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Abstract

The impairment of cognitive function in Alzheimer’s disease is clearly correlated to synapse

loss. However, the mechanisms underlying this correlation are only poorly understood.

Here, we investigate how the loss of excitatory synapses in sparsely connected random

networks of spiking excitatory and inhibitory neurons alters their dynamical characteristics.

Beyond the effects on the activity statistics, we find that the loss of excitatory synapses on

excitatory neurons reduces the network’s sensitivity to small perturbations. This decrease in

sensitivity can be considered as an indication of a reduction of computational capacity. A full

recovery of the network’s dynamical characteristics and sensitivity can be achieved by firing

rate homeostasis, here implemented by an up-scaling of the remaining excitatory-excitatory

synapses. Mean-field analysis reveals that the stability of the linearised network dynamics

is, in good approximation, uniquely determined by the firing rate, and thereby explains why

firing rate homeostasis preserves not only the firing rate but also the network’s sensitivity to

small perturbations.

Author summary

Relating the properties of neuronal circuits with concrete functional roles pertaining to

cognition and behavior is a complex endeavour. This is especially true when it comes to

diseases and dysfunctions, where we are often left with high-level clinical observations

(e.g. cognitive deficits and structural brain changes), without understanding their rela-

tionship. A potentially fruitful approach to address this problem consists of employing

simplified mathematical models to test the relevant hypotheses, incorporating pathophysi-

ological observations and evaluating their tentative functional consequences, in relation

to clinical observations. In this work, we employ a spiking neural network model to study

the effects of synaptic loss, as it is often observed in various neurodegenerative disorders,

in particular Alzheimer’s disease (AD). We show that the loss of synapses drives the net-

work into a less sensitive regime, which potentially accounts for the cognitive deficits of

AD. We also endow the circuits with a compensation mechanism which restores the
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mean network activity by increasing the weight of the remaining connections. We demon-

strate that this very simple compensatory mechanism can prevent the network from drift-

ing into the less sensitive regime and recover all other dynamical features that are changed

due to synapse loss. We further develop an analytical model that accounts for this surpris-

ing finding.

Introduction

Accelerated synapse loss is a prominent feature in many types of neurodegenerative disorders,

such as Huntington’s disease, frontotemporal dementia or Alzheimer’s disease [1–5]. In Alzhei-

mer’s disease (AD), synapse loss appears to be particularly important, as it is widespread across

different brain areas and constitutes a key marker in the AD pathology (see, e.g., [5]). The

mechanisms underlying AD related synaptic modifications are currently the subject of intensive

research, which has revealed that a number of different alterations at the molecular level may

ultimately lead to synaptic decay [6–8], such as an abnormal occurrence of oligomeric and

aggregated β-amyloid-peptides (Aβ), an abnormal phosphorylation of the tau protein and the

occurence of neurofibrillary tangles, and a disrupted signaling in neuroinflammatory and oxi-

dative stress responses [8–11].

Previous studies have uncovered a strong positive correlation between cognitive impairment

in AD patients and synapse loss [12–19]. In contrast, correlations between the cognitive status

and the density of plaques or tangles have frequently been reported as rather weak. Synapse loss

is therefore not merely a structural epiphenomenon of AD, but appears to be the physical corre-

late of cognitive decline. While the most commonly reported early symptom of AD is memory

deterioration, the disease is associated with a wide range of other cognitive problems such as

stereotyped, repetitive linguistic production, visuo-spatial deficits and disorientation, apraxia,

and loss of executive functions, i.e. planning and abstract reasoning [20, 21]. The observed pro-

gression of cognitive symptoms goes hand in hand with brain tissue atrophy [22–24] associated

with loss of synapses [25], suggesting that the synaptic degeneration may underlie the cognitive

deterioration following the gradual involvement of different, functionally specialized brain

regions.

It is known that AD-related molecular and cellular alterations, such as abnormal deposi-

tions of Aβ plaques or atrophy rates, often significantly precede cognitive symptoms (see, e.g.,

[26, 27], and references therein). However, mechanisms exist that counteract synapse loss [28,

29], at least in the early stages of the disease. Various studies have shown that the loss of synap-

ses is accompanied by a growth of remaining synapses, such that the total synaptic contact area

(TSCA) per unit volume of brain tissue is approximately preserved [12, 17, 18, 30]. It is likely

that such compensatory mechanisms underlie the observed delay in the onset of cognitive

symptoms with respect to the onset of symptoms at the cellular level [31]. The heterogeneity in

the disease progression and the propensity to transition from healthy cognitive aging to mild

cognitive impairment and dementia may thus be associated to a subject’s ability to counteract

synapse loss and, to a certain extent, maintain global functionality in a way that masks the pro-

gressive underlying pathophysiology. Such homeostatic, regulatory mechanisms appear to play

an important role in counteracting structural deterioration and preserving computational

capabilities. On the other hand, they pose important challenges to the network’s functionality

since they have the potential to disrupt the specificities of a circuit’s microconnectivity (namely

the distribution of synaptic strengths) and thus degrade its information content (e.g. [32]).

Successful homeostatic compensation thus requires a balanced orchestration which preserves
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the system’s computational properties and macroscopic dynamics, e.g., average firing rates [33,

34] and E/I balance [35], as well as the relative ratios and distributions of synaptic strengths

(e.g. synaptic scaling mechanisms; [36, 37]).

Understanding the circuit-level consequences of synaptic alterations, entailing both the

deregulation by synapse loss and recovery through homeostasis, is essential to understand

whether they represent a negative symptom of the disease or a compensatory response. One

likely effect is the modification of the network’s firing rate. In order to maintain a physiologi-

cal operating regime far from activity extremes (quiescence or epileptic activity), a network

needs the capacity to regulate its firing rate. The degree to which this may be impaired in AD

is still under debate (see [10, 38]). While the effects of synaptic alterations on the network

dynamics have been partially characterized, a direct link between synapse loss, network

dynamics and functional decline has yet to be systematically established, with only a few

studies addressing the topic [39–41]. However, this connection may prove fruitful, both for

understanding the disease itself and for fostering the development of new diagnostic and

therapeutic approaches. It is currently unknown to what extent homeostatic mechanisms,

such as increasing the synaptic area [12, 18], can completely recover the neuronal network’s

firing rate, nor whether the preservation of the firing rate by such mechanisms entails the

preservation of cognitive performance.

In this study, we investigate the link between structure, dynamics and function using a

recurrent spiking neural network model [42]. Despite their simplicity, such systems have been

shown to support computations, such as e.g. stimulus categorization, associative learning and

memory, information routing and propagation, etc. (see e.g., [43–48]). Additionally, although

these models have complex behavioral repertoires, they are often simple enough that their

dynamics can be assessed analytically. The stability of the dynamics can then be related to

computational task performance, such as the network’s sensitivity to perturbation and classifi-

cation capability [49, 50]. Thus, an analytical treatment of network dynamics can provide

insight into why some realizations of such networks perform better than others and how per-

formance is affected by structural changes. Theoretical studies explicitly addressing this issue

have so far focused either on the disruption of oscillations or functional connectivity of the

whole brain, or on memory only (especially memory retrieval; [39–41]).

Here, we investigate how the loss of excitatory-excitatory synapses in sparsely connected

random networks of spiking excitatory and inhibitory neurons (Sec. Computational network
model of Alzheimer’s disease) and firing rate homeostasis, based on upscaling the remaining

excitatory-excitatory connections, alters the dynamical characteristics of a network. Surpris-

ingly, we find that firing rate homeostasis can restore a variety of dynamic features caused by

synaptic loss, including the increase in spike train regularity, the drop in the fluctuations of

population activity and the reduction of the synaptic contact area (Sec. Total synaptic contact
area and firing statistics) caused by synaptic loss. In addition, we observe that synaptic loss

decreases the network’s sensitivity to small perturbations (Sec. Perturbation sensitivity and lin-
ear stability), such that a network operating near the ‘edge of chaos’ would be shifted by synap-

tic loss to a more stable regime; a shift which has been shown in previous studies to result in

a decrease in computational capacity [49–54], and may account for the cognitive deficits

observed in Alzheimer’s disease. Here, too, firing rate homeostasis counteracts the shift

towards the stable regime. We further show that these compensatory mechanisms ultimately

become exhausted if physiological limits are placed on the growth of the synapse. As it is not

obvious why simply maintaining the firing rate also maintains the stability of the network, we

analyze the stability of the linearized network dynamics and discover a strictly monotonic rela-

tionship between the firing rate and the spectral radius of the network, which explains the
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restoration of the dynamics under the influence of firing rate homeostasis (Sec. Perturbation
sensitivity and linear stability).

Results

Computational network model of Alzheimer’s disease

We study the effects of AD related synaptic alterations on the network dynamics and computa-

tional characteristics in the framework of a generic mathematical neuronal network model

(Fig 1A), which captures prominent structural and dynamical features of local neocortical net-

works such as the relative numbers of excitatory and inhibitory neurons [55, 56] and synapses

[57, 58], sparse connectivity [56, 59], small synaptic weights [60], irregular [61–63] and pre-

dominantly asynchronous spiking [64], large membrane potential fluctuations [65–68], and a

tight dynamical balance between excitatory and inhibitory synaptic currents [69]. The network

is composed of randomly and sparsely connected populations of excitatory (E) and inhibitory

(I) integrate-and-fire neurons, driven by external spiking input. The overall coupling strength

is determined by the reference synaptic weight J. For simplicity, all excitatory connections

Fig 1. Sketch of the network model of Alzheimer’s disease and homeostasis. A) The network comprises two reciprocally and recurrently

connected populations of excitatory (E) and inhibitory (I) integrate-and-fire neurons, excited by an external spiking input. Thickness of arrow

indicates relative strength of the connection. In this study, Alzheimer’s disease is modeled by removing connections between excitatory neurons

(loss of EE synapses) and upscaling of the remaining EE synapses to maintain the average firing rate (firing rate homeostasis). B–E) Sketch of

EE connection density (number of arrows in upper panels), connection strength (thickness of arrows in upper panels) and resulting single-

neuron spiking activity (lower panels). B) Intact network (without synapse loss). C) Synapse loss without homeostasis: removal of EE synapses

and resulting reduction in firing rate. D) Synapse loss with unlimited homeostasis: removal of EE synapses and increase in strength of

remaining EE synapses to maintain the average firing rate. Synaptic weights are allowed to grow without bounds. E) Synapse loss with limited

homeostasis: removal of EE synapses and bounded increase in strength of remaining EE synapses. Here, synaptic weights cannot exceed 120%

of their reference weight. The firing rate is therefore only partially recovered. For a complete description and parameter specification of the

network model, see, Sec. Network model and, S1 and S2 Tables in the Supplementary Material.

https://doi.org/10.1371/journal.pcbi.1007790.g001
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(EE and IE) and all inhibitory connections (EI and II), respectively, have equal synaptic weight:

JEE = JIE = J and JEI = JII = −gJ in the intact network (i.e. before synapse loss). The relative

strength g of inhibitory weights is chosen such that the network is dominated by inhibition, to

permit asynchronous irregular firing at low rates [70]. A complete specification of the network

model and parameters can be found in Sec. Network model and S1 and S2 Tables in the Supple-

mentary Material. An illustration of the connectivity of the excitatory population for an intact

network and an example spike train is given in Fig 1B.

We implement the effects of AD on the network connectivity by reducing the number of

excitatory synapses on excitatory neurons (EE synapses; [7, 71]), whilst keeping the number of

connections between other populations (EI, IE, II) constant. In the absence of any compensa-

tion mechanism, this modification leads to a reduction in the average firing rate (see, Sec.

Total synaptic contact area and firing statistics).
In biological neuronal networks, long-term activity levels are often stabilized by homeo-

static regulation [20, 72, 73]. While a maintenance of firing rates has been observed at the level

of individual neurons [33], long-term recordings suggest a predominance of a network-wide

regulation [34] targeting a constant population firing rate. Such a homeostatic stabilization of

the population firing rate can be accounted for by a global adjustment of synaptic weights (syn-

aptic scaling; [74, 75]). Indeed, in the early stages of AD, synapse loss seems to be compensated

by a growth of the remaining synapses [12, 18, 30]. To realize this mechanism in our spiking

neuronal network, we implement a firing-rate homeostasis which compensates for the loss of

EE synapses by a global increase in the weights JEE of the remaining EE synapses, thereby pre-

serving the population firing rate. (In order to demonstrate that our results also apply to other

forms of homeostasis, we also implement a local synaptic scaling mechanism, in which the fir-

ing rate is regulated at the level of individual neurons.).

For advanced AD, where a large portion of the EE synapses has been lost, a full recovery of

the population firing rate through synaptic scaling would require unrealistically large synaptic

weights. During aging and dementia, the maximum increase in synaptic size has been reported

to be in the range from 9% to 24% (see [17], and references therein). We incorporate these

findings by introducing an optional upper bound for the weight JEE of EE synapses.

To uncover the differential effects of excitatory synapse loss and homeostasis, in this study

we investigate the dynamical and computational characteristics of a network for three different

scenarios: synapse loss without homeostatic compensation (Fig 1C), synapse loss with an

unlimited firing rate homeostasis where synaptic weights can grow without bounds (Fig 1D),

and synapse loss with limited firing rate homeostasis where the synaptic weights cannot exceed

120% of the weight in the intact reference network (Fig 1E).

Note that the model’s high level of abstraction enables us to identify fundamental mecha-

nisms, to reduce the risk of overfitting, and to arrive at general conclusions that may be trans-

ferred to other brain regions or even different spatial scales. Empirically observed features of

biological neural networks such as heavy-tail synaptic weight distributions [76, 77] or active

dendritic processing [78] are not explicitly incorporated. As a consequence, model parameters

such as synaptic weights have to be regarded as “effective” parameters and cannot be mapped

to biological parameters in a one-to-one fashion. Selecting a particular set of parameters to be

considered “biologically realistic” would be misleading. Therefore, rather than focusing on a

specific configuration of the model, we systematically vary both the reference synaptic weight J
and the extent of synapse loss to uncover the general relationship between these parameters

and the dynamical and computational properties of the network.

Fig 2 demonstrates the main effects of varying these parameters. The firing rate of a net-

work increases monotonically with the choice of reference synaptic weight J; for a network

with a given J, the firing rate of the network decreases with the loss of EE synapses, with the
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majority of the rate reduction occurring in the range 0–20% (Fig 2A). Likewise, for a given

degree of synaptic loss, the firing rate increases with the strength of the remaining EE synapses

(Fig 2B). Throughout this work, we investigate the behaviour of the network across the two

demensional parameter space spanned by the reference synaptic weight J and the extent of syn-

apse loss. The results are typically visualized with the help of contour plots whose interpreta-

tion in the context of variations in firing rate is illustrated in Fig 2C, in order to facilitate their

comprehension. Note that a reduction of synapses of 95% is of course not biologically plausi-

ble; we chose generous ranges for both parameters to give a better visulization of the behaviour

of the system and to demonstrate the surprisingly strong effects of homeostasis.

Total synaptic contact area and firing statistics

In the absence of homeostatic compensation (left column of Fig 3), removal of excitatory syn-

apses on excitatory neurons naturally results in a decrease in the population firing rate ν, irre-

spective of the synaptic-weight scale J (Figs 2 and 3A). An upscaling of the remaining EE

synapses (middle column) allows us to preserve the population firing rate, even if substantial

amounts of synapses are removed (vertical contours in Fig 3B). If the maximum synaptic

weight is limited, firing rates are preserved only up to a critical level of synapse loss (early

stages of AD; Fig 3C).

Experimental studies have shown that, in early AD, the reduction in the number of synapses

is accompanied by a growth of the remaining synapses such that the total synaptic contact area

(TSCA) per unit volume is approximately preserved [12, 18, 30]. Our simple AD network

model reproduces this finding if we define the TSCA as the product of the number of EE con-

nections and the synaptic weight JEE (Sec. Synaptic contact area and characterization of net-
work activity). Without homeostatic upscaling of EE weights, the TSCA is proportional to the

number of EE connections and therefore quickly decreases with increasing levels of synapse

loss (Fig 3G). In the presence of firing rate homeostasis, however, the TSCA remains largely

constant unless a majority of synapses is lost (Fig 3H) or the maximum synaptic weight is

reached (Fig 3I). We conclude that the experimentally observed stabilization of the TSCA in

the face of synapse loss may be a consequence of a homeostatic synaptic scaling regulated by

the average population firing rate.

In physiologically relevant low activity regimes, neuronal firing is determined both by the

mean as well as by fluctuations in the synaptic input. A reduction in the number of synapses

followed by an upscaling of synaptic weights may preserve the average population firing rate; it

Fig 2. Effect of different parameter configurations on the network’s firing rate. The time and population-averaged firing rate is explored with respect to two

parameters: the synaptic weight J and the loss of EE synapses. In A the EPSP amplitude is fixed (J 2 {0.1, 1, 2, 3}mV, represented by a circle, square, triangle and

diamond markers, respectively) and the firing rate ν is plotted against various degrees of synapse loss. In B the firing rate ν is plotted against the synaptic weight

J for four different degrees of EE synapse loss (0%, 10%, 30%, 70%, with circle, square, triangle and diamond markers). The information of these two plot is

combined in the contour plot C, which shows the dependence of the firing rate ν (colour coded) on synaptic reference weight J and the degree of synapse loss.

Vertical rose lines correspond to the lines plotted in A, horizontal lines to the yellow lines in B. For visualization purposes, markers show only a subset of the

data. All plotted data corresponds to the mean across 10 random realizations.

https://doi.org/10.1371/journal.pcbi.1007790.g002
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cannot, however, simultaneously preserve the mean and the variance of the synaptic input

currents. The neurons’ working point, i.e. the statistics of the synaptic input, will inevitably

change. A priori, it is therefore not clear to what extent synapse loss and firing rate homeostasis

alter the overall firing statistics in the recurrent network beyond the average firing rate. Here,

we address this question by studying the irregularity of spike generation by individual neurons,

measured by the coefficient of variation CV of the inter-spike interval distribution, and spike-

train synchrony, assessed by the normalized variance of the population spike count, the Fano

factor FF, in 10ms time intervals (see, Sec. Synaptic contact area and characterization of net-
work activity). Without homeostatic compensation, synapse loss generally results in spike pat-

terns that are less irregular (Fig 4A) and less synchronous (Fig 4D). In the presence of firing

rate homeostasis, however, both the CV and the FF are largely preserved (Fig 4B and 4E; light

spot in E is due to a significant outlier in one simulation). Only if the level of synapse loss

becomes too severe or if the synaptic-strength limits are reached (limited homeostasis), the CV

and the FF are reduced (Fig 4B, 4C, 4E and 4F).

For illustration, Fig 5 depicts the spiking activity for four example parameter settings

marked by the symbols in Figs 3 and 4. As Fig 4E and 4H already suggest, the overall spiking

activity, e.g the number and the duration of synchronous event and the spiking frequency of

single neurons, of the homeostatic network (Fig 5C) and the reference network (Fig 5A) are

Fig 3. Effect of synapse loss and firing rate homeostasis on firing rate, synaptic weights and total synaptic contact area. Dependence of the time and

population averaged firing rate ν (A–C), synaptic weight JEE (D–F) and the relative total synaptic contact area (TSCA) of EE synapses (G–I) on the reference

weight J and the degree of EE synapse loss in the absence of homeostatic compensation (left column), as well as with unlimited (middle column) and limited

firing rate homeostasis (right column). Color-coded data represent mean across 10 random network realizations. Symbols mark parameter configurations

shown in Fig 5.

https://doi.org/10.1371/journal.pcbi.1007790.g003
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Fig 4. Effect of synapse loss and firing rate homeostasis on spike train statistics. Dependence of the coefficient of variation CV of inter-spike

intervals (A–C) and the Fano factor FF of the population spike count (binsize b = 10ms; D–F) on the synaptic reference weight J and the degree of EE

synapse loss in the absence of homeostatic compensation (left column), as well as with unlimited (middle column) and limited firing rate homeostasis

(right column). Color-coded data represent mean across 10 random network realizations. Symbols mark parameter configurations shown in Fig 5.

https://doi.org/10.1371/journal.pcbi.1007790.g004

Fig 5. Effect of synapse loss and firing rate homeostasis on spiking activity. Spiking activity (dots mark time and sender of each

spike) in an intact reference network (no synapse loss, JEE = 1.4mV; A), as well as in networks where 30% of the EE synapses are

removed: B) no homeostasis (JEE = 1.4mV), C) unlimited homeostasis (JEE = 2.02mV), D) limited homeostasis (JEE = 1.68mV). In all

panels, the synaptic-weight scale is set to J = 1.4mV. Examples depict parameter configurations marked by corresponding symbols in

Figs 3 and 4 (cf. marker in lower right corner of each panel). The values for the parameters explored in these figures (synaptic weight

J, EE synaptic weight JEE, total synaptic contact area TSCA, firing rate ν, coefficient of variation CV and Fano factor FF) are listed

next to each plot. Regions below and above the gray horizontal line show spiking activity of a subset of 100 excitatory (E) and 25

inhibitory neurons (I), respectively.

https://doi.org/10.1371/journal.pcbi.1007790.g005
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very similar. Only the exact timing of the synchronous events and the single neuron spiking

differ. In the AD network without homeostasis (Fig 5B), the firing rates of both excitatory and

inhibitory neurons are decreased. The number of synchronous events, compared with the ref-

erence network (Fig 5A), does not seem to be decreased, but their duration does. The network

with limited homeostasis (Fig 5D) is more similar to the AD network without homeostasis

than the unlimited homeostasis networks, because the restriction in synaptic growth prevents

the rate from being recovered.

Perturbation sensitivity and linear stability

An open question in Alzheimer’s disease research is how cellular damage such as synapse loss

affects patients’ cognitive capabilities. A number of theoretical studies have shown that recur-

rent neuronal networks exhibit optimal computational performance characteristics for a vari-

ety of task modalities if they operate in a dynamical regime where small perturbations are

neither instantly forgotten nor lead to entirely different network states [49–54]. In dynamical

systems theory, this regime has been termed the “edge of chaos” as it represents the transition

from a stable state with a low sensitivity to small perturbations to a chaotic state where the sen-

sitivity to small perturbations is high. Here, we investigate the role of synapse loss and firing

rate homeostasis for the network’s sensitivity to perturbations as an indicator of its overall

computational performance.

To assess the perturbation sensitivity, we simulate a given network twice with identical ini-

tial conditions and identical realizations of external inputs. In the second run, we apply a small

perturbation by delaying one of the external input spikes to a single neuron by a fraction of a

millisecond (Fig 6). In stable regimes, the effect of this perturbation on the spiking response is

transient and quickly vanishes (Fig 6A, top). In chaotic regimes, in contrast, the small pertur-

bation leads to diverging spike patterns (Fig 6B, top). We quantify the network’s perturbation

sensitivity S = 1 − |R| in terms of the long-term correlation coefficient R between the low-pass

filtered spike responses in the two runs (Fig 6, bottom). With this definition, S = 0 and S = 1

correspond to insensitive (stable) and highly sensitive (chaotic) networks, respectively (for

details, see, Sec. Synaptic contact area and characterization of network activity).

For small synaptic weights J, the network dynamics is always stable (S = 0) for our choice of

parameters, irrespective of the degree of synapse loss and the absence or presence of homeo-

static compensation (Fig 7). In this regime, the perturbation has no long-term effect: after a

transient phase, the response spike patterns in the perturbed and the unperturbed simulation

are exactly identical (at the temporal resolution Δtf = 1ms of the recorded signals). The intact

networks (zero synapse loss) enter a chaotic regime (S> 0) if the synaptic weights J exceed a

certain critical value. Removal of EE synapses without homeostatic compensation leads to a

shift of this transition towards larger synaptic weights (Fig 7A). Networks in the chaotic regime

eventually become insensitive to perturbations with progressing EE synapse loss. In the pres-

ence of firing rate homeostasis, in contrast, the perturbation sensitivity is preserved (color

gradient in Fig 7B is predominantly left to right, rather than top to bottom). Unless the homeo-

static strengthening of EE synapses is limited (limited homeostasis; Fig 7C and S3 Fig in the

Supplementary Material), this maintenance of the perturbation sensitivity is observed even if

the degree of synapse loss is substantial (> 80%).

We conclude that synapse loss, as observed in Alzheimer’s disease, tends to reduce the per-

turbation sensitivity of the affected networks, and may thereby impair their computational

performance for a broad range of task modalities. Homeostatic mechanisms that preserve the

average network activity (firing rate) can prevent this reduction in sensitivity and, hence, the

decline in computational capability.
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So far, the reported results on the perturbation sensitivity were obtained by network simu-

lations for a specific set of parameters. In the following, we employ an analytical approach;

firstly, to show that our findings are general and do not depend on the details of the network

model, and secondly, to shed light on the mechanisms underlying the reduction in perturba-

tion sensitivity by synapse loss and its maintenance by firing rate homeostasis.

As shown in [79], the dynamics of large random networks of analog nonlinear neurons

without (or with constant) external input undergoes a transition from a stable to a chaotic

Fig 6. Perturbation sensitivity. Top: Example spiking activity (dots mark time and sender of each spike) of two identical

networks (identical neuron parameters, connectivity, external input, initial conditions) with (black dots) and without

perturbation (purple dots). The perturbation consists in delaying one external input spike at time t� = 400ms by δt� = 0.5ms.

The vertical red line marks the time of the perturbation. Spikes of only 10% of all neurons are shown. Neurons below and

above the horizontal gray line correspond to excitatory and inhibitory neurons, respectively. Bottom row: Perturbation

sensitivity S(t) = 1 − |R(t)| obtained from the correlation coefficient R(t) of the low-pass filtered spike trains generated by the

unperturbed and the perturbed network (black and purple dots in top panels; see, Sec. Synaptic contact area and
characterization of network activity). A) Stable dynamics (J = 0.45mV, KEE = 100). B) Chaotic dynamics (J = 1.75mV, KEE =

100).

https://doi.org/10.1371/journal.pcbi.1007790.g006

Fig 7. Effect of synapse loss and firing rate homeostasis on perturbation sensitivity. Dependence of perturbation sensitivity S on the synaptic

reference weight J and the degree of EE synapse loss in the absence of homeostatic compensation (A), as well as for unlimited (B) and limited firing rate

homeostasis (C). Color-coded data represent mean across 10 random network realizations. Superimposed black and gray curves mark regions where

the linearized network dynamics is stable (gray dashed; spectral radius ρ = . . ., 0.6, 0.8), about to become unstable (black; ρ = 1), and unstable (gray

solid; ρ = 1.2, 1.4, . . .). Pink symbols mark parameter configurations shown in Figs 3 and 5.

https://doi.org/10.1371/journal.pcbi.1007790.g007
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regime at some critical synaptic coupling strength. The study further revealed that this transi-

tion coincides with a critical point where the local linearized network dynamics becomes

unstable. For more realistic networks of spiking neurons, networks with fluctuating external

input or networks with a more realistic connectivity structure, a strict correspondence between

the onset of chaotic dynamics and linear instability could not be established [54, 80–84]. Nev-

ertheless, various previous studies suggest that the two transition types are interrelated, in the

sense that a change in the linear stability characteristics is accompanied by a change in the net-

work’s sensitivity to small perturbations.

Here, we propose that the linear stability characteristics can serve as an indirect and easily

accessible indicator of the network’s sensitivity to small perturbations, and hence its computa-

tional capability. As described in Sec. Linearized network dynamics and stability analysis, the

linearized network dynamics is determined by the effective connectivity matrix W. Its compo-

nents wij = Wij (i, j 2 {1, . . ., N}) measure the effect of a small fluctuation in the firing rate νj(t)
of a presynaptic neuron j on the rate νi(t) of the postsynaptic neuron i at a specific working

point determined by the stationary firing rates ν = (ν1, . . ., νN). The effective connection

weights are hence determined not only by the synaptic weights Jij, but also by the excitability of

the target cell i, which is in turn determined by the statistics of the synaptic input fluctuations,

i.e. the dynamical state of the local network. The linearized dynamics becomes unstable if the

spectral radius ρ = Re(λmax), the real part of the maximal eigenvalue λmax of W, exceeds unity.

Loss of EE synapses corresponds to setting a fraction of the excitatory components wij

(i; j 2 E) to zero. In the absence of homeostatic compensation, we expect this weakening of

positive feedback to have a stabilizing effect. The dependence of the effective weights wij on the

working point, however, leads to a non-trivial effect of synapse loss and firing rate homeostasis

on the spectral radius ρ. Here, we compute ρ by employing the diffusion approximation of the

leaky integrate-and-fire neuron and random-matrix theory (for details, see, Sec. Linearized
network dynamics and stability analysis).

As shown in Fig 7 (black and gray curves), the linear stability characteristics (as measured

by the spectral radius ρ) bear striking similarities to the sensitivity to perturbations. In the

absence of homeostasis, loss of EE synapses leads to a fast decrease in ρ. Linearly unstable

networks quickly become stable (Fig 7A). Firing rate homeostasis, in contrast, preserves the

spectral radius ρ, even if a substantial fraction of EE synapses is removed. Linearly unstable

networks remain unstable (Fig 7B), until the homeostatic resources are exhausted (Fig 7C).

The analytical approach described in Sec. Linearized network dynamics and stability analy-
sis provides us with an intuitive understanding of why and under what conditions firing rate

homeostasis preserves the linear stability characteristics in the face of synapse loss. The analysis

shows that, in the presence of firing-rate homeostasis, the spectral radius ρ is uniquely deter-

mined by the stationary average firing rate (red points in Fig 8A and Eq 18). For the parame-

ters chosen in this study, an approximately unique dependence on the firing rate is also

observed in the absence of homeostasis and for limited homeostasis (blue and yellow points in

Fig 8A). Network simulations reveal similar findings for the perturbation sensitivity S (Fig 8B).

For unlimited homeostasis, the firing rate, the perturbation sensitivity and the spectral radius

remain (approximately) constant during synapse loss (red points in Fig 8). In the absence of

homeostasis or for limited homeostasis, firing rates change; however, the relationship between

firing rate and spectral radii ρ and perturbation sensitivities S nevertheless remains constant

(red, blue and yellow points in Fig 8 lie over one another). The number KEE and the strength

JEE of EE synapses therefore play only an indirect role by determining the stationary firing rate

ν. Any combination of KEE and JEE that preserves ν will simultaneously preserve ρ (and S).

The unique dependence of the spectral radius ρ on the firing rate ν is a consequence of the

working-point dependence of the effective weights wij� η(νi)Jij/σi, where η(νi) is a function of
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the firing rate νi of the target neuron i (see Eq 16). To maintain the stationary firing rate νE of

excitatory neurons, the synaptic weights JEE are increased to compensate for the loss of excit-

atory synapses, i.e. for the decrease in the number KEE of excitatory inputs. This increase in the

synaptic weights Jij (for neurons i, j both in the excitatory population) is accompanied by an

increase in the variance s2
i of the synaptic input received by the target neuron i. If the response

firing rate νi is kept constant (as is the case in the presence of firing rate homeostasis), an

increase in σi leads to a decrease in neuron i’s sensitivity to a modulation of the input current

caused by a spike of the source neuron j. This interplay between an upscaling of the weights Jij
and a downscaling of the neuron’s modulation sensitivity restricts the growth in the effective

weight wij, and, ultimately, leads to a preservation of the spectral radius ρ. In Sec. Linearized
network dynamics and stability analysis, we demonstrate this effect for a homogeneous net-

work of leaky-integrate-and-fire neurons. The derivation relies on the assumption that the

synaptic weights are sufficiently small and the rate of synaptic events is high (diffusion approx-

imation), that the stationary firing rates νE and νI of excitatory and inhibitory neurons are

identical (homogeneity), and that the input fluctuations caused by external sources are small

compared to those generated by the local network.

The interplay of hypo- and hyperactivity and its effect on E/I balance and

perturbation sensitivity

Despite the broad scope of pathological changes observed in AD, we have only considered the

effect of synapse loss in our AD model so far. The reason for this simplification is the strikingly

high correlation between synapse loss and cognitive decline in AD [12–19], which suggests it

plays a particularly prominent role in AD’s pathophysiology. We have shown that the loss of

EE synapses leads to a decreased firing rate (hypoactivity, see, Sec. Total synaptic contact area
and firing statistics). Our theoretical analysis shows that this effect also generalises to the

unspecific loss of synapses (see, S2 Fig in Supplementary Material). Another, seemingly con-

tradictory observation, is the occurrence of hyperactive episodes (increased network activity,

epileptic discharges) that predominantly take place at the initial stages of the disease [85–91].

It has been argued that this hyperactivity is one of the main disease triggers, being responsible

for a broad range of subsequent pathologic alterations, such as changes in synaptic receptor

expression, synapse loss and neuronal degeneration (for review, see [92]). Accordingly,

Fig 8. Firing rate as predictor of linear stability and perturbation sensitivity. Dependence of the linear stability quantified by the spectral radius ρ (A;

theory) and the perturbation sensitivity S (B; simulation results) on the mean stationary firing rate νE of the excitatory neuron population in the absence

of homeostasis (blue), as well as for unlimited (red) and limited firing rate homeostasis (yellow). Scatter plots depict data for various reference weights

J 2 {0, . . ., 3}mV and various degrees of synapse loss from 0% to 50%. Same data as in Figs 7, 12D–12F and 12M–12O.

https://doi.org/10.1371/journal.pcbi.1007790.g008
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hyperactivity, which coincides with a shift of the E/I balance towards excitation [93], has been

studied intensively and several potential mechanistic causes have been suggested. For example,

amyloid beta has been shown to increase glutamate release [94]. Also the loss of particular con-

nection, e.g. from excitatory to inhibitory neurons [95] or from inhibitory to excitatory neu-

rons [90, 96], might contribute to an increased overall network connectivity.

The manifold and sometimes contradictory empirical observations make it impossible to

create a computational AD model that is in conformity with all findings. Therefore, we choose

to focus on the most established and uncontroversial phenomena. First, hyperactivity is fol-

lowed by hypoactivity with some hyperactive neurons/episodes emerging at later disease stages

[85, 86, 92]. Second, increased synaptic volume [12, 17, 18, 30] correlates with increased post-

synaptic potentials and characterize the initial stages of the disease [30, 92]. Third, synapse loss

has been observed in all disease stages and appears to be the best correlate of cognitive decline

[12–19, 97].

These well-documented observations, could be accounted for by two possible scenarios. In

the first scenario, AD-specific changes in the brain primarily lead to synapse loss and hypoac-

tivity, which is compensated for by increased synapse growth and other compensatory mecha-

nisms. These homeostatic mechanisms might be insufficiently regulated, resulting in episodes

of hyperactivity. As the disease progresses, the resources that compensate for synapse loss

become exhausted and hypoactivity prevails. In the second potential scenario, AD triggers

alterations that cause hyperactivity such as the growth of EE synapses or the weakening of par-

ticular connections that promote inhibition (presumably synapses from inhibitory to excit-

atory neurons). A compensatory reaction of the system then reduces the number of EE

synapses in order to increase the impact of inhibition (or decrease the total excitation). This

compensation may overshoot, resulting in a pathologic hypoactivity in the later stages of the

disease.

So far, we have only considered the first scenario (EE synapse loss and EE synapse growth

as a compensation mechanism) without modeling an overshooting compensation that leads

to hyperactivity. Here, we examine the consequences of such a deregulated homeostasis and

excessive increment of the EE synaptic weights in an AD network that already lost EE connec-

tions (KEE = 70). As described in Sec. Network model, this increase is not, as previously the

case, limited by a reference firing rate. As Fig 9A shows, increasing the EE weights beyond

the point in which the network reaches its reference firing rate (black line), easily leads to an

explosion of the firing rates. This rise in firing rate goes hand-in-hand with an increased sensi-

tivity (Fig 9C), which likewise exceeds the sensitivity of the reference network at similar points

(black line).

As a comparison, we examine the effects of hyperactivity according to the second scenario,

i.e. as the primary disease trigger and not as a consequence of an homeostasis overreaction, by

increasing the weight of EE synapses in a fully connected network (KEE = 100). Our results

show that even a comparably small increase to the strength of the EE synapses can increase the

network’s firing rate drastically, once again causing the network to become more sensitive to

small perturbations (Fig 9B and 9D).

A possible homeostatic response to such an increased activity is a reduction in the number

of EE synapses. To give numeric examples, in a network with a reference synaptic weight of

J = 0.85mV subject to synapse loss of 30% which is overcompensated for by increasing the EE

synapse weight by 50%, the firing rate raises form 1.2 spikes/s to about 2.6 spikes/s. Simulta-

neously, the sensitivity increases from 0.06 to 0.16 (data extracted from Fig 9A and 9C). A

homeostatic reduction of EE synapses to regain the original firing rate of 1.2 spikes/s results in

a network with a net loss of 38%, but with the reference sensitivity of 0.06.
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If the same reference network (J = 0.85mV) increases its EE weight by 10% the firing rate

raises from 1.2 spikes/s to 7.7 spikes/s accompanied by a shift in the sensitivity from 0.06 to

0.43 (data extracted from Fig 9B and 9D). If the network compensates for this with an 11% loss

of synapses, both the firing rate and the sensitivity of the reference network are recovered.

These examples demonstrates that the order of hyper/hypoactivity, synapse loss and growth is

not important for the sensitivity of the network. The only relevant quantity is the firing rate to

which the network converges.

In addition to the question of the mechanisms causing hyperactivity in AD, much consider-

ation has been given to its effects. Hyperactivity has been put in the context of a disruption of

the network’s E/I balance [93], which is assumed to make a major contribution to cognitive

decline [98, 99]. This implies that an alteration in the E/I balance automatically implies a change

in computational performance. To investigate this hypothesis, we examine the relationship of

the sensitivity of the network to the E/I balance of the reference and hyperactive networks (esti-

mated as described in Sec. Synaptic contact area and characterization of network activity). Fig

10A shows that networks exhibit a large range of sensitivities for a given E/I balance, in compar-

ison to a rather narrow range for a given firing rate (Fig 10B). We thus conclude that firing rate

is the primary indicator of the sensitivity of a network, rather than E/I balance.

Effect of local homeostasis on perturbation sensitivity

The homeostatic regulation of the firing rate seems to take place on different spatial scales in

the mammalian cortex: within each neuron or even within each dendrite [33, 100], and across

Fig 9. Effect of EE synapse growth on firing rate and sensitivity. Dependence of the firing rate (A, B) and the sensitivity (C, D) on

the synaptic reference weight and the degree of EE synapse growth for an EE synapse loss of 30% (KEE = 70) (A, C) and no synapse

loss (B, D). An EE synapse growth of zero means that all excitatory synapses have the same weight (JEE = JIE). For values larger than

zero, synapses of excitatory neurons onto other excitatory neurons are stronger than onto inhibitory neurons. Black curve in A and

C represent the firing rate and sensitivity of the reference network (no synapse loss, JEE = JIE). Color-coded data represents mean

across 10 random network realizations.

https://doi.org/10.1371/journal.pcbi.1007790.g009
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a group of neurons in a network [34]. So far, we have only considered a global (network-wide)

homeostatic regulation of the network’s firing rate in which the adjustment of a single model

parameter (the EE weight) was sufficient to achieve the reference state. For the investigations

described above, the necessary alteration to the parameter was determined in an offline fashion

according to the following procedure: simulation of the reference network to establish the

reference firing rate; deletion of synapses to create an AD network; increase of strength of

remaining synapses of the AD network until the reference rate was reached; simulation of the

AD network with the new weight configuration. Naturally, this scenario does not reflect what

happens in the brain, in which homeostatic regulation occurs continuously.

In this section, we examine to what extent our main result (the sensitivity to perturbation

as a unique function of the firing rate) is robust with respect to a local mechanism of firing

rate homeostasis combined with a continuous weight update, as proposed by [101, 102]. As

described in Sec. Network model, we first delete EE synapses and then simulate the network

equipped with the local homeostatic mechanism for an additional 1200sec. During that time,

each excitatory neuron attempts to reach its target firing rate by increasing incoming excit-

atory synapses if its rate is below the target rate, and deleting them if its rate is above the target

rate. New synapses are created either with the same weights as the existing synapses in the ref-

erence network or, assuming a process of synaptic growth, with a very small weight. Shortly

before the end of the simulation, we measure the firing rates of the neurons and sensitivity of

the network as described in Sec. Network model.
Fig 11A shows that if the local homeostasis model succeeds in regaining the rate of the cor-

responding reference network, then the sensitivity of the reference network is also regained.

Conversely, those networks that do not converge to the desired activity state do not exhibit

the sensitivity of the reference network. Unsurprisingly, networks in which new synapses are

very small are less likely to converge to the reference rate in the time allowed. Irrespective of

whether the target rate is reached, the sensitivity of the network is determined by its firing rate,

as demonstrated in Fig 11B. We thus conclude that our main finding is robust to the assump-

tion of global or local homeostasis mechanisms.

Discussion

In this article, we study the effect of Alzheimer’s disease on the dynamics and perturbation

sensitivity of recurrent neuronal networks. To this end, we employ a computational model of a

Fig 10. Firing rate and not E/I balance as predictor of linear stability and perturbation sensitivity. Dependence of perturbations sensitivity S on the

E/I balance B (A) and on the mean stationary firing rate (B) for the limited homeostasis network (compare Fig 8, yellow), a network of full synaptic

density (KEE = 100) but increased EE synapse growth (JEE 2 {1 � JIE, . . ., 1.1 � JIE}; black) and for a network in which 30% EE synapse loss (KEE = 70) is

compensated by EE synapse growth (JEE 2 {1 � JIE, . . ., 1.5 � JIE}; red). Color-coded data represents mean across 10 random network realizations.).

https://doi.org/10.1371/journal.pcbi.1007790.g010
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generic neuronal network composed of excitatory and inhibitory spiking neurons. Alzheimer’s

disease is implemented, to a first approximation, in the form of a loss of excitatory synapses

onto excitatory neurons. The resulting decrease in the firing rate is avoided (or delayed) by fir-

ing rate homeostasis, which is achieved by increasing the weights of the remaining excitatory-

excitatory (EE) synapses. In one scenario, we allow synaptic weights to grow without bounds;

in another, to ensure that they stay within the physiological range [18], we limit the maximum

synaptic weight during homeostasis to 120% of the reference weight in the intact network (i.e.

before synapse loss). We show that, in the absence of homeostatic compensation, a progressive

loss of EE synapses not only reduces the average firing rate, but also leads to an increase in

spike train regularity and a decrease in the fluctuations of the population activity.

This reduction in firing rate appears to be at odds with empirical observations, which dem-

onstrate that network activity is enhanced in the areas affected earlier (e.g. hippocampus) [87,

103, 104]. For the observations of hyperactive states dominating the initial stages of the dis-

eases and hypoactive brain activity combined with excessive synapse loss in the later stages,

two possible scenarios are discussed in literature [18, 92]. In the first scenario, hyperactivity

occurs in the first place and is compensated by activity-reducing strategies, e.g. synapse loss.

These compensation mechanisms overshoot leading to hypoactivity in later disease stages. The

physiological observation supporting this hypothesis is that oligomeric Amyloid-beta (Aβ)

aggregates primarily boost glutamate release and change its uptake [92]. On the long run, glu-

tamate spillover and the potential of Aβ oligomers to enhance the occurrence of phosphory-

lated tau in spines (for review, see [8]), causes degradation of synaptic connections [105]. This

process may justify the decreased activity, as predicted by our model, during later stages of the

disease, when the tau-pathology becomes more prominent (see, e.g., [86, 91, 106, 107]). In the

second scenario, hypoactivity primarily caused by synapse loss is compensated by changes that

increase activity. Dysregulated compensatory mechanisms would then lead to hyperactive

states. In the course of the disease, compensatory mechanisms are stretched to their limits and

cannot compensate for the excessive synapse loss anymore. Both scenarios have in common

that: a) if homeostatic mechanism are optimal, such that the physiological firing rate is

Fig 11. The effect of local homeostasis on sensitivity. Dependence of sensitivity to perturbations of networks with local homeostasis on

different synaptic reference weight J 2 {0.5mV, 1.2mV, 2.2mV} (A) and on the network’s population average firing rate ν. Red crosses:

reference networks without synapse loss (KEE = 100); black dots: networks that underwent synapse loss but that regained the reference firing

rate, assuming new synapses were created with a weight of Jlh = JEE; pink dots: as for black dots, but initial synapses created with a weight of

Jlh = 6 � 10−4mV. (B) relationship between sensitivity and firing rate for all networks, regardless of whether the original firing rate was

regained. Dots and circles as in (A); gray and pink triangles: as for black and pink dots, but for networks that could not restore the reference

rate. All data points represent the mean across all realizations of a particular network weight J and a particular degree of synapse loss (0, 20,

40, 60, 80%).

https://doi.org/10.1371/journal.pcbi.1007790.g011

PLOS COMPUTATIONAL BIOLOGY Firing rate homeostasis counteracts changes in stability caused by synapse loss in AD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007790 August 25, 2020 16 / 40

https://doi.org/10.1371/journal.pcbi.1007790.g011
https://doi.org/10.1371/journal.pcbi.1007790


maintained, the resulting network configurations feature stronger but fewer EE synapses; b)

synapse loss and hyperactivity dominates at later disease stages.

Because of these two commonalities and the possibility to draw analogies between the two

different models, we focus our analysis only on the second scenario, in which synapse loss hap-

pens first. According to our AD model, the decrease in firing rate in more advanced disease

stages can be delayed by homeostatic synaptic scaling. Moreover, our model predicts that, as

long as the homeostatic mechanisms are able to restore the network’s firing rate, the CV and

Fano factor are also preserved. Once these mechanisms are exhausted in the later disease

stages, our model predicts that the spike train regularity increases and the fluctuations in the

population activity decrease. Such phenomena (weakening of synaptic coupling decreasing the

CV) have also been found in other computational studies [80, 108]. However, an experimental

investigation on the evolution of activity statistics in the brains of AD animal models is, to our

knowledge, yet to be performed.

In addition to the effects on the activity statistics, we demonstrate that the loss of synapses

results in a reduction of the network’s sensitivity to small perturbations, which goes hand-in-

hand with an increase in linear stability. In the presence of unlimited firing rate homeostasis,

the perturbation sensitivity, as well as all other dynamical network characteristics, are pre-

served, even if the extent of synapse loss is substantial. In addition to the dynamical features,

the total synaptic contact area, which is decreased in the AD network due to synapse loss, is

largely retained. If the homeostatic synapse growth is limited, the network dynamics as well

as the total synaptic area are preserved as long as the firing rate can be maintained. Beyond

this point, the network quickly approaches the state of the pathological AD network without

homeostasis. The effectiveness of homeostatic compensation investigated in this study pro-

vides a possible explanation for why morphological disease-related changes in the brain (e.g.

synapse loss) precede any clinically recognizable cognitive deficits by years or even decades

[31]. The fact that homeostasis is able to recover all network characteristics is non-trivial

because in the homeostatic network with few but strong EE synapses, the statistics of the syn-

aptic input (mean and variance) is altered with respect to the intact reference network with

many weak EE synapses.

In order to investigate this observation further, we analyze the linear stability characteristics

of the network and find a unique dependency of the network’s spectral radius on the firing

rate under unlimited homeostasis. Previous theoretical studies have shown that simple recur-

rent neuronal networks exhibit optimal computational performance for a variety of tasks if

they operate in a regime where small perturbations are neither amplified nor instantly forgot-

ten, i.e. close to the edge of chaos [49–54]. Here, we regard the network’s sensitivity to a small

perturbation as an indicator of its computational performance in a broad sense. Assuming that

a healthy network acts close to the edge of chaos, our results suggest that the EE synapse loss

observed in AD moves the dynamics of the network away from that point towards a less sensi-

tive regime with stable dynamics.

This key prediction of our study can be tested experimentally in animal models by analyz-

ing time series of recorded neuronal activity. The degree of chaoticity can be revealed by the

application of metrics such as the power spectrum, autocorrelation function, fractal dimen-

sion, Lyapunov exponents (for review, see [108–110]), and the analysis of neuronal avalanches

[108, 110, 111]. Our prediction of such experiments would be that the degree of chaoticity

only depends on the network’s firing rate regardless of the exact synapse configuration or EI

balance (compare Sec. The interplay of hypo- and hyperactivity and its effect on E/I balance and
perturbation sensitivity).

Whereas our analysis accounts for why the sensitivity to perturbation recovers under

unlimited homeostasis, it is notable that the coefficient of variation and the Fano factor of the
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spike trains are also preserved, suggesting a relationship between the transition from the stable

to the chaotic regime and these two network activity characterizations. It has previously been

proposed that the transition in spiking neuronal networks from the homogeneous asynchro-

nous state (small sensitivity to perturbation and small CV) to the heterogeneous asynchronous

state (high sensitivity to perturbation and high CV) is equivalent to the point where analogous

rate networks become chaotic [80, 112]. Such a relationship would also explain our observa-

tion that the maintenance of the stability of the linearized network dynamics coincidences

with the maintenance of the CV.

Our results raise the question of why a shift towards more stable dynamics would be dis-

advantageous for the system. From networks that exhibit binary or rate dynamics we know

that they are insensitive to perturbation in the input and prone to fading memory (changes

in the external input are quickly forgotten, see, e.g., [113, 114]). For spiking networks, such

as the one investigated in this study, it has been shown that chaotic dynamics, by allowing

the system to be more flexible in responding to new inputs, are beneficial in periodic pattern

generation tasks and liquid state computing [45, 115, 116]. In [115], for example, a recurrent

network’s internal weights are fixed and initialized to ensure the network operates in a cha-

otic regime, while synapses feeding back from an external readout are trained with a super-

vised learning algorithm (FORCE learning). This study demonstrates the benefits of chaotic

dynamics for pattern generation tasks. Additionally, in the absence of output feedback (the

classical reservoir computing paradigm), whereby the recurrent connections are fixed and

only the weights of the connections from the recurrent network to the readout units are

trained, it has been shown that stable dynamics impairs computational performance in sim-

ple classification tasks [45, 117].

On the other hand, insensitivity to small perturbations makes the system less susceptible

to disruption by noise and is a prerequisite for the formation of stable attractors, which have

been frequently used as a memory storage mechanism in neuronal networks (e.g., [118]).

However, more recent recordings in prefrontal and association cortices reveal that single cells

exhibit complex and variable dynamics with respect to stimulus representation [119], which

neither supports the hypothesis of stable attractors nor points to a network dynamics in the

stable regime. Computational studies that have investigated the memory capacity whilst taking

heterogeneous neural dynamics into account have found that memory formation succeeds in a

chaotic regime [120, 121] or with an embedding of stable subspaces in chaotic dynamics [122].

In addition, the construction of associative memory based on unstable periodic orbits of cha-

otic attractors has been suggested as a possible way of increasing memory capacity [123]. Thus,

stable dynamics appear to be at odds with experiments and might even prove disadvantageous

for memory formation. Additionally, concrete links between the stability of network dynamics

(particularly the drift towards more sensitive regimes, such as those emerging from gradual

synapse loss) and processing capabilities under complex, cognitively-relevant computations

are lacking and ought to be established in the future.

On the cognitive level, these results suggest that, as homeostatic compensation mechanisms

begin to fail, the shift of dynamics towards the stable regime would cause a decrease in perfor-

mance within a variety of domains. For example, deficits in memory, known to primarily affect

recent experiences of the AD individual, could be accounted for by the hypothesis that chaotic

dynamics are needed to form new attractors [121]. In addition, very stable dynamics hinder

the transition from one attractor to another, which might explain the difficulties of AD

patients to perform task switching and dual task processing [124, 125]. Finally, the observation

that AD patients often show repetitive speech and actions [126] might be explained by difficul-

ties in moving away from the corresponding attractor state.
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So far, only a few other studies on this abstraction level exist that investigate the relationship

of the physical symptoms of Alzheimer’s disease to its cognitive deficits. With respect to mem-

ory, the effect of synapse loss and compensation through maintaining the TSCA has been

investigated in an associative memory model [39–41]. In accordance with our results, the

impairment of memory retrieval due to (excitatory) synapse loss was shown to be successfully

compensated by restoring the TSCA, if the restoration occurs sufficiently quickly. The effect

of the restoration on the firing rate was not explicitly shown. Although these studies demon-

strated that homeostasis via synaptic up-regulation can retain memory performance, they lack

a systematic investigation of different network parameters and do not provide an analytical

explanation for the results.

The dynamical and computational consequences of intrinsic and synaptic-scaling based

homeostatic processes have been investigated in previous studies [32, 127]. Consistent with

our findings on the effect of firing-rate homeostasis in the presence of synapse loss, [127]

showed that homeostatic intrinsic plasticity helps maintaining a given (chaotic) working point

in the presence of external perturbations (constant external inputs). It prevents recurrent neu-

ronal networks from drifting into a regular (non-chaotic) regime and thereby improves input

separability. Similarly, [32] demonstrated that homeostatic synaptic scaling can compensate

for a partial deafferentation (loss of external inputs) and maintain the macroscopic network

dynamics, provided the degree of deafferentation does not exceed a certain critical level.

Above this critical level, their model networks develop into a state dominated by slow oscilla-

tions, dense activity and bursting, similar to the effects observed in several CNS disorders. A

direct comparison with our study is difficult as the networks in [32] are small (100 neurons in

total, each excitatory neuron projecting to 5 excitatory and 2 inhibitory cells), the connectivity

is distance-dependent, and neurons are described by two-compartment conductance-based

models. Moreover, [32] investigated the effect of changes in the external input, whereas we

focus on a loss of recurrent connectivity. In our study, we show that homeostatic synaptic scal-

ing preserves firing rates, linear stability, sensitivity to small perturbations, as well as the degree

of firing irregularity (CV) and synchrony (Fano factor). We do not observe any low-frequency

oscillatory behaviour. It remains a task for future studies to investigate whether the effects

observed in [32] generalize to the type of network studied here.

We complement our numerical results by an analytical approach to gain an intuitive under-

standing of the mechanisms underlying the recovery of the perturbation sensitivity (and

hence, computational performance) by firing rate homeostasis. To study the linear stability

characteristics of the network, we apply mean-field theory, similar to the approach used by

[80]. Note that we do not claim that a loss of linear stability coincides with the transition from

stable to chaotic dynamics [54, 81–84], as observed in large autonomous random networks of

analog neurons [79]. Rather, we exploit that the linear stability characteristics follow a similar

trend as the perturbation sensitivity. Assessing the linear stability characteristics relies on the

knowledge of the effective connection strengths, i.e. the number of excess response spikes

evoked by an additional input spike in the presence of synaptic background activity. This effec-

tive connectivity can be obtained experimentally (see, e.g., [128, 129]), or, for a specific neuron

and synapse model, numerically (see, e.g., [130–132]). For simplified models, such as the leaky

integrate-and-fire neuron studied here, it can be calculated analytically under simplifying

assumptions (diffusion approximation; [133, 134]). However, we note that the preservation of

linear stability by firing-rate homeostasis is due to the approximately exponential shape of the

gain function. It remains to be investigated whether our results can be generalized to other

types of neurons with different gain functions. Our theoretical analysis exposes the working-

point dependence of the effective weights as the essential mechanism underlying the recovery

of linear stability by firing rate homeostasis: on the one hand, the upscaling of EE synaptic
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weights required for maintaining the firing rates contributes to a destabilization of the network

dynamics. On the other hand, the increase in synaptic weights leads to an increase in the vari-

ance of the synaptic-input fluctuations, which, in turn, reduces the neurons’ susceptibility to

modulations in the presynaptic input, and therefore stabilizes network dynamics. Note that a

similar effect has been described in [135].

Both our theoretical approach and our numerical simulations are predicated on random

network connectivity. This randomness, however, neglects basic structures of brain areas that

undergo severe pathologic changes in the course of AD progression, e.g. hippocampus, pre-

frontal cortex and cerebellum. These regions are all organized into layers, and have local con-

nectivity structure comprising special features such as distant-dependence [136] or clustered

synaptic connectivity [137]. The precise impact of such structural aspect is not yet clear. From

the study of [50], we can conclude that, for networks with distant-dependent connectivity, the

systematic increase of synaptic weights makes the network more sensitive, as we also observed

in this work. However, a more systematic investigation of different network connectivity struc-

tures is needed to determine whether our results are robust with respect to different connectiv-

ity constraints.

The results reported in this study are based on a model of AD where synapse loss and syn-

aptic scaling are confined to connections between excitatory neurons (EE). The motivation for

restricting our investigation to the loss of EE connections is that this appears to be a prominent

feature in many cortical areas [7, 71, 105]. Evidence that other types of synapses are also dam-

aged in the course of the disease has been gathered from several mouse models. For example,

inhibitory synapses from neurons in the entorhinal cortex to excitatory CA1 hippocampal

neurons have been found to be selectively degenerated in AD mice [95]. Our mean field theo-

retical results suggest that a global unspecific synapse loss affecting all types of connections

(EE, EI, IE, II) leads to noticeable changes in firing rates and linear stability characteristics, but

only for higher levels of synapse loss (more than 50%; see, S2 Fig of Supplementary Material).

In this scenario, a recovery of firing rates by a synapse unspecific scaling of synaptic weights

largely preserves the linear stability characteristics, similar to our findings obtained for a EE

synapse loss and EE synapse scaling. This suggests that the commonly reported scaling of EE

synapses may well be a mechanism the brain employs to compensate for alterations in dynam-

ical characteristics that are induced by other types of synapse loss.

Although synapse loss correlates best with the cognitive decline observed in AD, by focus-

ing on this aspect, the current study neglects other physical manifestations of AD such as neu-

ron death and alterations of intrinsic neuronal properties [138–142]. These phenomena would

affect both inhibition and excitation in the network, so the changes of the resulting firing rate

may well be non-monotonic, unlike in our model, having unpredictable effects on the the

computational properties. Alternatively, they might be entirely unaffected: in a computational

study, [143] showed that under some circumstances, a network can compensate for neuron

loss without the need for additional homeostasis mechanisms by adjusting neuronal transfer

functions. The contribution of intrinsic neuron properties to the claimed hyperexcitability of

inhibitory neurons observed in AD has been previously investigated in a computational study

by [144]. Whereas the interplay of such properties with synaptic loss and homeostasis are

beyond the scope of the current work, our model could be extended to incorporate these

aspects. However, there is as yet no consensus on which cell type shows hyperactivity [145] or

hypoactivity [146]; which moreover may vary over the course of the disease [91, 147].

Analogously to our focus on synaptic loss in EE connections, we also restricted our investi-

gation of firing rate homeostasis to EE synapse growth. This is motivated by the findings that

intense synaptic upscaling is observed in AD and that an increase of excitatory-excitatory con-

nections has been reported as a main compensation mechanism that increases the firing rate in
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hippocampal and cortical neurons after an artificially induced decrease in activity (e.g. by block-

ing sodium channels (TTX) or glutamatergic synapses or AMPAR [148–154]). In Sec. Effect of
local homeostasis on perturbation sensitivity we show that, regardless of the type of homeostatic

regulation (global or local), sensitivity is a unique function of the firing rate. For local homeo-

stasis, we only focus on postsynaptic regulation and neglect presynaptic adaption such as

changes in release probability and the size of vesicle pools [34, 152, 154–164]. Since our results

are robust with respect to the two types of homeostasis we investigated here, we expect that our

results are also robust with respect to the model of synaptic plasticity. Apart from synaptic scal-

ing, other mechanisms that increase the network’s firing rate could also be considered, e.g.

changes in current flow of ions (e.g., [165, 166]) or moving the spike-initiation zone [167].

In order to understand the complexity of Alzheimer’s disease, it is important to study the

effects of the different observed morphological alterations caused by AD, their corresponding

homeostatic responses and, crucially, how they interfere with each other.

The findings of our study suggest that homeostatic synaptic scaling might be an attractive

target for drug development. However, some caution is required. Firstly, as discussed above,

during early AD the neuronal activity seems to be increased, followed by a decrease. Thus,

enhancing EE synaptic scaling at the very beginning of AD manifestation could even accelerate

the progression of the disease. In the later stages of the disease, supporting synaptic scaling

might be beneficial, stabilizing the cognitive performance. Within this context, there are a vari-

ety of molecular substrates that regulate synaptic scaling, and which show altered expression

patterns in AD, that could be considered as treatment targets, for example MSK1, PSD-95,

BDNF, Arc, Calcineurin, CaMK4 and Cdk5 (for reviews see [168]). A major challenge is to

determine whether the altered concentrations of these substrates are a consequence of direct

AD pathology, or arise as an attempt of the organism to counteract pathology, or even a mix-

ture of both. Thus, in addition to more comprehensive modelling investigations, further

research on the exact timeline of morphological changes and their functional implications is

needed to identify promising therapeutic targets.

So far, we have related synapse loss and homeostasis solely to observations made in Alzhei-

mer’s disease. Thus, the present study shows that certain cognitive deficits in Alzheimer’s

disease may be attributed to changes in the stability characteristics of neuronal network

dynamics. Its central aim is to contribute a deeper insight into the relationship between dis-

ease-related alterations at the structural, the dynamical and the cognitive levels. The findings

of this study are also applicable in an entirely different context: in the face of limited computa-

tional resources, neuronal network models are often downscaled by reducing the number of

nodes or the number of connections while increasing their strength. This downscaling has lim-

itations if dynamical features such as the temporal structure of correlations in the neuronal

activity are to be maintained [169]. The present work demonstrates that certain functional

characteristics such as the sensitivity to perturbations or the classification performance can be

largely preserved, if the synaptic weights are not limited by biological constraints. This insight

may be particularly relevant for cognitive-computing applications based on recurrent neuronal

networks implemented in neuromorphic hardware [170]. Here, the realization of natural-den-

sity connectivity and communication constitute a major bottleneck, whereas the strength of

connections is hardly limited.

Methods

Network model

Network description. The network consists of N = NE + NI identical leaky integrate-

and-fire neurons, subdivided into a population of NE = 1000 excitatory and a population
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of NI = NE/4 inhibitory neurons. In the intact reference network, each excitatory (inhibi-

tory) neuron receives local excitatory inputs from KEE = �NE (KIE = �NE) randomly selected

excitatory neurons, and inhibitory inputs from KEI = �NI (KII = �NI) randomly selected

inhibitory neurons. In addition, the neurons in the local circuit are driven by external excit-

atory inputs modeled as an ensemble of p Poissonian spike trains with constant rate νX.

Each of these external spike trains is sent to a subset of Kout
X randomly selected (excitatory

and inhibitory) neurons in the network. Synaptic interactions are implemented in the form

of stereotype exponential postsynaptic currents with a time constant τs. The strength Jij of

interaction between two neurons j and i, the synaptic weight, is parameterized by the ampli-

tude of the postsynaptic potential of neuron i evoked by an incoming spike from neuron j.
In the reference network, all excitatory connections and all inhibitory connections, respec-

tively, have equal synaptic weights, i.e. JEE = JIE = J and JEI = JII = −gJ. The greater number

of excitatory inputs is compensated by a larger amplitude of inhibitory synaptic weights

(g = 6).

Unless stated otherwise, the network simulations are repeated for M = 10 random realiza-

tions of network connectivity, initial conditions and external inputs for each parameter config-

uration. A detailed description of the network model components, dynamics and parameters

is given in the Supplementary Material (S1–S4 Tables). Simulations were performed using

NEST (www.nest-simulator.org) version 2.10.0 [171]. All scripts for generating and plotting

the data are online at http://doi.org/10.5281/zenodo.3752777.

AD implementation. Unless stated otherwise, AD is implemented by a systematic reduc-

tion of excitatory synapses to excitatory neuron (EE synapses), by reconnecting the same net-

work with a smaller EE in-degree KEE. All other in-degrees (KIE, KEI, KII) are preserved. In Sec.

The interplay of hypo- and hyperactivity and its effect on E/I balance and perturbation sensitiv-
ity, we moreover study the effects of hyperactivity, which we induce by systematically increas-

ing the weight JEE of EE synapses such that JEE > JIE (both in the presence and absence of

synapse loss).

Global homeostasis. In the presence of global firing-rate homeostasis, the removal of EE

connections is compensated by increasing the weights JEE of the remaining EE synapses such

that the time and population averaged firing rate n ¼ ðNTÞ� 1PN
i¼1

R T
0
dt siðtÞ is preserved.

Here, si(t) denotes the spike train generated by neuron i (see below), and T = 1s the simulation

time. The upscaling of the EE weights JEE is performed through bisectioning with an initial

weight increment ΔJEE = JEE. The algorithm is stopped once the population averaged firing

rate ν matches the rate of the corresponding intact reference network up to a precision of

0.5%. In the case of limited homeostasis, JEE is set to 1.2�J if the solution of the bisectioning

exceeds 120% of the reference weight J. The weights JIE, JEI and JII of all other connections are

not changed by the firing rate homeostasis.

Local homeostasis. The local homeostasis implementation used in Sec. Effect of
local homeostasis on perturbation sensitivity employs a form of structural plasticity which

aims at maintaining the cell-specific time-averaged firing rates in the presence of synapse

loss. The details of the structural plasticity mechanism are described in [101]. Associated

parameter values are given in the S4 Table in the Supplementary Material. Briefly: The

employed structural plasticity model generates new or removes existing incoming excit-

atory connections locally, i.e. for each excitatory neuron, based on the intracellular

calcium concentration [Ca2+](t). The intracellular calcium concentration [Ca2+](t) is

modeled as the low-pass filtered spiking activity of the postsynaptic cell (with time constant

τlh and calcium intake per spike βlh). Synapses are generated or removed according to the

time dependent local synapse count z(t). The change in z(t) is governed by a Gaussian
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growth curve

dz
dt
¼ klh 2 � exp �

½Ca2þ�ðtÞ � xlh
zlh

� �2

� 1

" #

ð1Þ

with ξlh = (ηlh + �lh)/2 and zlh ¼ ð�lh � ZlhÞ=ð2
ffiffiffiffiffiffiffiffi
ln 2
p

Þ. Here, κlh denotes the growth rate, �lh

the target calcium concentration (proportional to the firing rate of the postsynaptic neuron),

and ηlh the minimum calcium concentration needed to create new synapses. The synaptic

connectivity is updated according to the described dynamics in discrete time steps of size Δtlh.

Newly formed synapses onto excitatory neurons are randomly and independently assigned to

presynaptic neurons in the entire excitatory cell population. Multiple connections between

two neurons are allowed. Newly established excitatory synapses are assigned a synaptic weight

Jlh. In Sec. Effect of local homeostasis on perturbation sensitivity we consider two different

cases where new synapses are either weak (Jlh = 0.1mV) or of the same strength as excitatory

synapses in the initial intact network (Jlh = J).

Synaptic contact area and characterization of network activity

Relative total synaptic contact area. We calculate the total synaptic contact area (TSCA)

of the EE synapses as the product JEE KEE of the EE weight JEE and the EE in-degree KEE. The

relative TSCA ¼
KEEJEE
Kref

EE JrefEE
ð2Þ

is given by the ratio of the TSCA of the neurodegenerated network (reduced in-degree KEE)

and the TSCA of the corresponding intact reference network (full in-degree KEE) with identi-

cal weights JIE, JEI and JII.
Spiking activity. We represent the spike train si(t) = ∑k δ(t − ti,k) of neuron i (i 2 [1, N]) as

the superposition of Dirac-delta functions centered about the spike times ti,k (k = 1, 2, . . .). The

spike count ni(t; b) is given by the number of spikes emitted in the time interval [t, t + b]. For

subsequent analyses, we further compute the low-pass filtered spiking activity xi(t) = (si � h)(t)
of neuron i as the linear convolution of its spike train si(t) with an exponential kernel h(t) =

exp(−t/τf)Θ(t) with time constant τf and Heaviside step function Θ(t).
Average firing rate. The time and population averaged firing rate n ¼ ðNTÞ� 1PN

i¼1
nið0;TÞ

is given by the total number
PN

i¼1
niðTÞ of spikes emitted in the time interval [0, T], normalized

by the network size N and the observation time T = 10s.

Fano factor. As a global measure of spiking synchrony, we employ the Fano factor

FFðbÞ ¼
Vartðnðt; bÞÞ
hnðt; bÞit

ð3Þ

of the population spike count nðt; bÞ ¼
PN

i¼1
niðt; bÞ for a binsize b = 10ms. hn(t; b)it and

Vart(n(t; b) denote the mean and the variance of the population spike count n(t; b) across

time, respectively. Here, we exploit the fact that the variance of a sum signal n(t) is dominated

by pairwise correlations between the individual components ni(t), if the number N of compo-

nents is large (see, e.g., [172, 173]). Normalization by the mean hn(t; b)it ensures that FF(b)

does not trivially depend on the firing rate or the binsize b. For an ensemble of N independent

realizations of a stationary Poisson process, FF(b) = 1, irrespective of b and the firing rate. In

this work, an increase in FF indicates an increase in synchrony on a time scale b.

Coefficient of variation. The degree of spiking irregularity of neuron i is quantified by

the coefficient of variation CVi = SDk(τi,k)/hτi,kik of the inter-spike intervals τi,k = ti,k − ti,k−1,
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i.e. the ratio between the standard deviation SDk(τi,k) and the mean hτi,kik. For a stationary

Poisson point process, CVi = 1, irrespective of its firing rate. CV’s larger (smaller) than 1 corre-

spond to spike trains that are more (less) regular than a stationary Poisson process. We mea-

sure CVi over a time interval T = 10s, and report the population average CV ¼ N � 1
PN

i¼1
CVi.

EI-balance. We define the EI-balance B for each neuron as the ratio of the sums of the

incoming currents from excitatory (IE) and inhibitory inputs (II). Thus, the averaged EI– bal-

ance for excitatory neurons is BE = IEE/IEI with IEE = JEE � KEE � νE and IEI = JEI � KEI � νI and,

accordingly, for inhibititory neurons BI = IIE/III with IIE = JIE � KIE � νE and III = JII � KII � νI. We

define the total EI-balance as the average across all neurons B≔ (NE � BE + NI � BI)/N
Sensitivity to perturbation. We examine the sensitivity of a network to a small pertur-

bation in the input spikes by performing two simulations with identical initial conditions

and identical realizations of external inputs. In the second run, we apply a small perturbation

by delaying one spike in one external Poisson input at time t� = 400ms by δt� = 0.5ms. As a

measure of the network’s perturbation sensitivity, we compute the Pearson correlation coef-

ficient

RðtÞ ¼
hdxiðtÞdx�i ðtÞiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hdxiðtÞ
2
iihdx�i ðtÞ

2
ii

q ð4Þ

of the low-pass filtered spike responses xi(t) and x�i ðtÞ in the unperturbed and perturbed sim-

ulation, respectively, for each time point t. Here, δxi(t) = xi(t) − hxi(t)ii denotes the deviation

of the low-pass filtered spike response xi(t) of neuron i from the population average hxi(t)ii.
h. . .ii ¼ N � 1

PN
i¼1

. . . represents the population average. We define the time-dependent and

the long-term perturbation sensitivity as S(t) = 1 − |R(t)| (Fig 6, bottom panels) and S = S(tobs

= 10s) (Fig 7), respectively. An observation of S(tobs) = 0 indicates that the effect of the small

perturbation has vanished, i.e. that the network has stable dynamics and is insensitive to

the perturbation. An observation of S(tobs) = 1, in contrast, corresponds to diverging spike

patterns in response to the perturbation and thus chaotic dynamics. In dynamical-systems

theory and related applications, state differences are typically expressed in terms of the

Euclidean distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
½xiðtÞ � x�i ðtÞ�

2

q

. Here, we employ the (normalized) correla-

tion coefficient R instead to avoid (trivial) firing rate dependencies. Note that D and R are

redundant in the sense that both can be expressed in terms of the moments hxiðtÞx�i ðtÞii,
hxi(t)2ii, hx�i ðtÞ

2
ii, hxiii and hx�i ii.

Linearized network dynamics and stability analysis

In the following, we describe the analytical approach to investigate the effect of synapse loss

and firing rate homeostasis on the network’s linear-stability characteristics. To this end, we

employ results obtained from the diffusion approximation of the leaky-integrate-and-fire

(LIF) neuron with exponential postsynaptic currents under the assumption that the synaptic

time constant τs is small compared to the membrane time constant τm, and that the network

activity is sufficiently asynchronous and irregular (mean-field theory; [133, 134, 174]). All

parameters that are not explicitly mentioned here can be found in the S1 Table in the Supple-

mentary Material.

Stationary firing rates and fixed points. For each parameter set (synaptic weight J, extent

of synapse loss, different types of firing rate homeostasis), we first identify the self-consistent

PLOS COMPUTATIONAL BIOLOGY Firing rate homeostasis counteracts changes in stability caused by synapse loss in AD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007790 August 25, 2020 24 / 40

https://doi.org/10.1371/journal.pcbi.1007790


stationary states by solving

nE ¼ GðmEðnE; nIÞ; sEðnE; nIÞÞ

nI ¼ GðmIðnE; nIÞ; sIðnE; nIÞÞ
ð5Þ

for the population averaged firing rates νE and νI of the excitatory and inhibitory subpopula-

tions. Here,

Gðm; sÞ ¼ ðtref þ tm
ffiffiffi
p
p
Z yy

yr

du f ðuÞÞ� 1
ð6Þ

represents the stationary firing rate of the LIF neuron in response to a synaptic input current

with mean μ and variance σ2 in diffusion approximation, with f ðuÞ ¼ eu2

½1þ erfðuÞ�,
yr ¼ ðVr � mÞ=sþ

q
2

ffiffiffiffiffiffiffiffiffiffiffi
ts=tm

p
, yy ¼ ðy � mÞ=sþ

q
2

ffiffiffiffiffiffiffiffiffiffiffi
ts=tm

p
and q ¼

ffiffiffi
2
p
jzð1=2Þj (with Riemann

zeta function z; [133, 134, 174]). For stationary firing rates νE and νI of the local presynaptic

neurons, the mean and the variances of the total synaptic input currents to excitatory and

inhibitory neurons are given by

mE ¼ ðKEEĴ EEnE þ KEIĴ EInI þ KX ĴXnXÞtm;

mI ¼ ðKIEĴ IEnE þ KIIĴ IInI þ KX ĴXnXÞtm;

s2
E ¼ ðKEEĴ 2

EEnE þ KEIĴ 2
EInI þ KX Ĵ 2

XnXÞtm;

s2
I ¼ ðKIEĴ 2

IEnE þ KIIĴ 2
IInI þ KX Ĵ 2

XnXÞtm;

ð7Þ

respectively. The coefficients Kpq (p, q 2 {E, I}) denote the number of inputs (in-degree) to

neurons in population p from population q, Ĵ pq ¼ tsC� 1
m Î pq the corresponding rescaled PSC

amplitude, KX the number of external inputs for each neuron in the network, and νX the firing

rate of the Poissonian external sources. Note that in our network simulations, each external

source is connected to a randomly selected subset of Kout
X neurons. As a result, the number KX

of external inputs each neuron in the network receives is a binomially distributed random

number. For the analytical treatment, we neglect this variability and replace KX by the average

KX ¼ pKout
X =N. Eqs 5 and 7 are simultaneously solved numerically using the optimize.

root() function (method=‘hybr’) of the scipy package (http://www.scipy.org). To

ensure that all solutions are found, the fixed-point search is repeated for 30 pairs of initial

rates randomly drawn from a uniform distribution between 0 and 50spikes/s. If multiple coex-

isting fixed points are found, the one with the highest firing rates is chosen for the subsequent

analysis.

Synapse loss and firing rate homeostasis. In this work, Alzheimer’s disease is modeled

by removing a fraction of EE synapses, i.e. by reducing the in-degree KEE. The self-consistent

firing rates νE and νI after synapse removal are hence reduced (Fig 12D). In the presence of

unlimited firing rate homeostasis, we adjust the weight Ĵ EE (of the remaining synapses) (Fig

12B) until the excitatory self-consistent firing rate nrefE of the intact reference network (before

synapse removal) is recovered (Fig 12E). To this end, we numerically find the roots of nE � n
ref
E

by employing again scipy’s optimize.root() function. We repeat the root finding for

30 initial weights randomly drawn from a uniform distribution between Ĵ refEE and 10Ĵ refEE , where

Ĵ refEE denotes the original weight before synapse removal, and keep the solution where jnE � n
ref
E j

is minimal. For limited homeostasis, the new EE weight is chosen as the minimum of the solu-

tion ĴEE and 1:2Ĵ refEE (Fig 12C and 12F).
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Fig 12. Mean-field theory. Dependence of the synaptic weight Ĵ EE (A–C), the average firing rate νE of the excitatory population (D–F), the effective

weight wEE of EE connections (G–I), the ratio wEEsE=Ĵ EE (J–L), and the spectral radius ρ (M–O) on the synaptic weight J and the degree of synapse loss in

the absence of homeostatic compensation (left column), as well as with unlimited (middle column) and limited firing rate homeostasis (right column).

Superimposed black curves in (M–O) mark instability lines ρ = 1. Same parameters as in network simulations (see, S1 and S2 Tables in Supplementary

Material).

https://doi.org/10.1371/journal.pcbi.1007790.g012
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Linearized network dynamics and effective connectivity. As shown in [173, 174], net-

works of spiking neurons can be formally linearized about a stationary state ν� ¼ ðn�
1
; . . . ; n�NÞ

(linear-response theory) and thereby be mapped to an N-dimensional system

dniðtÞ ¼
XN

j¼1

ðhij � dnjÞðtÞ ði 2 ½1;N�Þ ð8Þ

of linear equations describing the dynamics of small firing rate fluctuations dniðtÞ ¼ niðtÞ � n�i
around this stationary state. The stationary states are determined as the self-consistent solu-

tions of

ν� ¼ ϕðν�Þ; ð9Þ

where ϕ(νin) represents the activation function mapping the vector of stationary input rates

νin to the vector of output rates. The coupling kernel hij(t) represents the firing rate impulse

response, i.e. the modulation in the output rate νi(t) in response to a delta-shaped fluctuation

in the rate νj(t) of presynaptic neuron j.
We refer to the area

wij ¼

Z 1

� 1

dt hijðtÞ ð10Þ

under the coupling kernel as the effective connection weight. It measures the average number

of extra spikes emitted by target neuron i in response to a spike fired by the presynaptic neuron

j, in the context of the background activity determined by the stationary state ν�.
Exploiting the fact that the integral of the impulse response of a linear(ized) system is iden-

tical to the long-term limit of its step response, the effective weight

wij ¼
@�iðνÞ
@nj

�
�
�
�
ν�

ð11Þ

is given by the derivative of the activation function ϕi of neuron i with respect to the stationary

firing rate νj of neuron j, evaluated at the stationary state ν�. With ϕi(ν) = G(μi(ν), σi(ν)) from

(6), miðνÞ ¼ ð
PN

j¼1
Ĵ ijnj þ KX ĴXnXÞtm, and s2

i ðνÞ ¼ ð
PN

j¼1
Ĵ 2
ijnj þ KX Ĵ 2

XnXÞtm, we obtain

wij ¼
@G
@mi

@mi

@nj

�
�
�
�
ν�
þ
@G
@si

@si

@nj

�
�
�
�
ν�
¼

Ĵ ij
s�i

ffiffiffi
p
p
ðtmn

�

i Þ
2 f ðy�

yi
Þ � f ðy�riÞ

� �
ð12Þ

as the effective weight of the LIF neuron in the stationary self-consistent state given by ν� [173,

174]. Note that for the result on the right-hand side of (12), we account only for the derivative
@G
@mi

of G with respect to the mean input μi (DC susceptibility), but neglect the contribution @G
@si

resulting from a modulation in the input variance s2
i . Removal of EE synapses and the result-

ing decrease in stationary firing rates (Fig 12D) leads to a reduction in the effective weight wEE

of EE connections (Fig 12G). In the presence of (unlimited) firing rate homeostasis, upscaling

of EE synapses (Fig 12B) and the resulting preservation of firing rates (Fig 12E) results in an

increase in wEE (Fig 12H).

Stability analysis. For the LIF neuron with weak exponential synapses [174] as well as for a

variety of other neuron and synapse models [130–132], the effective coupling kernel hij(t) intro-

duced in (8) can be well approximated by an exponential function hij(t) = wij τ−1exp(−t/τ)Θ(t)
with an effective time constant τ and Heaviside function Θ(t). With this approximation,
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(8) can be written in form of an N-dimensional system of differential equations

t
ddν
dt
¼ � dνþWδnðtÞ: ð13Þ

Here, W = {wij} denotes the N × N effective connectivity matrix and δν(t) = (δν1(t), . . .,

δνN(t)) the vector of firing rate fluctuations. The system (13) has bounded solutions only if the

real parts of all Eigenvalues λk of the effective connectivity matrix W are smaller than unity, i.e.

if Re(λk)< 1 (8k). If ρ = maxk(Re(λk)) > 1, the linearized system is unstable and fluctuations

diverge. In the original nonlinear LIF network, an unbounded growth of fluctuations is pre-

vented by the nonlinearities of the single-neuron dynamics. For large random networks where

the statistics of the coupling strengths does not depend on the target nodes, the bulk of Eigen-

values {λk|k 2 [1, N]} of W is located in the complex plane within a circle centered at the coor-

dinate origin and a radius ρ which is determined by the variances of the effective connectivity

[175]. A single outlier is given by the Eigenvalue λk� associated with the Eigenvector uk� = (1,

1, . . ., 1, 1)T, which is given by the mean effective weight. In inhibition dominated networks,

the mean synaptic weight and, hence, λk� are negative. The stability behaviour is therefore

solely determined by the spectral radius ρ. For a random network composed of NE excitatory

(j 2 E; NE ¼ jEj) and NI inhibitory neurons (j 2 I ; NI ¼ jI j) with homogeneous in-degrees

Kpq (p, q 2 {E, I}) and weights

wij ¼

wEE 8i 2 E; j 2 E; connection j! i exists with probability
KEENE

NNE

wEI 8i 2 E; j 2 I ; connection j! i exists with probability
KEINE

NNI

wIE 8i 2 I ; j 2 E; connection j! i exists with probability
KIENI

NNE

wII 8i 2 I ; j 2 I ; connection j! i exists with probability
KIINI

NNI

0 8i; j; connection j! i does not exist

;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð14Þ

the squared spectral radius is given by

r2 ¼ NEvE þ NIvI ¼ N � 1ðKEENEw2
EE þ KIENIw2

IE þ KEINEw2
EI þ KIINIw2

IIÞ: ð15Þ

Here, vE ¼ w2
EEKEENE=ðNNEÞ þ w2

IEKIENI=ðNNIÞ and vI ¼ w2
EIKEINE=ðNNIÞ þ

w2
IIKIINI=ðNNIÞ denote the variances of the effective connectivity wij across the ensemble of tar-

get cells (i 2 [1, N]) for excitatory (j 2 E) and inhibitory sources (j 2 I), respectively. Without

homeostatic compensation, EE synapse loss leads to a stabilization of the linearized network

dynamics, i.e. a decrease in ρ (Fig 12M). In the presence of unlimited firing rate homeostasis,

the spectral radius ρ is preserved (Fig 12N), even if a substantial fraction of EE synapses is

removed (Fig 12N). If the homeostatic resources are limited, ρ is maintained until the upscaled

synaptic weights reach their maximum value (Fig 12O).

Preservation of linear stability by firing rate homeostasis. At first glance, it is unclear

why firing rate homeostasis preserves the linear stability characteristics as measured by the

spectral radius ρ. While the stationary firing rates n�i are, by definition, kept constant during

synapse loss and homeostasis, the input statistics m�i , s
�
i (S1D and S1E Fig in Supplementary

Material), y�ri and y�
yi

(Fig 13A and 13B) as well as the effective weights wij (Fig 12K) are not. To
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shed light on the mechanisms leading to the preservation of ρ, we first note that the factor

ffiffiffi
p
p
ðtmn

�
i Þ

2
ðf ðy�

yi
Þ � f ðy�riÞÞ≕ Zðn�i Þ ð16Þ

on the right-hand side of (12) is in good approximation uniquely determined by the stationary

firing rate n�i (Fig 12J–12L). This can be understood by noting that, according to (6), the firing

rates are determined by
R y�

yi
y�ri

dy f ðyÞ; and that f ðyÞ ¼ ey2

½1þ erfðyÞ� can be approximated by

an exponential function f(y)� AeBy for the range of arguments spanned by y�ri and y�
yi

(Fig 13).

With this approximation,
R y�

yi
y�ri

dy f ðyÞ ¼ B� 1½f ðy�
yi
Þ � f ðy�riÞ�. For constant firing rate, f ðy�

yi
Þ �

f ðy�riÞ is therefore constant, too, and the effective weight is essentially determined by the ratio

Ĵ ij=s�i . With wpq ¼ Zðn
�
pÞĴ pq=s

�
p (p, q 2 {E, I}), (15) reads

r2 ¼ N � 1 KEENE
Ĵ 2
EE

s�2E
Z2ðn�EÞ þ KIENI

Ĵ 2
IE

s�2I
Z2ðn�I Þ þ KEINE

Ĵ 2
EI

s�2E
Z2ðn�EÞ þ KIINI

Ĵ 2
II

s�2I
Z2ðn�I Þ

� �

¼ N � 1 Z2ðn�EÞNE
KEE Ĵ 2

EE þ KEI Ĵ 2
EI

s�2E
þ Z2ðn�I ÞNI

KIEĴ 2
IE þ KIIĴ 2

II

s�2I

� �

:

ð17Þ

According to our network simulations as well as the mean-field theory described above,

stationary firing rates of the excitatory and inhibitory subpopulation are identical in the pres-

ence of firing rate homeostasis, i.e. n� ≔ n�E ¼ n
�
I . With (7) and assuming that the contribution

KX Ĵ 2
XnX of the external drive to the total input variances s�2E=I can be neglected (which is the case

for the range of parameters considered in this study), we find that the spectral radius

r2 ¼
Z2ðn�Þ

n�tm
ð18Þ

is in good approximation uniquely determined by the stationary firing rate ν� (Fig 8A and S1

Fig in Supplementary Material). A constant firing rate (as achieved by firing rate homeostasis)

is therefore accompanied by a constant spectral radius.

Fig 13. Approximation of f ðyÞ ¼ ey2

½1þ erfðyÞ� by an exponential function. A,B) Dependence of yrE (A) and yθE (B) on the synaptic reference

weight J and the degree of synapse loss in the presence of unlimited firing rate homeostasis (mean-field theory). C) Graph of f ðyÞ ¼ ey2

½1þ erfðyÞ�
(black) and exponential function AeBX (gray; A = 0.4, B = 2.5) fitted to f(y) in interval y 2 [0.5, 1.5]. Same parameters as in network simulations (see, S1

and S2 Tables in Supplementary Material).

https://doi.org/10.1371/journal.pcbi.1007790.g013
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Unspecific synapse loss and homeostasis

In this section, we expand our analysis of the linearized network dynamics towards a network

in which all types of synapses (EE,EI,IE,II) are removed. Accordingly, the homeostatic upscal-

ing affects all types of synapses (EE, EI, IE, II) such that the target firing rate is reached by

applying the same factor c to all synaptic weights and the initial proportion of the different syn-

apse types is kept constant (c � JEE = c � JIE = c � J and c � JEI = c � JII = −cg � J with c� 1).

We observe that synapse-unspecific network dilution leads to a drop in firing rate (S2D

Fig), but this drop is not as pronounced as if only EE synapses are removed (Fig 12D). For

small and moderate degrees of synapse loss, the firing rate changes only little. Upscaling J com-

pensates for this and fully restores the firing rates (S2E Fig), even for high levels of synapse

loss. In the absence of homeostasis, synapse unspecific network dilution reduces the spectral

radius (S2M Fig), but this effect is weaker as if only EE synapses were removed (Fig 12M). For

small and moderate degrees of synapse loss, the spectral radius is hardly affected. Upscaling J
fully recovers the spectral radius in the stable regime (ρ< 1). Close to the transition from sta-

ble to unstable (ρ = 1, black contour line), recovery of the spectral radius is approximately

achieved (S2N Fig).

Different bounds for limited homeostasis

In this section, we investigate the effects of constraining homeostasis to limited degrees of EE

synapse growth. If EE synapse growth is limited to only 10%, sensitivity rapidly decreases for

synapse losses larger than 10% (S3A Fig). In contrast, if synapses can increase their weights up

to 40%, a shift towards the insensitive regime is only observed if more than 30% of the synapses

are removed (S3C Fig). Limiting synapse growth to 20% restores the sensitivity as long as a

maximum of 20% of the synapses are removed. (=S3B Fig).

Supporting information

S1 Table. Description of the network model according to [176].

(PDF)

S2 Table. Network and simulation parameters.

(PDF)

S3 Table. Parameters for evaluation of spike-train statistics and perturbation sensitivity.

(PDF)

S4 Table. Parameters of the local homeostasis implementation and of the according sensi-

tivity experiment.

(PDF)

S1 Fig. Canceling of the synaptic-weight variance by the input variance. Dependence of

KEEĴ EE (A), KEEĴ 2
EE (B), KEE Ĵ 2

EE þ KEIĴ 2
EI (C), input mean μE (D), input variance s2

E (E), and the

ratio nEtm ðKEE Ĵ 2
EE þ KEIĴ 2

EIÞ=s
�2
E (F) on the synaptic reference weight J and the degree of syn-

apse loss in the presence of unlimited firing rate homeostasis (mean-field theory). Note that

nEtm ðKEE Ĵ 2
EE þ KEIĴ 2

EIÞ=s
�2
E (F) is very close to unity in all regions where νE > 0 (cf. Fig 12E).

Hence, the ratio between the synaptic-weight variance KEE Ĵ 2
EE þ KEIĴ 2

EI and the synaptic-input

variance s�2E is uniquely determined by the firing rate. Same parameters as in network simula-

tions (see, S1 and S2 Tables in Supplementary Material).
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S2 Fig. Mean-field theory applied to network with unspecific synapse loss and unspecific

synaptic upscaling. We expand our analysis of the linearized network dynamics towards a

network in which all types of synapses (EE,EI,IE,II) are removed. Accordingly, the homeostatic

upscaling affects all types of synapses (EE, EI, IE, II) such that the target firing rate is reached

by applying the same factor c to all synaptic weights and the initial proportion of the different

synapse types is kept constant (c � JEE = c � JIE = c � J and c � JEI = c � JII = −cg � J with c� 1). The

figure shows the dependence of the synaptic weight ĴEE (A–C), the average firing rate νE of

the excitatory population (D–F), the effective weight wEE of EE connections (G–I), the ratio

wEEsE=ĴEE (J–L), and the spectral radius ρ (M–O) on the synaptic weight J and the degree of

synapse loss in the absence of homeostatic compensation (left column), as well as with unlim-

ited (middle column) and limited firing rate homeostasis (right column). Superimposed black

curves in (M–O) mark instability lines ρ = 1. Same parameters as in network simulations (see,

S1 and S2 Tables in Supplementary Material). We observe that synapse-unspecific network

dilution leads to a drop in firing rate (D), but this drop is not as pronounced as if only EE syn-

apses are removed (Fig 12D). For small and moderate degrees of synapse loss, the firing rate

changes only little. Upscaling J compensates for this and fully restores the firing rates (E),

even for high levels of synapse loss. In the absence of homeostasis, synapse unspecific network

dilution reduces the spectral radius (M), but this effect is weaker as if only EE synapses were

removed (Fig 12M). For small and moderate degrees of synapse loss, the spectral radius is

hardly affected. Upscaling J fully recovers the spectral radius in the stable regime (ρ< 1). Close

to the transition from stable to unstable (ρ = 1, black contour line), recovery of the spectral

radius is approximately achieved (N).

(EPS)

S3 Fig. Effect of synapse loss and limited firing rate homeostasis on perturbation sensitiv-

ity. Dependence of perturbation sensitivity S on the synaptic reference weight J and the degree

of EE synapse loss for different bounds of limited homeostasis. The different bounds are set

such that synaptic weights cannot exceed 110% (A), 120% (B) and 140% (C) of their reference

weight. If EE synapse growth is limited to only 10%, sensitivity rapidly decreases for synapse

losses larger than 10% (A). In contrast, if synapses can increase their weights up to 40%, a shift

towards the insensitive regime is only observed if more than 30% of the synapses are removed

(C). Limiting synapse growth to 20% restores the sensitivity as long as a maximum of 20% of

the synapses are removed (B).

(EPS)
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6. Sheng M, Sabatini BL, Südhof TC. Synapses and Alzheimer’s disease. Cold Spring Harb Perspect

Biol. 2012; 4(5):a005777. https://doi.org/10.1101/cshperspect.a005777 PMID: 22491782

7. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer’s

disease: problems and opportunities. Acta Neuropathol. 2015; 130(1):1–19. https://doi.org/10.1007/

s00401-015-1449-5 PMID: 26063233

8. Tampellini D. Synaptic activity and Alzheimer’s disease a critical update. Frontiers in Neuroscience.

2015; 9:432–439. https://doi.org/10.3389/fnins.2015.00423
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