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Breast cancer is highly prevalent and fatal worldwide. Currently, breast cancer
classification is based on the presence of estrogen, progesterone, and human
epidermal growth factor 2. Because cancer and metabolism are closely related, we
established a breast cancer classification system based on the metabolic gene
expression profile. We performed typing of metabolism-related genes using The
Cancer Genome Atlas-Breast Cancer and 2010 (YAU). We included 2,752 metabolic
genes reported in previous literature, and the genes were further identified according to
statistically significant variance and univariate Cox analyses. These prognostic metabolic
genes were used for non-negative matrix factorization (NMF) clustering. Then, we identified
characteristic genes in each metabolic subtype using differential analysis. The top 30
characteristic genes in each subtype were selected for signature construction based on
statistical parameters. We attempted to identify standard metabolic signatures that could
be used for other cohorts for metabolic typing. Subsequently, to demonstrate the
effectiveness of the 90 Signature, NTP and NMF dimensional-reduction clustering were
used to analyze these results. The reliability of the 90 Signature was verified by comparing
the results of the two-dimensionality reduction clusters. Finally, the submap method was
used to determine that the C1 metabolic subtype group was sensitive to immunotherapy
andmore sensitive to the targeted drug sunitinib. This study provides a theoretical basis for
diagnosing and treating breast cancer.
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INTRODUCTION

Breast cancer is the most common form of cancer in women, and it is the second leading cause of
cancer-related deaths in women (Fahad Ullah, 2019). Race, ethnicity, family history of cancer,
genetic characteristics, age of menarche, number of pregnancies and births, history of breast biopsies,
hormone replacement therapy, alcohol abuse, and physical inactivity are all associated with breast
cancer (Budny et al., 2019; Coughlin, 2019). At present, diagnostic methods include breast palpation,
ultrasound, molybdenum target, magnetic resonance, and pathological biopsy. The final diagnosis is
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based on immunohistochemical and cytogenetic tests to
accurately assess tumor type, grade, estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) status (Mueller et al., 2018; Budny
et al., 2019). Treatment for breast cancer includes surgery,
radiation, and chemotherapy. Patients with early breast cancer,
locally advanced breast cancer, and local recurrence can be cured.
Nevertheless, many patients have metastases, recurrences, and
drug resistance (Carlin Filho et al., 1985).

Cancer classification aids decision-making regarding diagnosis,
progression, and prognosis. The traditional classification of breast
cancer is based on clinicopathological features and the evaluation of
conventional biomarkers. Three broad phenotypes used in clinical
practice are ER/PR-positive, HER2-positive, and triple-negative
breast cancer (Cadoo et al., 2013). Molecular stratification based
on gene expression profiles reveals that breast cancer can be classified
as luminal A and B, HER2-enriched, basal-like, and normal-like, and
that these subtypes correspond primarily to the status of ER, PR, and
HER2 (Russnes et al., 2017). Breast cancer subtypes are determined
by morphological, genomic, and proteomic characteristics. The
emergence of high-throughput technologies and proteomic
innovations facilitates the refinement of breast cancer subtypes
(Mueller et al., 2018; Tsang and Tse, 2020). Therefore, it is
essential to identify biomarkers and subtypes of breast cancer on
a molecular basis to design personalized treatments.

Reprogramming of cell metabolism is a direct and indirect
result of carcinogenic mutations and a critical point in cancer
therapy (Pavlova and Thompson, 2016). Cancer cells metabolize
the nutrients they need to survive and thrive in an environment
that often lacks them. Intracellular factors and metabolites
regulate the metabolism and behavior of cancer cells in the
tumor microenvironment (Vander Heiden and DeBerardinis,
2017; Elia and Haigis, 2021). This study combines the
emerging view of metabolic regulation in cancer cells with a
biocomputation-based approach to understand metabolism-
related phenotypes in breast cancer thoroughly.

MATERIALS AND METHODS

Patients and Samples
We obtained multiple breast datasets from The Cancer Genome
Atlas (TCGA, http://cancergenome.nih.gov/) and Genomics of
Drug Sensitivity in Cancer (https://www.cancerrxgene.org/). A
normalized matrix dataset from multiple studies named Breast
Cancer (Yau et al., 2010) was obtained from https://xenabrowser.
net. RNA sequencing data (raw counts) of 1,217 and 683 breast
carcinoma human samples with detailed clinical information
were downloaded from TCGA-BRCA and Breast Cancer (Yau
et al., 2010), and the raw counts were transformed into transcripts
per kilobase million values for subsequent analysis. TCGA-BRCA
and Breast Cancer (Yau et al., 2010) datasets were merged into
one metadata set using the SVA R package, which removes batch
effects. Then, somatic mutation and copy number data of the
BRCA cohort were accessed from the GDAC FireBrowse (http://
firebrowse.org/). To investigate drug sensitivity, all solid tumor
cell lines with expression level and drug sensitivity data [half-

maximal inhibitory concentration (IC50) values] were also taken
into further analysis (Yang et al., 2013). Finally, we obtained five
breast cancer single-cell samples (carcinoma in situ) in the
GSE180286 (Xu et al., 2021) cohort, GSM5457199,
GSM5457202, GSM5457205, GSM5457208, and GSM5457211.

Breast Carcinoma Metabolism Subclasses
The dataset containing 2,752metabolism-relevant genes was used
to classify the breast carcinoma metabolism subclasses. Non-
negative matrix factorization (NMF) clustering distinguished the
breast carcinoma metabolism subclasses (Possemato et al., 2011).
Before performing NMF on the breast carcinoma samples, we
conducted pre-processing analysis on the data. First, candidate
genes of low median absolute deviation value (≤0.5) were
excluded across all the BRCA patients. The genes obtained
were then identified for the second step. The “Survival”
package was used for univariate Cox regression analysis with
overall survival status as the follow-up endpoint, and the genes
with an adjusted p-value less than 0.05 were identified and
applied to the subsequent analysis. We obtained metabolic
genes that were high-variable (median absolute deviation >0.5)
and significantly associated with outcome. Then, the NMF R
package was applied to the NMF clustering of the resulting
matrix, and several breast cancer subgroups with different
metabolic characteristics were obtained. This method was also
applied to Breast Cancer (Yau 2010) using the same
candidate genes.

Gene Set Variation Analysis (GSVA)
GSVA is a nonparametric and unsupervised gene set enrichment
method that evaluates each breast carcinoma sample’s
metabolism signature score (Hänzelmann et al., 2013). Each
sample was given 115 metabolism signatures scores by the
GSVA R package (Désert et al., 2017; Rosario et al., 2018).

Subsequently, metabolism signature differential analysis was
applied based on GSVA results. The signatures with a log2 fold
change (FC) > 0.2 (adjusted p < 0.05) were selected as
differentially-expressed signatures and used for further study.

Estimation of Immune Infiltration
Microenvironment cell population-counter (MCP-counter)
methods were used to assess the proportion of immune cell
abundance in breast cancer tissue, Published by FEBS Press
and John Wiley & Sons Ltd. We also used single-sample
GSEA (ssGSEA), which calculates each dataset’s scores for all
samples (Barbie et al., 2009). The datasets included regulatory
T cells, T helper cell 1, T helper cell 2, T helper cell 17, central
memory T cell, and effective memory T cell. The ESTIMATE
algorithm was used to evaluate immune scores and stromal scores
related to the tumor microenvironment (Yoshihara et al., 2013).

Characterization of Breast Cancer
Subclasses
The “Limma” package was used to determine differentially-
expressed genes (DEGs) among breast carcinoma subclasses
with log2 FC > 1 (adjusted p < 0.01). We downloaded
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“c2.cp.kegg.v6.2.symbols” and “h.all.v6.2.symbols” from the
Molecular Signatures Database. The biological function for
DEGs was analyzed using the CLUSTERPROFILER R package
(Yu et al., 2012). The biological function terms with adjusted p <
0.05 were considered significant.

Generation of the Classifier and
Performance Validation
The statistically significant DEGs were defined as adjusted p <
0.01 and |log2 FC > 2| in each subgroup. We identified the top 30
characteristic genes with the maximum |log2FC| value in each
group (only the genes with log2FC > 0 were selected) and
constructed the prediction model of breast cancer metabolic
typing using 90 characteristic genes in the three groups.

Prediction of the Benefit From
Immunotherapy and Targeted Therapy for
Each Subclass
The immunotherapies cohort was used to verify the correlation
between metabolism subclasses and immune checkpoint therapy
efficacy. The metabolism subclasses were determined using the
same we used in TCGA-BRCA based on submap analysis (Gene
Pattern) (Roh et al., 2017). Subsequently, drug susceptibility was
performed to analyze the various drug responses in the three
subclasses. Drug-sensitive cell lines were defined as the top 1/3 of
IC50 values, and drug-resistant cell lines were defined as the
bottom 1/3 of IC50 values.

Single-Cell Data Pre-process
The raw gene matrix for GSE180286 was obtained from the GEO
database, Seurat package was applied to process data in R (Stuart
et al., 2019). The raw data GSE180286 were loaded with Seurat,
and cells were filtered with the criteria of >20% mitochondria-
related genes or more than 6,000 genes expressed. Merged cells
data were clustered into ten cell populations using FindClusters
(resolution = 0.3). Meanwhile, UMAP reduction of cell clustering
was performed. We used function SCTransform in Seurat to
perform data normalization and used CCA to de-batch five
samples of breast cancer original tumor after we separated ten
cell subtypes.

scMetabolism
We used Harmony (Korsunsky et al., 2019) method to de-batch
epithelial cells. SCmetabolism (Wu et al., 2021) was used to assess
the activation of metabolic pathways in epithelial cells. We used
VISION’s approach to assess metabolic activation of different
subtypes of epithelial cells. Subgroups were used to evaluate the
relationship between epithelial cell subtypes and metabolic
subtypes in TCGA.

Statistical Analysis
The unpaired Student’s t-test was used to compare groups with
normally distributed variables, and the Mann–Whitney U-test
was used to compare groups with non-normally distributed
variables. One-way analysis and Kruskal–Wallis tests of

variance were used as parametric and nonparametric methods
to compare three groups, respectively. Contingency table
variables were analyzed using the chi-square test or Fisher’s
exact tests. Survival analysis was performed using Kaplan-
Meier methods and compared using the log-rank test. A
univariate Cox proportional hazards regression model was
used to estimate the hazard ratios for univariate analyses. All
statistical analyses were performed using R 3.6.3 (https://www.r-
project.org/).

RESULTS

The Metabolic Subtypes of Breast Cancer
We included previously reported 2,752 metabolism-related genes
(Supplementary Table S1). First, metabolism-related genes with
a variance of zero were excluded. Then, univariate Cox regression
analysis was applied, and 117 metabolism-related genes were
identified according to the corrected p-value of regression
analysis less than 0.01 (Supplementary Table S2). We then
grouped 117 metabolism-related gene matrixes according to
non-negative matrix classification. Cophenetic correlation
coefficients were applied to identify the optimal p-value, and
K = 3 was finally determined as the optimal clustering result
(Figure 1A). To verify the degree of classification before the three
metabolic groups we obtained, we used TSNE dimension
reduction. We found that clustering dispersion existed among
metabolic subgroups (Figure 1B). According to the subtypes of
the various metabolic groups, we calculated overall survival and
found that there were significant differences in survival in groups
C1, C2, and C3, among which the C2 group had poor outcomes in
TCGA and YAU2010 cohort, while the C3 group had a good
outcome (Figures 1C,D).

Metabolism Analysis Among Different
Subclasses
We obtained three metabolic groups with different prognostic
values based on the metabolic gene classification. To explore the
metabolic characteristics of the three groups, we identified the
characteristic metabolic pathways of the three subtypes. First, we
used the GSVA method to evaluate 113 metabolic processes in
breast cancer (Supplementary Table S3). We then analyzed the
differences of 115 metabolic processes in the three groups. The
characteristic metabolic pathways of C1 were retinoic acid
metabolism and kynurenine metabolism, and the characteristic
metabolic pathways of C2 were pyrimidine metabolism,
riboflavin metabolism, mannose metabolism, and sulfur
metabolism. The characteristic metabolic pathway was ether
lipid metabolism, tyrosine metabolism, and lipoic acid
metabolism (Figure 2A).

To further explore the biological processes of the subgroups,
we used GSVA analysis to determine that there were also
significant differences in cell cycle, HIPPO, MYC, NOTCH,
NRF2, PI3K, TGF-Beta, RTK RAS, TP53, Wnt, and
angiogenesis. The C1 and C3 groups had higher Wnt pathway
scores, suggesting that C1 and C3 groups were more closely
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related to β-catenin-related proteins (Figure 2B). We then found
that the immune score and matrix score of the three metabolic
groups were significantly different, among which the immune
score of the C1 group was higher (Figure 2C).

Determine the Immunological Panorama of
Different Metabolic Subtypes
We usedMCP-counter and the ssGSEA algorithm to calculate the
relative abundance of 16 types of immune cells. The abundance of
immune cells corresponding to the three groups evaluated by the
MCP-counter algorithm is shown in Figure 3A. C2 was
significantly different from the other two subgroups, and the
abundances of ten types of immune cells in the C2 subgroup were
low, including T cells, CD8+ T cells, cytotoxic lymphocytes, the B
lineage, NK cells, the monocytic lineage, myeloid dendritic cells,
neutrophils, endothelial cells, and fibroblasts (Figure 3A). It is
noteworthy that consistent results were obtained in the GSVA
method (Figure 3B). Later, we investigated the association
between three metabolic subtypes and the expression levels of
12 immune checkpoint treatment-related biomarkers. Immune
checkpoint genes were chosen based on current clinical trials or
drug inhibitors demonstrated to be effective. The expression
levels of nine immune checkpoint genes in the C1 group were

significantly increased, suggesting that the C1 group would show
better therapeutic efficacy of immune checkpoint inhibitors
(Figure 3C).

Correlation of the Breast Cancer
Subclasses With Multi-Omics
According to this analysis, anti-tumor immunity differs across
metabolic groups. To explore the differences in somatic mutation
frequency and mutation mode in these groups, we obtained
somatic mutation data in breast cancer from TCGA. The
genes with high mutation frequency are shown in Figure 4A.
C3 displayed distinct mutation characteristics. Specifically, the
mutation frequency of PIK3CA in C3 was significantly higher
than C1 and C2. Subsequently, we found significant differences in
new tumor antigen, tumor mutation burden, copy number
amplification, and copy number reduction in the three
metabolic groups (Figures 4B,C). These findings suggest
significant differences in expression and regulation patterns
among the three metabolic subtypes.

90—Metabolic Gene Signature
A non-negative matrix classification was carried out based on
prognostic metabolic factors, and three metabolic subtypes were

FIGURE 1 | (A) NMF clustering was performed for 816 metabolism-related genes, and the affinity correlation coefficient was k = 2–8; (B) Classification of breast
cancer into three subgroups using T-SNE analysis; (C,D) Overall survival of three subgroups in the TCGA and Xena Breast Cancer (Yau 2010) cohorts.
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obtained. To apply this classification method to other breast
cancer cohorts, we constructed a gene set that could be used for
non-negative matrix classification. First, we performed a
differential analysis of C1 and non-C1 cohorts in the breast
cancer cohort, obtaining the top 30 genes by significance
sequencing, and the same principle was applied to the C2 and
C3 cohorts. These 90 genes are characteristic and can be used for
metabolic classification of other cohorts. The upregulated gene
expression profile of each group in TCGA-BRCA is shown on the
left side of Figure 5A, and the same profile of the combined
cohort of TCGA-BRCA and Breast Cancer (Yau 2010) is shown
on the right side. Subsequently, we matched non-negative matrix
results of 90 feature gene sets using NTP classification results in
the combined cohort, TCGA-BRCA, and Breast Cancer (Yau
2010) cohorts. We found that the results of the two classification
strategies were similar (Figure 5B). These findings suggest that
the 90-gene signature could be extended to other cohorts for
metabolic typing.

Sensitivity Analysis of Different Metabolic
Subtypes of Breast Cancer to
Immunotherapy
We identified differences in the immune microenvironment and
immune checkpoint levels in various metabolic groups of breast
cancer, suggesting that the three groups have varying sensitivities
to immune checkpoint treatment. There was a strong correlation
between the C1 group and immune checkpoint inhibitor gene
expression level, possibly suggesting that the C1 group would
respond favorably to immune checkpoint treatment. To test this
inference, we compared the expression patterns of C1, C2, and C3
groups in breast cancer with the expression patterns of patients
with different response outcomes in the immune checkpoint
treatment cohort using a submap. We found that the
expression profile of the C1 group in TCGA significantly
correlated with the PD-1 checkpoint inhibitor response group
(p = 0.01), suggesting that the C1 group was more likely to
respond to PD-1 therapy (Figure 5C). We also measured the

FIGURE 2 | (A) Heatmaps of breast cancer gene signatures associated with metabolism; (B) Boxplots of characteristic scores associated with cancer progression
for different subclasses of breast cancer; (C) Box plots of stroma and immune scores of tumor microenvironment in different subclasses of breast cancer.
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sensitivity of targeted drugs in different patients (Figure 5C). As a
targeted drug for breast cancer treatment, Sunitinib had a lower
IC50 in group C1, suggesting that patients in group C1 were also
more susceptible to targeted drugs (Figure 5C).

Single-Cell Analysis
GSM5457199, GSM5457202, GSM5457205, GSM5457208, and
GSM5457211 were taken into this study. The data pre-process
results are shown in Figure 6A. Based on the UMAP dimension
reduction clustering, we obtained ten cell clusters. They were
Fibroblasts, Epithelial cells, Myeloid cells, Cycling cells, B cells,
T cells, Endothelial cells, unassigned, Pericytes, and Dendritic
cells. The markers of these cells were shown in Figure 6B, for
example, CD3E, CD3E, CD79B, and MS4A1. The cluster results
of the five samples are shown in Figure 6C. Afterward, we
performed subgroup analysis for epithelial cells in Figure 6D,
and we obtained eight epithelial subgroups (Figure 6E).

Determine Characteristic Metabolism
Pathway in the Single R Cohort
To demonstrate the heterogeneity of metabolic pathways in
TCGA, we matched the subtypes obtained in the TCGA breast
cancer cohort with eight epithelial subtypes of single cells. We
found a significant positive correlation between the C2 group in
the TCGA subtype and the C7 group in the breast cancer
epithelial cell group (p = 0.02) (Figure 7A). To further explore

the common characteristic metabolic pathways in C2 and C7
groups, SCmetabolism was used to calculate and evaluate the
characteristic metabolic pathways in epithelial subgroups. We
found that pyrimidine metabolism was significantly upregulated
in TCGAC2 and single-cell C7 groups (Figure 7B). Therefore, we
believe that pyrimidine metabolism pathway A can be used as a
characteristic metabolic pathway of breast cancer tumor
heterogeneity.

DISCUSSION

The subclassification of breast cancer has no unified conceptual
framework in molecular taxonomy. In the present study, three
breast cancer subtypes were identified based on identified
metabolic genes, and we explored their metabolic
characteristics, clinical characteristics, tumor immune
microenvironment, mutation load, drug sensitivity, and other
aspects.

Among the three subtypes of breast cancer, the survival
outcome of C3 was better than that of C1 and C2. The
primary metabolic pathways of C3 enrichment include fatty
acid degradation and metabolism of ether lipids,
transsulfuration tyrosine, taurine and hypotaurine,
remethylation lipoic acid, and caffeine. Better survival
outcomes for C3 may benefit from this enriched metabolic
pattern. Abnormal lipid metabolism is a hallmark of cancer

FIGURE 3 | (A) Heatmaps of the population abundance of immune cells and stromal cells in the three subtypes of breast cancer; (B) Enrichment scores of different
immune cells and stromal cells in three subclasses of breast cancer; (C) Boxplot showing the expression levels of 12 immune checkpoint genes in three breast cancer
subclasses. **** indicates that p < 0.0001.
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cells, and changes in lipid metabolism affect growth processes in
cancer cells. Sphingolipids and non-sphingolipids were strongly
increased in breast cancer cells. The expression level of ether
lipids was significantly higher in breast cancer cells than normal
cells (Hahnefeld et al., 2020). Ether lipid levels are elevated in
tumors; in several invasive cancer cells and primary tumors, alkyl
glycerophosphate synthase controls the utilization and
metabolism of cytoether phospholipids to promote cancer
invasion and tumor growth (Benjamin et al., 2013; Piano
et al., 2015; Stazi et al., 2019).

Iron death is a non-apoptotic cell death process associated
with targeted susceptibility to certain cancers. Lipomic analysis
was also used to find that polyunsaturated ether phospholipids act
as substrates for lipid peroxidation to induce iron death (Zou
et al., 2020). In lipid metabolism, the synthesis of fatty acids is
vital for cancer cell proliferation. Fatty acids convert nutrients for
membrane biosynthesis, energy storage, and signal molecule

production (Röhrig and Schulze, 2016). Thus, limiting the
supply of fatty acids can limit the proliferation of cancer cells,
including by increasing the degradation of fatty acids through
oxidation (Koundouros and Poulogiannis, 2020). C3 is related to
several well-known oncogenic signaling pathways, including
HIPPO, TGFB, RTKRAS, and angiogenesis, and is affected by
several pathways related to abnormal tumor metabolism (Chiang
et al., 2016; Viallard and Larrivée, 2017; Panciera et al., 2020; Park
et al., 2020). In normal cells, the primary function of the MYC
pathway is to coordinate nutrient acquisition energy, triggering
selective gene expression amplification to promote cell growth
and proliferation. In cancer, genetic and epigenetic disorders
deregulated transcription factors in the MYC family, and
carcinogenic levels of MYC reprogram cell metabolism to
promote the growth and proliferation of cancer cells, a
hallmark of cancer development (Dejure and Eilers, 2017).
Uncontrolled growth in response to misregulated MYC

FIGURE 4 | (A) The relationship between three subtypes of breast cancer and the classical pathway of mutation and related genes; (B) Number of mutations and
predicted neoantigens in the three breast cancer subgroups; (C) Copy number aberrations in three breast cancer subtypes.
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expression depends on MYC-driven metabolic pathways (Stine
et al., 2015). MYC directly regulates glycolytic genes to regulate
glucose metabolism and indirectly regulates gene expression to

increase glutamine metabolism. Ectopic MYC expression in
cancer drives aerobic glycolysis and oxidative phosphorylation
(Dang et al., 2009).

FIGURE 5 | (A) Heatmaps of the expression levels of 90 gene classifiers; (B) The consistency between the prediction of molecular subclasses of breast cancer by
90 gene classifiers and the original prediction based on NMF; (C) There were significant differences in sensitivity analysis of 12 drugs among different subtypes of breast
cancer. Sensitivity of different subclasses of CTLA-4 inhibitors and PD-1 inhibitors in breast cancer.
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The NOTCH signaling pathway is involved in angiogenesis,
tumor immunity, and drug resistance and plays a role in tumor
metabolism (Majumder et al., 2021). In tumors with highly
acquired NOTCH mutations, MYC is a common target gene
that drives NOTCH-dependent tumor cell growth and
metabolism (Aster et al., 2017). The Wnt pathway is
upregulated in most breast cancer patients and is associated
with poor outcomes. The Wnt signaling pathway is involved
in the proliferation and metastasis of breast cancer and
participates in immune microenvironment regulation, drug
resistance, and phenotypic shaping of breast cancer (Xu et al.,
2020a). Active Wnt signaling also participates in cancer cell
metabolic reprogramming. Through C-MYC, Wnt controls
glutamine transport and production. The Wnt pathway

partially regulates pyruvate carboxylase and pyruvate
dehydrogenase kinases and upregulates aerobic glycolysis
through Wnt-mediated transcriptional changes in β-catenin
(Sherwood, 2015; El-Sahli et al., 2019).

The C2 subclass is closely associated with several metabolic
pathways. Purine and pyrimidine are the key molecules in cellular
biological processes such as DNA replication and RNA synthesis.
Pyrimidine metabolism is one of the primary pathways of
significant enrichment and dysregulation of transcription levels
in many cancers (Edwards et al., 2016; Siddiqui and Ceppi, 2020).
Pyrimidine antineoplastic agents such as gemcitabine and
cytarabine and purine antineoplastic agents such as 6-
thioguanine and 6-mercaptopurine are commonly used to
treat cancers (Fridley et al., 2011). As antimetabolites, these

FIGURE 6 | (A) The data pre-process results. (B). The distribution of the five samples. (C) Fibroblasts, Epithelial cells, Myeloid cells, Cycling cells, B cells, T cells,
Endothelial cells, unassigned, Pericytes, and Dendritic cells. For example, CD3E, CD3E, CD79B and MS4A1 (D) Subgroup annotation analysis for single cells, (E) Eight
types of epithelial subgroups.
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drugs compete with physiologic pyrimidine and purine
nucleosides and interact with many intracellular targets to
induce cytotoxicity to kill cancer cells (Galmarini et al., 2003).
Some anticancer drugs have been used to inhibit the biological
function of mitochondria and directly inhibit respiratory chain
complexes (Sancho et al., 2016; Sica et al., 2020). In contrast to
normal cells, which rely primarily on mitochondrial oxidative
phosphorylation for energy production, most cancer cells rely on
aerobic glycolysis to produce ATP, known as the Warburg effect
(Vander Heiden et al., 2009). However, recent evidence suggests
that oxidative phosphorylation (OXPHOS) also plays a critical
role in cancer progression. Moreover, increased OXPHOS
dependence is generally characteristic of cancer stem cells.
Cancer cells can enter a state of coexistence of oxidation and
glycolysis (Yu et al., 2017; Ashton et al., 2018).

Cholesterol metabolism produces membrane components
necessary for cells and produces a variety of metabolites with
biological functions (Kopecka et al., 2020). In the tumor
microenvironment, cholesterol metabolism is reprogrammed
to promote tumorigenesis (Huang et al., 2020). Blocking
cholesterol synthesis and uptake inhibits tumor development
(Xu et al., 2020b). Steroid hormones and their precursors are
synthesized and extensively metabolized in the adrenal glands
and gonads (Capper et al., 2016). Breast cancer is hormone-
dependent, and cancerous breast tissue promotes mitosis by
expressing ER, AR, and PR receptors. The local estrogen

biosynthesis is believed to play an indispensable role in
developing hormone-dependent breast cancer (Foster, 2008).

The tricarboxylic acid (TCA) cycle is an essential metabolic
pathway for generating energy supporting life activities. It
stimulates increased glutamine breakdown, glycolysis and
produces reactive oxygen species. Metabolites derived from the
TCA cycle mediate signal transduction in immune cells (Scagliola
et al., 2020). Furthermore, genetic changes in the TCA cycle enzymes
lead to the production of tumor metabolic intermediates, suggesting
that changes in mitochondrial metabolism are an essential driving
force of cancer initiation and progression (Sajnani et al., 2017).

Cardiolipin (CL) is a specific phospholipid of mitochondria, and
dysregulation of CLmetabolism has been observed in several types of
cancer (Ahmadpour et al., 2020). In cancer cachexia, increased CL
content may induce higher energy consumption of mitochondria
(Peyta et al., 2015). C2 is regulated by the familiar oncogenic
pathways, NRF2 and PI3K (He et al., 2020). NRF2 regulates
oxidative stress and growth factor signaling. Nutritional status and
NRF2-mediated metabolic dysregulation support cancer cell
proliferation (Lee et al., 2018). The PI3K-AKT-MTOR signal
transduction pathway regulates various biological processes,
including cell growth and proliferation, cell cycle progression, cell
metabolism, and cytoskeletal reorganization (Papa and Pandolfi,
2019). The PI3K-Akt-mTOR pathway is a central regulator of
glycolysis that promotes cancer metabolism and proliferation
(Courtnay et al., 2015).

FIGURE 7 | (A) The correlation among TCGA c1-C3 and single-cell C0-C7, a significant positive correlation between the C2 group in the TCGA subtype and the C7
group in the breast cancer epithelial cell groupwere evaluated (p = 0.02) (B) The characteristic metabolic pathways in epithelial subgroups determined by SCmetabolism,
and Pyrimidine Metabolism pathway could be used as a characteristic metabolic pathway of breast cancer tumor heterogeneity.
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The immune pathway enrichment and immune infiltration
scores in C1 subtype breast cancer were higher than in C2 and C3.
In drug sensitivity analysis, C1 responded significantly to
immune checkpoint inhibitors. We hypothesized that the C1
subgroup of breast cancer patients might be most responsive to
immunotherapy with immune checkpoint inhibitors. Subtype C1
has also been implicated in cancer metabolism. MYC increases
intracellular levels of tryptophan and tryptophan metabolites in
the canine uridine metabolic pathway, thereby meeting the needs
of the rapid proliferation of cancer cells (Venkateswaran et al.,
2019). Tumor reproliferating cells drive PD-1 upregulation in
CD8 + T cells through the canine urine-aromatics receptor
pathway, which may be a potential mechanism for tumor
immunotherapy (Liu et al., 2018). Retinoic acid is the primary
bioactive metabolite of retinol (vitamin A). The destruction of RA
is the basis of the development of many malignant tumors (di
Masi et al., 2015). Retinoids and their natural metabolites and
synthetic products induce the differentiation of several cell types.
Among them, fenvitamine may have a preventive effect in young
women at high risk for breast cancer (Connolly et al., 2013).

Similar to genetic heterogeneity, metabolic phenotypes in
cancer are highly heterogeneous. This study explored the
metabolic landscape of breast cancer and identified three
subgroups of breast cancer with different metabolic activities.
This new classification assists breast cancer diagnosis, treatment,
and outcome.
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