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Artificial intelligence (AI) has been successful at solving numerous problems in machine

perception. In radiology, AI systems are rapidly evolving and show progress in guiding

treatment decisions, diagnosing, localizing disease on medical images, and improving

radiologists’ efficiency. A critical component to deploying AI in radiology is to gain

confidence in a developed system’s efficacy and safety. The current gold standard

approach is to conduct an analytical validation of performance on a generalization dataset

from one or more institutions, followed by a clinical validation study of the system’s

efficacy during deployment. Clinical validation studies are time-consuming, and best

practices dictate limited re-use of analytical validation data, so it is ideal to know ahead

of time if a system is likely to fail analytical or clinical validation. In this paper, we describe

a series of sanity tests to identify when a system performs well on development data

for the wrong reasons. We illustrate the sanity tests’ value by designing a deep learning

system to classify pancreatic cancer seen in computed tomography scans.

Keywords: deep learning, computed tomography, bias, validation, spurious correlations, artificial intelligence

1. INTRODUCTION

Artificially intelligent (AI) computer-aided diagnostic (CAD) systems have the potential to help
radiologists on a multitude of tasks, ranging from tumor classification to improved image
reconstruction (1–4). To deploy medical AI systems, it is essential to validate their performance
correctly and to understand their weaknesses before being used on patients (5–8). For AI-based
software as a medical device, the gold standard for analytical validation is to assess performance on
previously unseen independent datasets (9–12), followed by a clinical validation study. Both steps
pose challenges for medical AI. First, it is challenging to collect large cohorts of high-quality and
diverse medical imaging data sets that are acquired in a consistent manner (13, 14). Second, both
steps are time-consuming, and best practices dictate limited re-use of analytical validation data. The
cost of failing the validation process could prohibit further development of particular applications.

One reason AI systems fail to generalize is that they learn to infer spurious correlations or
covariates that can reliably form decision rules that perform well on standard benchmarks (15). For
example, an AI system successfully trained to detect pneumonia from 2D Chest X-rays gathered
from multiple institutions, but it failed to generalize when images from new hospitals outside of
the training and assessment set were used to evaluate the system (16). The investigators found
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that the system had unexpectedly learned to identify metal tokens
seen on the training and assessment images (16). In hindsight,
the tokens were obvious spurious correlators, but in other cases,
the covariates can be less obvious (15). For example, subtle image
characteristics that may be unrelated to the target object, such
as high-frequency patterns (17–19), object texture (20, 21), or
intangible attributes of objects are known to cause AI systems
to form decision rules that may not generalize (15, 22). Current
research has focused on explaining or interpreting AI decisions
using various visualization techniques (23), but these do not
necessarily imply that a system will generalize (24–27).

Addressing system failures before clinical deployment is
critical to ensure that medical AI applications are safe and
effective. Identifying systems that are right for the wrong reasons
during the development stages can expedite development by not
wasting valuable validation data from multiple institutions or
conducting doomed clinical validation studies.

The standard approach used to identify system failures
involves testing with held-out development or generalization
test datasets (28). However, development test sets are subsets
of the training data, and their primary value lies in identifying
systematic errors or bugs within the AI algorithm. Generalization
test data are independent of the development data (i.e., their joint
probability distribution of inputs and labels differ from training
and development test data) (29). The generalization data’s value
is to assess how well a trained model may adapt to previously
unseen data. However, neither type of test is sufficiently robust
enough to declare when an AI system is ready for the clinic.

We provide a set of sanity tests that can demonstrate if a
trained system is right for the wrong reasons. We developed a
weakly supervised deep learning system for classifying pancreatic
cancer from clinical computed tomography (CT) scans to
illustrate their use. Our main contributions are:

1. We provide a set of sanity tests to determine if a system is
making predictions using spurious correlations in the data.

2. We describe a system for using deep learning with CT images
to detect pancreatic cancer, and we apply our set of sanity
tests to both development and generalization test datasets. We
train and assess four unique variants of this system to illustrate
the pipeline and demonstrate that the system looks as if it
performs well in many scenarios, but it is predicting using
spurious correlations.

3. We illustrate how to use a method to generate noise
images from the patients’ volumetric CT scans. These can
then be used to assess the influence of noise on the AI
system’s performance.

2. MATERIALS AND METHODS

2.1. Sanity Tests for AI Systems
There are various testing procedures employed in software
engineering to determine if a system is working correctly, such
as smoke and sanity tests (30). Smoke tests evaluate the critical
functionality of a system before conducting additional tests.
In AI, this is analogous to reaching an acceptable level of
performance on the development test data, which matches the

training data’s distribution. Development test data is typically a
random sample of the training data (e.g., 30% test and 70% train).
The stopping point for many AI projects is when acceptable
performance is achieved on the development test set, but in
software engineering, the next step is to conduct ‘sanity tests’ that
indicate if a system produces obvious false results. If the sanity
tests fail, further development is done before conducting more
time-consuming and rigorous tests, which for AI systems used in
medical applications could correspond to analytical and clinical
validation studies. For AI systems, sanity tests would identify if a
system is achieving good results on the development test set for
the wrong reasons (e.g., covariates or spurious correlations) and
will therefore fail in other environments or on other datasets.

Sanity tests are occasionally used to identify if a system is
unlikely to generalize (24, 31, 32). However, the tests are often
designed to evaluate literature methods instead of being used as
a crucial development tool. For example, Shamir et al. critiques
the methods by which face datasets were designed and evaluated
by showing that commonly used face recognition datasets were
classified correctly even when no face, hair, or clothing features
appeared in the training and testing datasets (33). As another
example, in response to a report suggesting AI systems could
diagnose skin cancer at the level of dermatologists (34), Winkler
et al. evaluated the limits of the claim by testing a trained
AI system using dermoscopic images where the covariate’s,
hand-drawn skin markings, were first present and then absent
from pictures of the skin cancer. They observed that when
skin markings were present, the probability that the AI system
classified images as having skin cancer increased significantly.
With the markings removed, the probability decreased, which led
them to conclude that the AI system associated themarkings with
cancer instead of the actual pathology (31).

For AI-based medical devices, conducting sanity tests can
prevent needless harm to the patient and save a considerable
resources. However, without sufficiently large, well-annotated
datasets, performing analytical validation to determine the root
causes that drive AI systems to fail before deployment remains
a challenge (5, 35). Moreover, after independent testing data
is gathered, regulatory organizations advise that the data be
used a limited number of times to prevent over-fitting (36).
For example, the United States Food and Drug Administration
“discourages repeated use of test data in the evaluation” of CAD
systems (37). Clinical validation of deployed systems is likewise
time-consuming to organize and often costly.

We propose a series of sanity tests to identify if an AI system
may fail during the development phases and before conducting
more extensive generalization tests. We also describe how the
tests are used with a case study to detect pancreatic cancer from
weakly labeled CT scans. The tests are as follows:

• Train and test with the target-present and absent. If an
AI system is trained to distinguish between normal and
abnormal diagnostic features (e.g., organ with cancer shown
in Figure 1A), then it should fail when that target is removed
from the development test data (e.g., Figure 1B). If the system
still works effectively after removing the target from testing
data, then that indicates it is confounded. In our case study,

Frontiers in Digital Health | www.frontiersin.org 2 August 2021 | Volume 3 | Article 671015

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Mahmood et al. Detecting Spurious Correlations in Radiology

FIGURE 1 | The figure shows an example cross-sectional slice from a single patient with pancreatic cancer that was processed into four different input formats, as

shown. A different AI system was trained with each input format, resulting in four different systems that were then tested on each format. (A) The original image with

the pancreas and tumor present. (B) The original image with the pancreas and tumor removed. (C) The anatomy surrounding the pancreas is cropped out, and only

the pancreas and tumor remain. (D) Noise image generated from the patient CT scans. The same processing was applied to all CT scans within the positive for

pancreatic cancer and normal pancreas classes.

this corresponds to removing the pancreas from normal
scans and pancreas with tumor from abnormal scans using a
segmentation mask, as shown in Figure 1C. We removed the
whole pancreas because the pancreatic tumor often distorts the
contours of the surrounding anatomy (38).

• Train and test the system with background patches or noise

images. Background patches consist of non-target regions of

the image. Noise images can be generated from the volumetric

CT scans in the development and generlization datasets. Both

can determine if the different classes can be discriminated

based on features unrelated to the target objects (33). If classes

are discriminated against with high confidence using the noise
image types, then the system is confounded, and it is using

features of the image acquisition process to delineate classes.

An example noise image generated from the patient CT scans

is shown in Figure 1D.

• Test with different regions of interests (ROIs). Training and
testing AI systems on precisely outlined segments of images
does not reflect real-world usage. Medical centers, private
practices, or institutes where AI is deployed may not have
the resources or expertise to precisely outline the anatomical
area (39). Furthermore, similar to radiologists, AI systemsmay
have to parse through anatomy they have never encountered
during training. Therefore, it is desirable to ensure that when
systems are trained on a select portion of images, as shown in
Figure 1C, they can generalize to the original image shown in
Figure 1A.

These sanity tests can be conducted solely using the development
dataset, but ideally they would also be used in conjunction
with another generalization dataset. They require four input
formats, as shown in Figure 1, to be generated from the same
development dataset.
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TABLE 1 | Scan parameters and patient-specific characteristics for development and generalization data.

Development Data: Train, Tune, and Test

TCIA - Pancreas CT Medical Image Segmentation Decathalon (MSD) Generalization data

Annotated Yes Yes No

CT Vendor Phillips and Siemens General Electric General Electric

CT Model ** LS16 or HD750 HD750

Total # of Patients 82 (27 female/55 male) 281* 116 (61 female/55 male)

# used to train 58 60 NA

# used to tune 15 14 NA

# used to test 9 8 116 (58 without PC, 58 with PC)

Dataset Information:

Average age (min to max) 46.8 (18 to 76) ** 63 (18–90)

Scan start time after contrast administration ∼70 s 80–85 s ∼40 s

Avg. # of total slices (min/max) 256 (181–466) 95 (37–751) 186 (102–278)

Avg. # of slices consisting of only pancreas (min/max) 85 (45–144) 30 (11–147) NA

Scan parameters:

Tube potential (kVp) 120 120 70 keV (80/140 kVp)

Slice thickness (mm) 1.5–2.5 2.5 2.5

Pixel dimensions (mm) 0.664 to 0.977 0.606 to 0.977 0.547 to 0.976

Tube current modulation index ** Noise Index:

14 (HD750) / 12.5 (LS16)

NA

Tube current (mA) min to max range ** 220–380 mA 260–600

Rotation time (s) ** ****0.7 (HD750) / 0.8 (LS16) ****0.7 (HD750)

Pitch ** ****0.984 (HD750) / 1.375 (LS16) ****0.984 (HD750)

Reconstruction algorithm ** ** ***FBP/ASiR 20%

Reconstruction kernel ** ** Standard

Iterative reconstruction strength ** ** 20%

# of data channels ** ** 64

Size of a single data channel (mm) ** ** 0.625

Bowtie filter ** ** Large body

CT scan series released or used Axial portal venous phase Axial portal venous phase Axial parenchymal phase

*A subset of the MSD dataset was randomly selected to train the model.
**Not available in accompanied report or DICOM header.
***FBP, Filtered Back Projection; ASiR, Adaptive Statistical Iterative Reconstruction.
****LS16, LightSpeed16; HD750, Discovery High Definition 750.

2.2. Datasets
Institutional review board approval was obtained for this
Health Insurance Portability and Accountability Act-compliant
retrospective study. The requirement for informed consent was
waived. The case study is designed as a binary classification
problem with the aim of identifying patients who have pancreatic
cancer vs. those who do not from the provided CT scans.
We distinguish between the development dataset used for
training, tuning and testing, and the generalization test data
used to validate the efficacy of the system. The development
dataset was processed into four different formats, as shown in
Figure 1. The four formats were used to train four different
AI systems. The input to each system was a volumetric CT
scan that consisted of a normal pancreas or pancreas with
tumor. The output from each system was a single classification
score that indicated the probability of the patient having
pancreatic cancer.

2.2.1. Development Data
The development dataset consisted of patient CT scans collected
from two open-access repositories where detailed annotations
were available. The normal pancreas CT scans were obtained
from The Cancer Imaging Archive Normal (TCIA) Pancreas
Dataset with 82 contrast-enhanced abdominal CT scans (40).
Seventeen patients from the TCIA dataset were reported to be
healthy kidney donors. The remaining patients were selected
because they had no major abdominal pathology or pancreatic
lesions (40). The abnormal pancreas CT scans were obtained
from theMedical Image Segmentation Decathlon (MSD) dataset,
consisting of abdominal CT scans from 281 patients. The
MSD dataset contains patients who presented with intraductal
mucinous neoplasms, pancreatic neuroendocrine tumors, or
pancreatic ducal adenocarcinoma (41). They were originally used
to predict disease-free survival or assess high-risk intraductal
papillary mucinous neoplasms seen on the CT scans (41). We
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randomly selected 82 cases from the MSD dataset to match
the TCIA dataset size to avoid class-imbalance issues. The
development data were randomly split into a training (58 normal,
60 cancer), tuning (15 normal, 14 cancer), and held-out test
(9 normal, 8 cancer) set. To ensure the number of positive
and negative samples were balanced in each split, we used
stratified five-fold cross-validation for training. Table 1 shows
the patient demographics and scanning parameters provided for
each dataset.

2.2.2. Generalization Data: Dual Energy CT (DECT)
The generalization data consists of 116 patients (58 without PC,
58 with PC) who received routine DECT scans between June 2015
to December 2017 (see Table 1). The patients without pancreatic
cancer received DECT CT Urography (CTU) exams and were
selected based on the statement of a negative or unremarkable
pancreas and liver in the radiologist report. Those with cancer
were selected if they had undergone a DECT arterial phase
CT scan and were histologically confirmed to have pancreatic
cancer. All patients were scanned on a 64 slice CT scanner
(Discovery CT750 HD, GE Healthcare, Milwaukee, WI, U.S.)
with rapid switching DECT following the administration of 150
mL of iodinated contrast (Iohexol 300 mgI/mL, Omnipaque
300, GE Healthcare, Cork, Ireland), at 4.0 mL/s. The scan
parameters are displayed in Table 1. With DECT, multiple
image types can be generated, such as virtual monochromatic
images (VMI) that depict the anatomy and physiology from
the viewpoint of a monochromatic x-ray source (42). The
VMI scans can be reconstructed at energies ranging from 40
to 140 keV. For this study, all scans were reconstructed at
70 keV because of its use in the clinic. The images were
generated using the GSI MD Analysis software available on
Advantage Workstation Volume Share 7 (GE Healthcare). Those
patients who had a history of surgery and liver abnormalities
were excluded from the test set, as were any patients who
had metal adjacent to the pancreas or visible artifacts on
the scans. This dataset was not used during the training or
tuning stages.

2.3. AI System - CTNet
The prediction system is dubbed CTNet. It is designed to map a
3D CT scan to a probability estimate that indicates if pancreatic
cancer is present or not. CTNet closely resembles systems in
literature that use ImageNet pre-trained convolutional neural
networks (CNNs) on radiology scans (31, 34, 43–47). The model
architecture is shown in Figure 2.

Given a total set of s slices in a scan, where each individual
slice t is a 299 × 299 image, an ImageNet pre-trained Inception
v4 CNN was used to extract an embedding ht ∈ R

d from each
slice. The embeddings were extracted from the penulmitate layer,
which renders a d = 1, 536 dimensional feature vector for each
image (48). Because Inception v4 is designed to take as input a
299× 299× 3 RGB image, we replicated each slice to create faux
RGB images. Following others (49), the CNN was not fine-tuned
for CT data.

After extracting the embeddings from all scan
slices within a CT scan volume, it is then fed into a

neural network to make a final prediction, which is
given by:

P (Cancer = 1|h1, h2, . . . hs)

= σ

(

b+
1

s
wT

s
∑

t=1

ReLU (Uht + a)

)

, (1)

where σ (·) denotes the logistic sigmoid activation function,
b ∈ R is the output layer bias, w ∈ R

20 is the output layer’s
weight vector, U ∈ R

20×1536 is the hidden layer weight matrix,
a ∈ R

20 is the hidden layer bias, and ReLU is the rectified linear
unit activation function. In preliminary studies, we found that
using 20 hidden units sufficed to achieve strong performance.

The model was trained using the binary cross-entropy loss
function with a mini-batch size of 1. The weights were initialized
using the Kaiming method. For all systems trained in this study,
we used the Adam optimizer with (50) a base learning rate of
1e−4, L2 weight decay of 1e−6, and bias correction terms, β1 =

0.9 and β2 = 0.999. The learning rate was reduced by a factor of 2
over the course of training when the validation loss had stopped
improving. Each system was trained for 100 epochs. Since our
training dataset was balanced with positive and negative cases,
we did not scale the loss for any particular class’s prevalence.
During training, no data augmentation techniques were applied.
The model was implemented in Python 3.8 with PyTorch 1.6.0
on a computer with a 12 GB NVIDIA Titan V GPU.

2.4. Scan Preprocessing
Since the voxel size varied from patient to patient, the CT scans
were first resampled to an isotropic resolution of 1.0 × 1.0 ×

1.0 mm using SINC interpolation. They were then resized to a
height and width of 299× 299 pixels using bilinear interpolation,
which is the original input image size used to train the Inception
v4 network. The voxel Hounsfield unit (HU) value was clipped
to be between ±300HU and normalized to have zero mean
and unit variance (i.e., [0, 1]). Normalization was performed by
subtracting the mean and dividing by the standard deviation
computed from the training dataset. This processing was applied
to both the development and generalization datasets.

2.5. Noise Image Generation
We derived noise images from the actual scans within each
class to determine if the institutional scanning practices or noise
characteristics of the imaging systems confound the classification
results. As a result, they are composed of unrecognizable or
hidden patterns that are a byproduct of the scanner image
processing schemes or X-ray detection characteristics. A key
attribute of the noise image is that it must be uniform and
devoid of any perceptible patterns or structured anatomy. We
generated noise images from each patient’s CT scan using
an approach similar to (51, 52), and as shown in Figure 4.
For a scan with s sequential slices, where each slice t is an
image It ∈ R

299×299, we subtract adjacent slices to produce
s − 1 difference images DI , where DI = It − It−1 and
1 ≤ t < s. The subtraction process eliminates most of the
anatomical features seen in the scan. We then apply a Sobel
edge enhancing filter to each DI to identify and remove any
remaining anatomical patterns. Then we loop through each DI

Frontiers in Digital Health | www.frontiersin.org 5 August 2021 | Volume 3 | Article 671015

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Mahmood et al. Detecting Spurious Correlations in Radiology

FIGURE 2 | CTNet architecture. CTNet takes as input a volumetric CT scan and outputs a classification prediction. Features are extracted from each slice of the CT

scan by the Inception v4 network. The output feature vector is then reduced in dimension with a single convolutional layer, followed by an adaptive average pooling

operation applied over the number slices. The resulting vector is fed into a fully connected layer, which has a single output.

FIGURE 3 | Method to obtain noise maps from sequentially acquired images. Two sequential slice images are subtracted from each other (A,B). (C) Difference image

resulting from subtraction showing the sliding 30 × 30 pixel window used to extract uniform patches. (D) All patches were averaged to generate a single noise image.

to extract non-overlapping patches of size 30 × 30 pixels. The
patch size was selected to minimize the impact of the non-
uniformity of the CTHU values within the region of interest (e.g.,
due to streaking or beam hardening artifacts) (52). However,
patches of transitional boundary areas (i.e., interface between
different tissue types) consisted of discernible patterns that could
be spuriously correlated with the class labels. Consequently,
to identify and exclude boundary patches, we generated and
analyzed each patch’s histogram. First-order statistical measures,
such as skewness, kurtosis, and standard deviation, and the
number of peaks within the histogram were used to identify and
exclude boundary patches. Histograms with a skewness value
within ±0.1, kurtosis of 3.0 ± 0.5, a standard deviation less
than 16, and those with a single peak were included. Published
descriptions of the noise image generation method do not
provide choices for each of the parameters, so we chose them
via visual inspection to eliminate transition areas or edges. The
patches that met the criteria were then averaged together to create

a single noise image representation of size 30 × 30 for the DI ,
as shown in Figure 3. Finally, the s − 1 noise images for the
patient were upsampled using SINC interpolation to a dimension
of 299× 299.

2.6. Experiments
To employ the sanity tests, we processed four representations
or input formats of the same training, tuning, and held out
development test sets. Representative images for a single patient
from the cancer positive class are shown in Figure 1. The first
format we evaluated were the pancreas-only scans, as shown in
Figure 1C. We used the provided annotations to exclude the
organs surrounding the pancreas and pancreas with tumor for
this format. The cropped portion shown in Figure 1Cwas resized
to an input dimension of 299× 299 before being fed into CTNet.
The second format, referred to as the original with the pancreas
(WP) scans and shown in Figure 1A, consisted of the uncropped
patient CT scans where the normal or abnormal pancreas was
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present. For the third format shown in Figure 1B, the pixels that
composed the normal or abnormal pancreas were replaced with
zeros. These are referred to as the original without a pancreas
(WOP) scans. The fourth format, shown in Figure 1D, consisted
of the noise images. We trained four systems, one for each input
format, and tested each of them with the held-out test sets of
the other formats. Since annotations were not available for the
generalization test set, we generated two formats: (1) the original
uncropped images, which are referred to as DECT original WP,
and (2) the noise images, which are referred to as DECT noise
scans. We performed stratified five-fold cross-validation with the
same division of scans across the four systems. For this study,
we consider the baseline against which all results are compared
to be the system trained with the pancreas-only scans shown in
Figure 1C, as it should be the representation that maximizes the
classification performance.

2.7. Statistical Analysis
Each system’s classification performance was assessed using the
area under the receiver operator characteristic curve (AUC).
We report the average AUC and corresponding 95% confidence
interval (CI) across cross-validation runs. An average AUC score
of 1.0 represents perfect classification performance. The average
AUC across runs and the corresponding confidence intervals
were determined using R (Rstudio version 3.6.2) with the package
cvAUC for cross-validated AUC (53). In addition to confidence
intervals, statistically significant differences between test runs was
confirmed with the DeLong test statistic for AUCs (54). The level
of significance was set at P ≤ 0.05.

3. RESULTS

Table 2 provides an overview of how the sanity tests should
be interpreted and implemented in practice. Figure 4 shows
the performance of each trained system on the held-out tests
and the generalization test set. The diagonal elements for the
development tests correspond to training and testing on the
same input format (i.e., self-tests), while the others represent
AUC scores from training on one format and testing on the
other (i.e., non-self tests). We expect a system trained on one
format to perform the best on test data processed in an identical
manner, which is consistent with the self-test results along the
diagonal of Figure 4. For instance, the system trained with the
pancreas-only images achieved an AUC of 0.82 (95% CI: 0.73–
0.92) on its self-test format. If the system was considered to pass
the sanity tests, we would expect it to have the highest AUC
across self-test results and the original WP test format. However,
instead, it is the lowest among the self-tests. Its performance
is significantly lower (P < 0.001) than systems trained on the
original WP and WOP, 0.95 AUC (95% CI: 0.89–1.0) and 0.97
AUC (95% CI: 0.93–1.0), respectively.

The second and third rows of Figure 4 show the performance
of the systems trained with the original WP and WOP formats.
Both systems performed exceptionally well on their self-test
sets and each other’s test format, but they both saw a drop in
performance when they were evaluated with the pancreas-only
and noise image test formats (P < 0.001). The performance

across test formats suggests that the confounding variables within
the development data are readily associated with the image-
level labels. Several sources of bias may be responsible for the
observed results, such as the differences in scan parameters,
types of scanners, choice of reconstruction algorithms, and the
distribution of contrast within the pancreas.

The noise-only system achieved the highest AUC of 0.98
(95% CI: 0.96, 1.0) among the self-test sets, suggesting that
discriminative but unrecognizable features unique to each dataset
were used to distinguish each class. The results observed on
the development data are confirmed on the generalization tests
where each system’s performance is significantly lower than on
the development data self-tests (P < 0.001). For example, the
average AUC achieved by the pancreas-only system on the self-
test was 0.82 (95% CI: 0.73, 0.92), but its performance was
significantly lower on the DECT original WP generalization
test format (P < 0.001). One reason for the reduced
performance on the generalization dataset is the difference in
scan parameters with the development datasets. The DECT scans
are synthesized images that depict anatomy from the viewpoint
of a monochromatic X-ray source. However, within the clinic, AI
systems may be tasked with assessing scans acquired on any type
of CT system.

4. DISCUSSION

Identifying covariates that cause unintended generalization or
those that cause machines to fail unexpectedly in deployment
remains a challenge across deep learning applications. We
described sanity tests that could reveal if covariates drive
classification decision-making and tested them with a case
study designed to classify pancreatic cancer from CT scans.
Failing these sanity tests provides an early indicator of potential
biases being responsible for the observed performance and that
further in the development process, a system will unintentionally
generalize or have much lower performance when deployed. We
argue that others should routinely use these tests in publications.
For industry, these tests could save time and money. Failing
them indicates that the target objects’ attributes are not being
used by the systems undergoing analytical and clinical validation
studies. Hence, as we show, relying only on conventional testing
strategies with development data will not provide adequate
assurances of generalization. Our sanity tests can be used
with development data as long as ROIs are available or a
background noise image can be generated. While we focused
on binary classification, the sanity tests apply to the multi-
class classification and regression problems, with appropriate
statistical analysis modifications.

The proposed sanity tests are designed to identify early when
an AI system reaches the correct classification for the wrong
reasons, but they are not designed to identify the reason for the
incorrect decision. As far as what those reasons are, it may not
be possible to tease them apart given the limitations of public
datasets where private and non-private meta-data are removed.
For instance, both NIH (40) and MSD (41) reports did not
indicate if iterative reconstruction (IR) was used, the size or
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TABLE 2 | The proposed sanity tests to assess the reliability of medical AI systems.

Sanity test Implications of failing the test Does CTNet pass the test?

Train and test with and without the target:

The system should achieve an AUC of around 0.5 when tested without

the target in test images.

Images contain spurious covariates that can be exploited by the

model.

✗

Train and test using noise images:

The system should achieve an AUC of around 0.5 on test data.

Classification performance cannot be attributed to recognition of

the target (i.e., covariates contribute to the learned classification

decision rule).

✗

Test system with different sized ROIs:

The additional or reduced context should not alter the performance.

The system cannot decorrelate features of the target from its

co-occurring context [i.e., Contextual Bias (55)].

✗

FIGURE 4 | Area under the curve (AUC) heatmap across models for each input format type. Each row indicates the cross-validated mean AUC with 95% confidence

intervals for the systems trained with a given input format and evaluated with all other formats from the development dataset (first four columns). The last two columns

show the performance of each system on the generalization dataset. The diagonal elements on the development tests correspond to training and testing with the

same input format. Red indicates the highest AUC values, while light blue indicates the lowest AUC values. The non-significant difference on the original with pancreas

(WP) and without pancreas (WOP) development test sets indicates that spurious correlations drive the performance observed on the self-test sets, instead of features

specific to the pancreas or pancreatic cancer. **Development test images processed identically to the data used for training that model. WP, With pancreas; WOP,

Without pancreas; DECT, Dual Energy CT.

number of data channels used to acquire images, and the Bowtie
filter. These parameters were also not present in the DICOM
meta-data. Modern CT scanners often use varying strengths
of IR to suppress image noise, but with the application of IR,
images appear smoother, and depending on the strength, the
noise texture becomes finer or more coarse (56–58). Another
source of bias is the quality of the annotations and accuracy of
information released about a public dataset (59). For example,
Suman et al. found that parts of the pancreas were absent in the
provided segmentation’s for the NIH pancreas-CT dataset (59).
In addition, we observed a discrepancy between the reported slice

thickness from the MSD dataset (41) and existing information
in the DICOM meta-data. The report indicates that all scans
were acquired using a slice thickness and reconstruction width
of 2.5, but the information derived from the DICOM meta-data
shows that the slice thickness’s for some scans was: 0.70, 1.25,
1.5, 2.0, 2.5, 3.75, 4.0, 5, and 7.5 mm. A common slice thickness
could prevent resampling errors (e.g., aliasing) that may arise
from down or up-sampling the CT scans. The discrepancy
and missing meta-data motivates the need for data-reporting
standards and standardized study designs with more rigorous
validation procedures.
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We did not attempt to use techniques to mitigate the
impact of spurious correlations. These include adversarial
regularization (19, 60, 61), model ensembling (62, 63), invariant
risk minimization (64, 65) and methods that encourage
grounding on causal factors instead of spurious correlations (66–
69). However, as shown by Shrestha et al. (70), methods that
were thought to overcome spurious correlations were behaving
as regularizers instead of overcoming the issues that stemmed
from the covariates. Our sanity tests could be used with these
mitigation methods to measure their true impact, in that we
would expect them to only be able to provide significant benefit
when the target is present.

There are some limitations to this study. As with most AI
studies involving medical image analysis, we trained and tested
with a small dataset and did not account for spectral or disease
prevalence biases within development or generalization data.
Results stemming from small-data may not always transfer to
scenarios where larger datasets are used to train systems, but
this is in part why sanity tests when using smaller datasets are
critical since it is likely easier for spurious correlations to impact
them. Also, since the goals of this study were to define sanity
tests and illustrate their application, we did not investigate the
reasons behind the reduced performance on the generalization
data. However, the reduced performance could be a byproduct
of the divergent scan parameters and difference in scan type (i.e.,
SECT vs. DECT and scan phase) between the development and
generalization datasets. In general, our sanity tests help reveal
when an AI model predicts the right answer for the wrong
reasons and will therefore have a large gap between development
and external generalization tests. A complementary approach
uses visualization methods to understand if a system is not
looking at the target to perform its classification.

In conclusion, we demonstrated how our proposed sanity
tests could identify spurious confounds early, using development
data solely. While the methods are simple, we argue that sanity
tests similar to these should be performed wherever possible,
especially with smaller datasets, and if no external dataset is
available. Otherwise, study results can be very misleading and fail
to generalize on other datasets. In safety-critical AI domains, such
as healthcare, sanity tests could prevent harm to patients, and
they could better prepare novel medical AI systems for regulatory
approval. We present a workflow and practical sanity tests that
can reliably reveal error-prone systems before influencing real-
world decision-making.
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