. Paradoxically, some studies in rodents have found that the KD seemingly causes diabetes,
contradicting solid clinical data in humans. This paradox can be resolved by applying the concept of
starvation pseudo-diabetes, which was discovered in starved animals almost two centuries ago, and has
also been observed in some rapamycin-treated rodents. Intriguingly, use of the KD and rapamycin is
indicated for a similar spectrum of diseases, including Alzheimer’s disease and cancer. Even more
intriguingly, benevolent (starvation) pseudo-diabetes may counteract type 2 diabetes or its
complications.
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Introduction

A number of publications have alarmingly warned
that the ketogenic diet (KD), or low carbohydrate-
high fat (LC-HF) diet, may have detrimental meta-
bolic effects that lead to the development of diabetes.
For example, one study stated that “Long-term high-
fat, low-carbohydrate KD leads to features that are
also associated with the metabolic syndrome and an
increased risk for type 2 diabetes in humans” [1]. Two
other studies reported that “Use of LC-HF diets …
should be balanced against potentially harmful meta-
bolic side effects” [2] and that “Our results do not
support the recommendation of an LCHFD for use in
prediabetes [3]. Moreover, based on that last study,
the newsmedia reported to the public that “Following
a low-carbohydrate, high-fat diet for just eight weeks
can lead to rapid weight gain and health complica-
tions, a new mouse study has demonstrated. The
study has prompted researchers to issue a warning
about putting faith in so-called fad diets.”
Furthermore, the news title was alarming: “Paleo
diet is dangerous, increases weight gain, diabetes
expert warns.” <www.sciencedaily.com/releases/
2016/02/160218114753.htm> . It is noteworthy that
these conclusions were based on mouse studies,
which, as has been discussed, are irrelevant to humans
[4,5]. But how can we explain the discrepancy
between the clinical results from humans and the

experimental results from mice? And are these meta-
bolic alterations actually detrimental to the health of
the mice?

The KD in brief

KDs are typically LC-HF diets, which cause ketosis
(elevated blood levels of ketones namely acetoacetic
acid and beta-hydroxybutyric acid) [6–13]. In the
absence of glucose, the brain metabolizes ketones
[6,13,14], which are produced in the liver from fatty
acids and serve as substitutes for glucose as an energy
source. The numerous variants of the KD are not well
defined. For example, the distinction between
a “ketogenic” diet and the Atkins diet is meaningless
because Atkins diet is also a KD. The definition of
a KD is a diet that causes ketosis, such as one that is
low in carbohydrate (e.g. < 20 grams) and usually low
in calories. Ketosis can be induced without fat con-
sumption. As a striking example, complete fasting
reliably induces ketosis after 1–3 days. In practice,
KDs entail consumption of less than 20 grams of
carbohydrates, regardless of fat and caloric intake
[6,15]. There are numerous abbreviations that are
used for KDs, including LC-HF, VLCKD (very low-
calorie-ketogenic), and LCKD (low-carbohydrate
ketogenic diet). Whenever possible, we will abbreviate
them as KDs.
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1. Kds are used to treat obesity and diabetes
in humans

KDs are successfully being used in the treatment of
obesity, non-alcoholic fatty liver disease, neurological
diseases and cancer [6,7,9–11,16]. They are also being
used in the treatment of type 2 diabetes [8,9,11–
13,17–23]. When consuming the same numbers of
calories, KDs are more effective than standard calorie
restrictive diets for body weight reduction and
improvement of glycemic control in diabetic patients
[24–28], and enable discontinuation or reduction of
medications in some diabetic patients [18,27,29]. In
one study, for example, fat-free KDs (100 g/day pro-
tein and no fat/carbohydrates) enabled insulin dis-
continuation after one week in most patients [30].

2. Self-contradictory results in rodents

KDs extend the lifespan of adult mice [31,32]. Even
a cyclic (alternated weekly) KD improves survival,
health and memory in aged mice [33]. These results
argue against KDs having detrimental effects.
Typically, the KD induces a unique metabolic state
associated with improved glucose tolerance and
weight loss [34].

In ob/ob mice, a KD even improves glucose tol-
erance independently of weight loss [35].
Remarkably, the KD reverses diabetic nephropathy
in two mouse models of diabetes [36]. The results of
these studies are consistent with the clinical data.

On the other hand, a number of studies report
that KDs have diabetogenic effects. It was found
that, despite preventing weight gain in mice, the
KD induces insulin resistance [37]. In addition, it
was later shown that the KD causes glucose intol-
erance without weight loss in mice [1], and even
increases weight gain and glucose intolerance in
New Zealand Obese mice [3]. Other studies also
reported insulin resistance and glucose intolerance
in rodents fed a KD [1,2,38–42].

3. Starvation-induced pseudo-diabetes

Claude Bernard (in 1846) and W. L. Lehmann (in
1874) independently described “starvation diabetes”
in rabbits and dogs during prolonged fasting [43,44].
When fasted animals are fed “a good meal with an
abundance of carbohydrate, glucose will appear in

the urine” [43]. This condition was named starvation
pseudo-diabetes [43,44]. Starvation or prolonged
fasting decreases insulin levels and causes insulin
resistance as a compensatory response aimed at sav-
ing glucose for the brain. (Note: Low insulin secre-
tion and insulin resistance are manifested as glucose
intolerance – i.e., hyperglycemia and even glyco-
suria – after re-introducing carbohydrates). In addi-
tion, glucose is produced from certain amino acids in
the liver (gluconeogenesis), which also produces
ketone bodies from fatty acids (ketogenesis).
Eventually, the ketones substitute for glucose as the
main fuel for the brain. Ketosis is a prominent fea-
ture of prolonged fasting or starvation.

But achieving the beneficial effects of pseudo-
diabetes does not require complete fasting; any
severe carbohydrate/calorie restrictions can yield
the same effects. For example, healthy volunteers
practicing severe calorie restriction develop “dia-
betic-like” glucose intolerance; nonetheless, calorie
restriction improves health in humans and prevents
type 2 diabetes [45,46]. As summarized in 1945, “the
phenomenon of starvation diabetes has been repeat-
edly reported in one connection or another” [44]. As
a more recent example, Koffler et al. rediscovered
starvation diabetes during a strenuous weight reduc-
tion and warned about its detrimental effects [47].
Glucose intolerance caused by low-carbohydrate diet
was suggested to be a physiological state [48].

4. Kd-induced pseudo-diabetes in rodents

Ketosis is a prominent feature of KDs and diabetes.
In several rodent studies, the KD caused insulin
resistance, glucose intolerance [1,2,38–40], and
even dyslipidemia and pro-inflammatory effects
[1,49]. This combination of insulin-resistance, glu-
cose intolerance, lipolysis, gluconeogenesis, ketosis
and ketonuria matches the description of starvation
pseudo-diabetes. In rodents fed a KD, pseudo-
diabetes is reversed upon cessation of the KD [38].
In a human study ketosis caused glucose intolerance
in overweight non-diabetic subjects [50].

5. Rapamycin-induced pseudo-diabetes

As recently as 2019, it was warned that “the side effects
associated with long-term rapamycin treatment …
seemed to preclude the routine use of rapamycin as
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a therapy for age-related diseases” [51]. I disagree. It is
not the side effects in rodents, per se, but such warn-
ings that have halted the use of rapamycin for life
extension. Still, rapamycin and its analog, everolimus,
have already been studied for the prevention and
treatment of age-related diseases [52], potentially giv-
ing humans a chance to live longer and healthier lives
in our lifetime. [See the forthcoming article “The fear
of immortality: but it is more dangerous not to use
anti-aging drugs than to use them”].

Rapamycin, an inhibitor of the nutrient-sensing
mTOR pathway, is a calorie-restrictionmimetic [53–
55]. It is therefore predictable that rapamycin may
cause conditions resembling starvation pseudo-
diabetes in some rodent models [56–58]. This con-
dition was misinterpreted as a deleterious side effect,
despite the increased longevity of rapamycin-fed
mice [59]. A “side effect” that is associated with life
extension is not so detrimental after all.

Like KDs, rapamycin may increase or decrease
insulin resistance, depending on the treatment
duration and the specific model being studied
[See the forthcoming article “Fasting and rapamy-
cin: diabetes versus benevolent hyperglycemia”].
Rapamycin prevents insulin resistance caused by
nutrient infusion in humans [60] and decreases
insulin resistance in diabetic rodents [61–64]. In
both rats and mice, rapamycin (sirolimus) pre-
vents diabetic nephropathy [65–77]. In numerous
independent studies, rapamycin was found to pro-
long life in a variety of mouse strains (see for
references [78–81]). Rapamycin also improved
metabolic functioning in non-human primates
[82], and no symptoms of pseudo-diabetes were
observed in relatively healthy elderly and healthy
volunteers [83–87].

6. Benevolent pseudo-diabetes prevents
type 2 diabetes

Rapamycin-induced metabolic alterations are
reversible and even benevolent [63,79,88–92]. For
example, despite hyperglycemia, rapamycin ame-
liorates nephropathy in a mouse model of type 2
diabetes [75]. Fasting, which causes starvation
pseudo-diabetes, has been successfully used for
the prevention and treatment of type 2 diabetes.
A very low calorie diet prevents and reverses dia-
betes, especially at its early stages [46,93–99]. As

mentioned above, Fontana et al found that severe
calorie restriction may cause insulin resistance in
some human subjects, and they insightfully sug-
gested that this kind of “insulin resistance” slows
aging in mice [45]. Although animals fed a KD
may exhibit glucose intolerance, they differ from
diabetes patients in part because they are
healthy [40].

KDs, which cause benevolent pseudo-diabetes, are
effective for the prevention and treatment of type 2
diabetes in humans. In a remarkable study of healthy
people, ketonuria after spontaneous (overnight) fast-
ing was associated with a reduced risk of diabetes.
Indeed, Kim et al suggested that spontaneous ketosis
may prevent the development of diabetes [100].
Ketogenesis is suppressed in aged mice and rapamy-
cin increases ketone production [101]. Also, metfor-
min increases blood levels of beta-hydroxybutyrate
and alpha-ketoglutarate in cancer patients [102].
Remarkably, alpha-ketoglutarate inhibits MTOR
and extends lifespan in Drosophila [103].

7. Conclusion

KDs have been safely used for many years by mil-
lions of humans to treat obesity and diabetes. Like
fasting, KDs may cause the symptoms of starvation
pseudo-diabetes especially in some rodent models,
but starvation pseudo-diabetes is beneficial and is
not type 2 diabetes. In fact, it may counteract type
2 diabetes. Starvation pseudo-diabetes is associated
with deactivation of mTOR, whereas type 2 diabetes
is associated with hyperactivation of mTOR [57].
Thus, the warning that KDmay cause type 2 diabetes
in humans is not justified and contradicts what is
observed in clinical practice. Nearly identical warn-
ings have halted development of rapamycin and
everolimus as antiaging drugs. Of course, caution is
necessary, as rodent research indicates, but it should
be recognized that excessive caution may preclude
medical options that are already being safely used in
humans.
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