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Abstract: New minimal invasive diagnostic methods for early detection of lung cancer are 

urgently needed. It is known that the immune system responds to tumors with production 

of tumor-autoantibodies. Protein microarrays are a suitable highly multiplexed platform for 

identification of autoantibody signatures against tumor-associated antigens (TAA). These 

microarrays can be probed using 0.1 mg immunoglobulin G (IgG), purified from 10 µL of 

plasma. We used a microarray comprising recombinant proteins derived from 15,417 

cDNA clones for the screening of 100 lung cancer samples, including 25 samples of each 

main histological entity of lung cancer, and 100 controls. Since this number of samples 

cannot be processed at once, the resulting data showed non-biological variances due to 

“batch effects”. Our aim was to evaluate quantile normalization, “distance-weighted 

discrimination” (DWD), and “ComBat” for their effectiveness in data pre-processing for 

elucidating diagnostic immune-signatures. “ComBat” data adjustment outperformed the 

other methods and allowed us to identify classifiers for all lung cancer cases versus 

controls and small-cell, squamous cell, large-cell, and adenocarcinoma of the lung with an 
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accuracy of 85%, 94%, 96%, 92%, and 83% (sensitivity of 0.85, 0.92, 0.96, 0.88, 0.83; 

specificity of 0.85, 0.96, 0.96, 0.96, 0.83), respectively. These promising data would be the 

basis for further validation using targeted autoantibody tests. 

Keywords: protein microarrays; cancer research; lung cancer; bioinformatics; biomarkers 

 

1. Introduction 

Lung cancer is the leading cause of cancer-related death worldwide, responsible for around 1.59 

million deaths in 2012 [1]. This disease is characterized by high heterogeneity in terms of pathological 

features and is commonly classified into two major groups, small-cell lung carcinoma (SCLC), 

accounting for approximately 15% of lung cancer cases, and non-small cell lung carcinoma (NSCLC). 

NSCLC includes mostly squamous cell carcinoma (SqLC), adenocarcinoma (AdCa), and large cell 

carcinoma (LCLC) [2,3]. Most lung cancers are detected at advanced stages, reducing the likelihood of 

cure. Five-year survival rates for all stages are about 15% [4]. One reason for late lung cancer 

detection is that usually lung cancer symptoms, such as cough, chest pain, and weight loss, do not 

appear until the disease is already in an advanced stage. Moreover, the lung is a visceral organ with a 

complex branching structure, which makes an entire examination impossible. Additionally, traditional 

diagnostic methods like computer tomography (CT) or X-ray often yield low positive predictive values 

(PPV), indicating that only few patients with a positive test result were confirmed with lung cancer 

after additional biopsy. This circumstance results in unsatisfactory performance of many diagnostic 

tests, high downstream costs and unpleasant procedures for the patients [5]. Therefore, it is important 

to find novel markers for early detection of lung cancer by means of minimal invasive biomarker 

screenings using material such as blood, sputum, or exhaled breath [6].  

Today, it is known that proteins, expressed by tumors, often evoke a humoral immune response in 

cancer patients [7]. This response occurs because these tumor-associated antigens (TAAs) are mostly 

altered in some way. They may be unique to cancer and germ cells, found only in specific tumors, or 

may be mutated, misfolded, overexpressed, aberrantly degraded, or aberrantly glycosylated [8–10]. 

The response of the human immune system to such TAAs becomes apparent with the production of 

autoantibodies targeting these antigens [11]. This suggests that the immune system is able to detect 

aberrant structure, distribution, and function of certain proteins involved in tumorigenesis [12]. The 

finding that cancer patients produce autoantibodies against tumor antigens encourages the idea that 

these autoantibodies could facilitate cancer diagnosis and prognosis [10,11,13,14]. Moreover, the 

relevance of autoantibody-based biomarkers is emphasized by the fact that autoantibodies against 

TAAs can be found up to five years before tumors become symptomatic or clinically detectable with 

conventional methods [7,15–19].  

Autoantibodies have been detected in several human cancers, but only a few antigen-autoantibody 

reactivities have made their way into clinical practice. One reason may be that most autoantibodies  

occur only in a subset of cancer patients, resulting in low sensitivity of single antigens as tumor 

biomarkers [11,20]. This lack of sensitivity indicates that a single tumor autoantibody will not be 

sufficient as biomarker [21]. Therefore, biomarker panels, including cancer-specific autoantibodies are 
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considered as promising tools for early diagnosis and prognosis of cancer. For this purpose, 

autoantibody signatures, the molecular finger print of antibodies in a certain disease, have to be 

identified [22].  

For identification of potential TAAs, large screening sets are required [23]. A highly multiplexed 

approach, like protein microarrays, offers a suitable platform for autoantibody marker discovery while 

using only small amounts of serum or plasma samples [24,25]. This technology enables screening of 

humoral response against thousands of potential TAAs in order to identify novel biomarker panels for 

cancer diagnosis [23]. For this purpose, antigens, which are either derived from recombinant protein 

expression or are isolated from tumor cell lines, are immobilized and their reactivity with sera from 

patients is investigated [26]. 

High-dimensional microarray data require careful statistical handling. In general, the first step is 

log2 transformation of the data in order to achieve symmetric ratios of fold-changes, independent from 

increase or decrease in intensity values [27]. The second step requires adjustment of the data for 

systematic biases. Many microarray studies are affected by batch effects, which can often not be 

avoided, because not all samples can be processed in one single batch [28]. This introduces non-

biological differences, which impede comparability of the processed samples. Combination of 

microarray data derived from different experimental batches enables increasing statistical power of 

microarray studies. Therefore, adjustment for batch effects has to be performed [28–31]. One method 

is quantile normalization, which aims to adjust the distribution of probe intensities for each array in the 

data set to the same level [30]. To minimize batch effects in data sets derived from multiple 

experiments, algorithms, such as the empirical Bayes method referred to as “combating batch effects 

when combining batches of gene expression microarray data” (ComBat) [31] or “distance-weighted 

discrimination” (DWD) [32], which have been proposed to be effective at adjustment for systematic 

biases, can be applied. Batch effects as well as batch effect removal methods are often investigated 

visually by means of principal component analysis (PCA) plots [33]. A novel method combining PCA 

and variance component analysis (VCA) is able to evaluate the contribution of certain sources to the 

variance in the microarray data set. This approach is referred to as principal variance components 

analysis (PVCA) [28,34]. The third step after data pre-processing is comprehensive analysis of the 

microarray data set. This can be done by means of the software Biometric Research Branch 

BRB-ArrayTools, developed by Richard Simon. This software includes a broad variety of methods for 

predictive classifier development. Supervised machine learning methods, such as class comparison and 

class prediction, are available with complete cross-validation [35]. The aim of class comparison 

analysis of DNA microarrays is the univariate identification of differentially expressed genes in two 

different specimen phenotypes [36]. The same statistical analysis methods which are usually used for 

gene expression studies were applied to our protein microarray data. When using protein microarrays 

for the identification of tumor autoantibody signatures, class comparison analysis enables 

determination of differentially reactive antigens with autoantibodies of cancer patients compared to 

controls [37]. Another method included in this software is class prediction. This method aims at 

developing a multivariate statistical model to predict the class of a sample based on its signal pattern 

on the microarray. For the development of such models, features that enable discriminating the 

predefined classes have to be identified and accuracy of the built predictor is estimated [38]. For this 

purpose, it is advisable to use complete cross-validation which includes feature selection and model 



Microarrays 2015, 4 165 

 

 

development. By doing so, overfitting of the model to the used data set is avoided in contrast to 

incomplete cross-validation, which does not include feature selection in the process of cross-validation, 

or no cross-validation. Another advantage of cross-validation, especially leave-one-out cross validation 

(LOOCV), is that small data sets are used efficiently. Each sample is withheld once during feature 

selection and model development and is then classified based on the developed model. This process is 

iterated for each sample [39]. Analysis of microarray experiments enables the detection of features 

which are correlated to a phenotype or to find a predictor or classifier to predict the phenotype of a 

new sample [40]. These predictors could be applied in clinical diagnostic testing, for assessment of 

prognosis, or treatment decision [39]. 

In the present study, we used a high-density protein microarray for the detection of autoantibody 

signatures in lung cancer. This protein microarray was processed with purified immunoglobulin G 

(IgG) from 100 lung cancer cases and 100 matched lung cancer-free controls. The lung cancer group 

comprised 25 samples from each of the four main histological lung cancer types. Since the sample 

cohort of this study included 200 different samples, not all samples could be processed at once. 

Therefore, samples belonging to one histological lung cancer entity and their matched controls (results 

in a total of n = 50) had to be processed in two different runs. As already mentioned, adjustment for 

batch effects has to be done when combining data from different microarray experiments [41]. For this 

purpose, different normalization and batch effect adjustment methods were used, including quantile 

normalization, DWD, and ComBat. Currently a great number of normalization algorithms and data 

transformation methods are available and there are several publications comparing the performance of 

some of these [28,30,41,42]. However, it is still difficult to decide which method performs best for a 

certain data set. Moreover, it should be kept in mind that analysis results are strongly influenced by the 

applied normalization method [27,42].  

We aimed at comparing different normalization and data adjustment methods in terms of 

effectiveness and their influence on subsequent data analysis. For this purpose, principal component 

analysis (PCA) was used to investigate the variance in the data set before and after applying different 

data pre-processing methods. Furthermore, overlaps of significant antigens derived from class 

comparison were compared between different sample cohorts with all normalization methods. Since 

the study was focusing on the identification of a tumor-autoantibody-based biomarker panel for early 

diagnosis of lung cancer, the development of multivariate classifiers for each histological type of lung 

cancer and for the combination of all lung cancer types was done by means of class prediction. This 

was performed with quantile normalization and ComBat adjustment. Classifier panels identified during 

this study are already patented [43].  

2. Experimental Section  

2.1. Patient Cohort 

The study population comprised 100 newly diagnosed and previously untreated lung cancer patients 

and 100 lung cancer-free control samples. All samples used in the present study were provided by the 

biobank of the Molecular Epidemiology group headed by Andrea Gsur at the Medical University, 

Department of Medicine I, Institute of Cancer Research, Vienna. Cases were recruited from two 
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pulmonological centers in Vienna and Lower Austria. Regarding histological data, cases were further 

classified as 25 small-cell lung carcinoma (SCLC), 25 squamous cell carcinoma (SqLC), 25 large cell 

carcinoma (LCLC), and 25 adenocarcinoma (AdCa). Seventy-two hospital-based controls were 

derived from the Department of Orthopedics of the Medical University of Vienna. Only subjects with 

negative chest radiography and no history of malignant disease were selected as controls. Additionally, 

28 controls were recruited from the colorectal cancer screening project “Burgenland Prevention Trial 

of Colorectal Cancer Disease with Immunological Testing” (B-PREDICT). These individuals 

underwent colonoscopy and did not show any pathological finding. All participants were Austrian 

Caucasians. Clinical characteristics of the samples are summarized in Table 1.  

Blood was collected using Vacuette BD vacutainer® tubes (Greiner Bio-One, Kremsmünster, 

Austria) with sodium heparin as anticoagulant. After collection, heparinized blood was centrifuged at 

2000 × g for 10 minutes and plasma was removed from the cell pellet and stored at −80 °C. Written 

informed consent was obtained from all participants and research protocols were approved by the 

institutional review boards. 

Table 1. Clinical characteristics of the study population. 

Variable 
Lung cancer cases (n = 100) 

controls (n = 100) 
SCLC (n = 25) SqLC (n = 25) LCLC (n = 25) AdCa (n = 25) 

Agea (years, mean, range) 65.0 (41–85) 61.9 (42–80) 62.6 (40–81) 63.0 (39–79) 61.9 (33–89) 

Sex      

 male 18 21 13 17 69 

 female 7 4 12 8 31 

Smoking      

 never 1 0 2 3 24 

 former 13 10 12 14 42 

 current 11 15 11 8 34 

Clinical tumor stage      

 IA  4 4 6  

 IB 1     

 IIA 1 5    

 IIB 6 1    

 IIIA  5 5 4  

 IIIB  4 2 1  

 IV 10 2 11 8  

 n.a. 7 4 3 6  

lymph node metastasis 18 14 16 13   

a At time of diagnosis. 

2.2. Human IgG Isolation 

Human immunoglobulin G (IgG) was isolated from plasma samples using the Melon®Gel Spin 

Plate Kit for IgG Screening (Thermo Scientific, Rockford, IL, USA) following the manufacturer’s 

instructions. IgG samples were stored over night at 4 °C until further processing. Concentration of 

purified IgG was measured spectrophotometrically at 280 nm on an Epoch Microplate 
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Spectrophotometer (Biotek, Winooski, VT, USA). As blank sample Melon Gel Purification Buffer was 

used. Samples were measured in duplicates and arithmetic average was calculated. Pre-casted 

NuPAGE® 4%–12% Bis-Tris polyacrylamide gels (Novex®, Carlsbad, CA, USA) were used to verify 

IgG purity. The strongest band was observed at 150 kDa, which corresponds to the molecular weight 

of undegraded human IgG [44]. Integrity of all samples was confirmed. 

2.3. 16k Protein Microarray 

The in-house printed 16k protein array comprised 5449 recombinantly expressed proteins derived 

from 15,417 cDNA clones, printed in duplicates on the microarray resulting in approximately 32,000 

spots. An illustrated microarray design of the 16k array can be found in the supplementary section 

(Supplementary Figure S1). The cDNA clones are included in the UniPEx expression library 

purchased from ImaGenes GmbH (Berlin, Germany). Sequences included in this library comprise 

clones derived from human fetal brain, T-cells, lung, and colon protein expression libraries. The 

library consists of clones with two differently modified pQE vectors. Protein expression from clones 

carrying the pQE80LSN vector is induced by isopropyl-β-D-thiogalactopyranosid (IPTG). Clones with the 

pQE30NST vector inserted exhibit auto-induced protein expression. Both types of vectors include an 

N-terminal 6xHis-tag [45]. Protein expression and purification was conducted as described in Stempfer 

et al. [22]. To estimate purity of the UniPEx proteins after purification with Ni-NTA, protein eluates 

were run on SDS-PAGE using NuPAGE® Novex 4%–12% Bis-Tris gels (Supplementary Figure S2). 

SU8 epoxide-coated glass slides were printed with contact printing technology using a NanoPrintTM 

LM210 (Dynamic Devices, Wilmington, DE, USA) with 48 SMP2 Stealth Microarray Printing Pins 

(TeleChem ArrayIt Microarray Division, Sunnyvale, CA, USA). E. coli lysate in the concentrations 

0.3, 0.4, and 0.5 mg mL−1 was used as positive control (n = 281), and elution buffer (50 mM 

Na2HPO4, 500 mM imidazole, 0.3 M NaCl, 0.01% SDS and 0.005% NaN3) was spotted as negative 

control (n = 82) onto the slides. Printed protein slides were stored at 4°C protected from light 

until processing. 

2.4. Protein Microarray Processing 

Protein microarrays were blocked for 30 minutes with DIG Easy Hyb solution (Roche, Basel, 

Switzerland), washed three times for 5 minutes with 1 × PBS + 0.1% Triton X buffer (PBS 10× pH 7.4 

(Life Technologies, Carlsbad, CA, USA), Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) and 

rinsed with ddH2O. Slides were dried for 2 minutes by centrifugation at 900 rpm. Purified IgG samples 

were adjusted to a concentration of 0.4 μg μL−1 with Melon Gel Purification Buffer and were finally 

diluted 1:2 with 2 × PBS + 0.2% Triton X buffer containing 6% milk powder. 490 μL of the diluted 

samples were applied onto a single-chamber hybridization gasket slide (Agilent Technologies, Santa 

Clara, CA, USA) and the 16k protein slide was placed on top, allowing the spotted protein side of the 

slide to face the IgG sample. Samples were incubated on the 16k microarray slides for 4 hours under 

rotating conditions, 12 rpm at room temperature. Slides were washed three times with 1 × PBS + 0.1% 

Triton X wash buffer and rinsed with ddH2O. As detection antibody, Alexa Fluor® 647 Goat 

Anti-Human IgG (H+L) (Molecular Probes®, Carlsbad, CA, USA) was used, diluted 1:10,000 in 
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PBS + 0.1% Triton X-100 + 3% milk powder. Incubation was done for 1 hour. Slides were again 

washed three times with 1 × PBS + 0.1% Triton X washing buffer, rinsed with ddH2O and spin-dried.  

Microarray slides were scanned with an Agilent G2565CA Microarray Scanner System (Agilent 

Technologies, Santa Clara, CA, USA) using a helium-neon laser (633 nm, red dye channel). Slides 

were scanned with a resolution (pixel size) of 10 μm and sensitivity level of the red channel 

photomultiplier tube (PMT) was set to 70%. After scanning, images of slides were loaded into the 

GenePix® Pro 6.0 software (Molecular Devices, Sunnyvale, CA, USA) for subsequent data extraction. 

Median fluorescent intensity, corrected for local fluorescent background, for each IgG-probed protein 

spot was exported to a .gpr file for further statistical analysis.  

2.5. Data Processing 

Statistical analysis of the microarray data was performed using the R-based package BRB-ArrayTools, 

developed by Richard Simon [35]. Background-corrected median fluorescence values were loaded into 

the program and were log2-transformed. Furthermore, an average over replicate spots was calculated 

since all proteins were printed in duplicates resulting in a microarray comprising approximately 32,000 

features. The intensity minimum threshold was set to a value of 100. If a feature was flagged in at least 

50% of the arrays, it was excluded from analysis.  

Data was normalized using different approaches and was further subjected to different statistical 

analyses. One method was quantile normalization, which equals distribution of values among different 

arrays. The second approach was data transformation using “Combating batch effects when combining 

batches of gene expression microarray data” (ComBat) in order to adjust data for batch effects [46]. 

For the application of ComBat, unnormalized data was used and missing values, which were due to 

flagging of low-quality features, were imputed. This was done using the package ‘impute’ for 

imputation of missing microarray data in R [47]. The third approach was distance weighted 

discrimination (DWD) which adjusts for systematic microarray data biases [32]. By means of using 

DWD, unnormalized data is loaded into the software but only two batches can be merged at one time. 

Therefore, a stepwise approach was applied for data adjustment. According to the PCA plot of the 

unnormalized data (Figure 3), two main groups of batches can be observed in the raw data. Therefore, 

the runs of each group were merged first before merging the two main groups in the last step. A similar 

approach was used by Benito and colleagues [32]. PCA [48] and PVCA [49] were used to investigate 

batch effects and underlying sources for variation. 

Further statistical analysis was performed with BRB-ArrayTools. Mainly class prediction with 

complete leave-one-out cross-validation (LOOCV), which includes the steps of feature selection and 

classification model development, and class comparison were applied to different data subsets, which 

were pre-processed by different methods. Analysis was performed for all lung cancer cases versus all 

controls as well as for distinct histological types of lung cancer and their matched controls. Class 

comparison analysis was performed with a significance threshold of p < 0.001, resulting in a list of 

significant differentially reactive antigens when comparing two sample groups. These lists were 

generated with unnormalized, quantile normalized, DWD-adjusted, and ComBat-adjusted data. 

Besides analysis of the sample groups, including all lung cancer samples versus all controls and the 

groups comprising only the histological subtype of lung cancer versus statistically matched controls, 
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class comparison analysis was applied on the data of each histological subtype derived from single 

processing batches (run 1 to run 4). Moreover, cross-run class comparison was performed for each 

histological entity. The resulting lists of significant antigens were compared to each other for overlaps.  

Class prediction analysis was performed on the same data set including the analysis of all lung 

cancer cases versus all controls with quantile normalization and ComBat adjustment, as well as the 

analysis of distinct histological entities derived from multiple runs versus matched controls using 

quantile normalization, ComBat, and DWD adjustment. BRB-ArrayTools provides this supervised 

machine learning method with LOOCV. As feature selection methods, the greedy-pairs method [46] 

and the recursive feature elimination (RFE) method [50] were used. Methods used for model 

development were diagonal linear discriminant analysis, compound covariate predictor, nearest 

neighbor classification, nearest centroid classification, support vector machines and Bayesian 

compound covariate predictor [35]. 

3. Results 

In this study, samples from 100 lung cancer patients and 100 lung cancer-free controls were 

processed on the 16k protein microarray comprising 5449 recombinantly expressed human proteins 

derived from 15,417 cDNA clones. These proteins served as potential antigens and therefore capture 

molecules for tumor-specific autoantibodies from plasma. Purified IgG samples isolated from plasma 

were used for array processing. Preliminary results, obtained during development and optimization of 

the 16k protein microarray, showed that binding of non-IgG serum proteins to the microarray surface 

is influencing the specificity and reproducibility of the assay [51]. As depicted in Figure 1, across all 

isolated IgG samples the median concentration of IgG isolated from cancer cases (14.1 mg mL−1 ± 

0.47) is significantly different from the median concentration of IgG isolated from lung cancer-free 

controls (10.9 mg mL−1 ± 0.33) (p < 0.0001 using unpaired t-test). To identify a set of antigens 

representative for the lung cancer-specific humoral immune response in cancer patients, intensity data 

gained from array images were analyzed using BRB-ArrayTools. The workflow of this study is shown 

in Figure 2. 

 

Figure 1. Boxplot of immunoglobulin G (IgG) concentrations from plasma of 100 controls 

(10.9 mg mL−1 ± 0.33) compared to 100 lung cancer cases (14.1 mg mL−1 ± 0.47). IgG 

concentrations of cases and controls are significantly different (unpaired t-test, p < 0.0001). 

Significance is indicated by asterisks (*** for p-value <0.001).   
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Figure 2. (a) Study workflow including the production of 16k protein microarrays, 

array processing with 200 clinical samples, data pre-processing, data visualization, and 

statistical analysis of microarray data using BRB-ArrayTools. (b) Illustrated microarray 

processing workflow.  

The sample set (n = 200) was processed in six distinct runs, each including up to 36 samples. Cases 

and controls included in one run were statistically matched for sex, age, and smoking-habits. In the 

first four runs, each run included only one histological cancer subtype matched with hospital-based 

controls. Run 5 and 6 included cases from two subtypes matched with selected controls.  

To check the quality of the spotting process, each slide was scanned before sample processing and 

slides showing irregularities were excluded from sample analysis. Furthermore, we used an anti-Penta-

His Alexa Fluor 532-conjugated antibody (Qiagen, Hilden, Germany) for processing of slides derived 

from different printing batches to investigate reproducibility of spotting. Correlation of log2 intensities 

of the detected His-tag proteins is in average 0.93 when comparing slides of different printing batches. 

A preliminary test, which included samples from three different individuals, was performed using 

purified IgG from the same IgG purification preparation. Each specimen was processed in three 

replicates on the same day and in three replicates on the consecutive day. Correlation between the 

replicates was calculated. Pearson’s correlation coefficient for intra-experiment replicates was in 

average 0.96 and for inter-experiment replicates 0.95. Furthermore, the intra-experiment median 
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coefficient of variation (CV) ranges from 0.20% to 0.63% and the inter-experiment median CV ranges 

from 0.53% to 1.00% (Supplementary Figure S3). CV values were calculated for each protein of the array.  

Additionally to this preliminary experiment, one run of samples had to be repeated due to quality 

irregularities of the 16k slides. The best 17 slides from these repeatedly processed slides were used to 

investigate the reproducibility of the samples when using a different IgG purification preparation and 

different batches of spotted microarrays. Although the samples were processed on slides with a lower 

quality, resulting Pearson’s correlation coefficients range from 0.79 to 0.93 for log2-transformed raw 

data with an average of r = 0.86, and between 0.96 and 0.99 with an average of r = 0.98 upon removal 

of batch effects with ComBat. For further statistical analysis the replicates of samples were not included.  

On the 16k protein microarray, each protein was printed in duplicates. Duplicate spots show a very 

high correlation of signals within an array. We calculated the correlation between duplicate spots 

within 38 arrays and obtained an average Pearson’s correlation coefficient of 0.98. This high correlation 

indicates that duplicate spots are sufficient to ensure reproducibility of the measured signals.  

As positive controls on the 16k protein microarray different concentrations of E. coli lysate (0.3 mg 

mL−1, 0.4 mg mL−1, and 0.5 mg mL−1) were used. Fluorescent intensities of these control spots 

increase in a linear manner with increasing concentration, resulting in an average coefficient of 

determination of 0.97 over all processed samples. With respect to array processing with purified IgG in 

different concentrations, it was shown that fluorescent intensity increases in a linear manner with 

increasing IgG concentration [51]. 

Table 2. Experimental design. Each run indicates one batch of samples, which was 

processed in one day. In total, all 200 samples of the sample set were processed in six 

distinct runs. 

n 
cases 

controls total 
SCLC SqLC LCLC AdCa 

run 1 18    18 36 

run 2  18   18 36 

run 3   18  18 36 

run 4    18 18 36 

run 5 7 7   14 28 

run 6   7 7 14 28 

∑ 25 25 25 25 100 200 

 

Since our protein microarray data is derived from different processing batches, systematic variation 

in the merged data would affect subsequent data analysis. Therefore, three different normalization or 

data adjustment strategies were applied on the data set in order to investigate the effect of these 

methods on the analysis results. After normalization of the data, principal component analysis was 

used to investigate the properties of the data set. Additionally, class comparison was used to identify 

significant antigens, which are differentially reactive to autoantibodies of lung cancer patients 

compared to lung cancer-free controls. 
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3.1. Principal Component Analysis and Principal Variance Components Analysis 

High-dimensional microarray data can be visualized by the reduction of dimensions by means of 

principal component analysis (PCA). The principal components, representing directions of the data 

with maximal variation, reveal similarities and differences between samples [52]. Figure 3 shows the 

first three principal components of the present microarray data set. Each sphere represents one sample 

and its color indicates the batch of sample processing, referred to as “run”. In the unnormalized data 

(Figure 3a), two groups of samples can be observed. The first three runs cluster into one group, the 

second group consists of the remaining three runs. One group consists of samples from three different 

histological types of lung cancer and their statistically matched controls, whereas the second group 

comprises all four used histological types of lung cancer and their matched controls, meaning that in 

both groups, three of the four used histological types are present. The PCA plot of the quantile 

normalized data is depicted in Figure 3b. This normalization method does not change the grouping of 

the batches compared to unnormalized data. The separation between the distinct runs in each group is 

even more obvious, especially between run 1, run 2, and run 3. By means of data adjustment with 

DWD (Figure 3c) and ComBat (Figure 3d), the previously observed groups become dispersed. In 

particular the ComBat algorithm achieves a more even distribution of the batches, whereas with DWD 

an accumulation of most samples in the center surrounded by a few samples outside of this center can 

be observed.  

 

Figure 3. Principal component analysis (PCA) plot showing the first three principal 

components of the microarray data set (a) unnormalized, (b) quantile normalized, 

(c) ComBat-adjusted, and (d) DWD-adjusted. Each sphere represents one sample; the color 

of the sphere indicates the different experimental runs. Run 1 to run 6 is represented by the 

following colors: run 1 = orange, run 2 = cyan, run 3 = dark blue, run 4 = yellow,  

run 5 = dark green, run 6 = pink. 
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A novel method for estimation of sources for variability in microarray data is principal variance 

components analysis (PVCA). In this analysis, a threshold for the percentage of variability is defined 

and the number of principal components representing this percentage is included in the further 

steps [34]. Here, the threshold was set to 60%. The defined principal components (PCs) are matched to 

known sources of variation by variance component analysis (VCA). The resulting weighted proportion 

of variance shows the proportional effect of each source on the data set [28]. The PVCA analysis of the 

unnormalized data (Figure 4a) shows that the highest contribution (49.5%) to variation is due to the 

experimental run. The second highest contribution is due to undefined residual effects (38.6%) which 

represent the variance in the data set which cannot be explained by known factors. The third most 

weighted variance is contributed by the combination of experimental run and sample type (lung cancer 

case or control). When using quantile normalization (Figure 4b), the contribution of the experimental 

run increases to 52.5%. This effect can be reduced to 0% when using ComBat (Figure 4c) and to 

0.001% by means of DWD (Figure 4d). The combination of the effects “experimental run” and 

“sample type” remain similar when using quantile normalization and ComBat, only with DWD a slight 

increase to 1.11% can be observed. Other factors, like age, sex, and smoking habit, do not have any 

effects (0.02%–0.06%) independent of the data pre-processing method. The sample type (lung cancer 

case or cancer-free control) has just a slightly higher effect on variance in each data set (0.11%–0.12%). 

 

Figure 4. Principal variance components analysis (PVCA) of the microarray data set 

(a) unnormalized, (b) quantile normalized, (c) ComBat-adjusted, and (d) DWD-adjusted. 

Contribution to variance was estimated for the following factors: run = experimental runs 

(run 1 to run 6), type = sample type (cancer or control), sex = female/male, age = age 

group (0–56, 56–64, 64–70, 70–100 years), smoking = smoking habit (current, never, 

former smoker), resid = residual weighted average proportion variance. Single factors were 

investigated as well as combinations of factors. 
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3.2. Class Comparison Analysis 

Class comparison with a significance threshold of p < 0.001 was performed after quantile normalization, 

DWD, and ComBat adjustment of the data and significant antigens were compared between these 

methods. The overlap between all analyses for investigation of the used normalization and batch 

removal methods is summarized in Table 3 (details are given in the Supplementary Figure S4). The 

highest number of significant antigens is achieved upon ComBat and quantile normalization. Much 

lower numbers are significant when analyzing DWD-adjusted and unnormalized data. 

Table 3. Number of significant antigens (p < 0.001) resulting from class comparison 

analysis. Rows show results of different data pre-processing methods, columns indicate the 

analyzed sample group (“r” means experimental run).  

Data pre-processing 
All  

(r1-6) 

run-wise class comparison cross-run class comparison 

SCLC 

r1 

SqLC 

r2 

LCLC 

r3 

AdCa 

r4 

SCLC 

r1+5 

SqLC 

r2+5 

LCLC 

r3+6 

AdCa 

r4+6 

Unnormalized 13 32 17 141 24 74 5 148 5 

QNORM 181 340 217 434 98 273 61 362 64 

ComBat 299 392 229 500 115 437 109 503 109 

DWD 39 34 20 141 35 82 3 176 17 

 

Each histological sample group was processed in a distinct run comprising only samples of one 

subtype as well as in a mixed run comprising samples of two subtypes and controls. Therefore, class 

comparison analysis could be performed either run-wise on each histological group, including samples 

derived from a single run or cross-run analysis was done, including samples of the single run combined 

with the samples of the respective subtype derived from the mixed run. For each histological subtype, 

overlaps of the significant antigens derived from class comparison analysis including either data of a 

single run or data from two combined runs were calculated (Table 4). This enables to investigate if the 

significant antigens derived from the analysis of a single run remain significant in cross-run analysis. 

For example, the case of the analysis of the SCLC group, class comparison analysis was done in two 

ways: including only samples of “run 1”, and combining the samples of “run 1” with the SCLC 

samples of “run 5”. Then, the overlap of the significant antigens was calculated. This was done using 

data from each histological group, using all three normalization methods as well as unnormalized data. 

When comparing the three different normalization strategies, ComBat adjustment yields the highest 

overlap of significant antigens when comparing analyses from single runs to cross-run analyses, 

ranging from 25.7% for SqLC to 43.4% for SCLC. With quantile normalization the second highest 

overlaps have been achieved, ranging from 18.3% for SqLC to 41.6% for SCLC. The lowest number 

of overlaps was achieved with DWD, which has even lower overlaps for the SCLC (13.7%) and SqLC 

(9.5%) compared to the unnormalized data (17.8% and 10.0%, respectively). Interestingly, for the 

histological group of LCLC the normalization method did not influence the overlap at all, ranging 

from 38.9% to 39.6%. The overlap for AdCa is comparable for all three adjustment methods (30.0% 

for DWD, 31.7% for quantile normalization, and 38.3% for ComBat). 
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Table 4. Overlap (%) of significant antigens between single-run and cross-run class 

comparison analysis (p < 0.001). This calculation was done with the same data set in an 

unnormalized state, quantile-normalized, DWD-adjusted data, and ComBat-adjusted data. 

SCLC = small cell lung cancer, SqLC = squamous cell lung cancer, LCLC = large cell lung 

cancer, AdCa = adenocarcinoma. 

Data pre-processing 

class comparison overlap (%)  

from single-run and cross-run analysis 

SCLC SqLC LCLC AdCa 

unnormalized 17.8 10.0 38.9 7.4 

QNORM 41.6 18.3 39.2 31.7 

ComBat 43.4 25.7 39.1 38.3 

DWD 13.7 9.5 39.6 30.0 

 

Comparison of congruent significant antigens derived from class comparison analysis (p < 0.001) 

with different normalization methods revealed that a high proportion of antigens are shared between 

quantile normalization and ComBat adjustment. This can be observed when analyzing cases and 

controls derived from one run (exemplified for SCLC in Figure 5a) compared to two processing runs 

(exemplified for SCLC in Figure 5b). For SCLC, all antigens which are significant in the unnormalized 

data occur in at least one list of significant antigens of a pre-processed data set. The number of 

significant antigens in the unnormalized and DWD-adjusted data is very low compared to the 

quantile-normalized and ComBat-adjusted data. However, a relatively high number of antigens is 

shared by all four differently pre-processed data sets; 15 antigens in the case of the run-wise analysis 

and 45 antigens in the case of the cross-run analysis (Figure 5a,b). This can also be observed for the 

LCLC group, while in the SqLC and the AdCa group the number of overlaps between all four methods 

is relatively low (see Supplementary Figure S5).  

 

Figure 5. Overlap of significant antigens derived from class comparison analysis 

(p < 0.001) with different normalization methods for the SCLC group. Data was analyzed 

unnormalized, quantile normalized (QN), DWD-adjusted, and ComBat-adjusted. 

Significant antigens of SCLC versus controls from (a) single run analysis (“run-wise” 

analysis) and (b) analysis of two combined experimental runs (“cross-run” analysis). 

Highest numbers of overlapping antigens are observed between QN and ComBat (318 and 

256, respectively). (c) Excerpt of Supplementary Figure S4 showing relative overlaps 

(% representing the intersections of findings depicted in Figure 5a,b) of all class 

comparison analyses results between quantile normalization and ComBat adjustment.  
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Comparing relative intersections, the overlaps of significant antigens between quantile 

normalization and ComBat adjustment ranges from 74.9% to 76.8% for single-run analyses and 42.9% 

to 62.3% for cross-run analyses (Figure 5c). Considering the overlaps between all adjustment methods 

as depicted in Supplementary Figure S4, quantile normalization and ComBat adjustment yield the 

highest values. 

The sample size plug-in from BRB-ArrayTools was used to calculate the number of samples needed 

per sample class for identifying antigens that are differentially reactive between controls and histological 

subtypes. For this calculation, we selected an accepted type 1 error rate (α) of 0.001, a power (1-β) of 

0.9 and a mean difference in log2 expression between classes of 0.585 (equates a fold-change of 1.5). 

An estimated required sample size of 21, 21, 21, and 20 for SCLC, SqLC, LCLC, and AdCa, 

respectively, was calculated when using the 50th percentile of the variance distribution. Therefore a 

good statistical power is given when using 25 samples per group. 

3.3. Class Prediction Analysis 

Class prediction analysis was used to construct multivariate predictors to classify arrays into  

pre-defined classes based on autoantibody profiles among these classes. The emphasis is to develop an 

accurate multivariate classifier, which is capable of predicting to which class a future sample belongs. 

Table 5 provides an overview of class prediction results performed using either the whole data set or 

only samples having the same histology and matched controls. Although DWD showed the lowest 

performance in class comparison analysis, this pre-processing method was also included for further 

class prediction besides quantile normalization and ComBat for evaluation of class prediction 

performance of all methods. Class prediction analysis of DWD-adjusted data resulted in lower 

accuracy for the distinct histological entities (79% to 92%) of lung cancer, except for AdCa (91%), 

compared to quantile normalized and ComBat-adjusted data. In the following, class prediction results 

of quantile normalized and ComBat-adjusted data are outlined. Different feature selection algorithms 

and best predictor models have been used to compare the performance of different settings. It can be 

seen that overall sensitivity and specificity values are higher than 80%. Correct classifications rates, 

representing the correctly classified samples as case or control using the calculated classifier panel are 

also comparable, ranging from 79% to 85% when applying class prediction on all lung cancer cases 

versus all controls. Using distinct histological subtypes versus matched controls, correct classification 

rates from 83% to 98% could be achieved. In general, class prediction performed only with data from 

one histological subtype yielded higher accuracy (0.83–0.98), sensitivity (0.80–1.00) and specificity 

(0.83–0.96) values than analyzing all lung cancer samples versus all controls with an accuracy of 

79%–85%, sensitivity of 0.76–0.90, and specificity of 0.75–0.85. Furthermore, it can be seen that 

when performing class prediction analysis for SCLC or AdCa the quantile normalized data yielded a 

higher accuracy than ComBat data, whereas for LCLC and SqLC ComBat was favorable.  

Venn diagrams illustrated in Figure 6 represent cross-sectional antigen overlaps calculated between 

the four histological subtype-specific classifier lists (calculated with class prediction analysis using 

100 RFE, Figure 6). Only a minor proportion (zero to six) of antigens does overlap. In general, there 

are no common antigens among all four histological subtypes. There is almost no difference in the 

number of overlapping antigenic proteins based on quantile normalized and ComBat adjusted data. 
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Table 5. Performance of classifier panels calculated with class prediction analysis. 

Different normalization strategies were used and different subsets of samples were 

analyzed. The analysis of all samples together means that all four histological types of lung 

cancer were merged to one cancer class.  

Analyzed sample set 
Data 

normalization 

Feature 

selectiona 

Classifier 

size 
Best predictorb CCc Sensitivity Specificity 

All cases vs. controls (run 1–4) QN 50 GP 100 1-NN, SVM 83% 0.90 0.75 

All cases vs. controls (run 1–6) QN 100 RFE 100 3-NN 79% 0.76 0.83 

All cases vs. controls (run 1–4) ComBat 25 GP 50 3-NN 81% 0.85 0.78 

All cases vs. controls (run 1–6) ComBat 25 GP 50 SVM 85% 0.85 0.85 

SCLC vs. control group (run 1 + 5) 

QN 

100 RFE 100 

SVM 98% 1.00 0.96 

ComBat SVM 94% 0.92 0.96 

DWD SVM 92% 0.88 0.96 

SqLC vs. control group (run 2 + 5) 

QN 

100 RFE 100 

SVM 88% 0.80 0.96 

ComBat CCP, NC, SVM 96% 0.96 0.96 

DWD SVM 81% 0.76 0.87 

LCLC vs. control group (run 3 + 6) 

QN 

100 RFE 100 

CCP, SVM 85% 0.84 0.87 

ComBat 1-NN 92% 0.88 0.96 

DWD SVM 79% 0.72 0.87 

AdCa vs. control group (run 4 + 6) 

QN 

100 RFE 100 

SVM 89% 0.92 0.87 

ComBat CCP, DLDA, NC 83% 0.83 0.83 

DWD DLDA 91% 0.92 0.91 

a greedy-pairs algorithm (GP), recursive feature elimination (RFE); b Nearest Neighbor classification (NN), support vector 

machine(SVM), Compound Covariate Predictor (CCP), Nearest Centroid (NC), Diagonal Linear Discriminant Analysis (DLDA); 

c correct classification rate. 

 

Figure 6. Venn diagram showing classifier overlaps from class prediction results with 

respect to histological subtypes. Each circle represents a classifier (100 antigens), specific 

for each histological subtype, found by means of class prediction analysis using recursive 

feature elimination (see Table 5) as feature selection method. (a) Quantile-normalized data, 

(b) ComBat-adjusted data. 

Moreover, the intersection of histological subtype-specific classifiers calculated with class 

prediction analysis using 100 RFE between ComBat adjusted data and quantile normalized data is 



Microarrays 2015, 4 178 

 

 

approximately 50%. The 100-antigen-classifiers specified by quantile normalization versus ComBat 

for SCLC, SqLC, LCLC, and AdCa were overlapping by 56, 45, 46, and 52 antigens, respectively. The 

intersection of classifying antigens for DWD versus quantile normalization accounts for 13, 15, 18, 

and 16 antigens, and versus ComBat adjustment for 12, 12, 15, and 12 antigens, for SCLC, SqLC, 

LCLC, and AdCa, respectively. 

Classifiers are published and covered in the European Patent Application “Lung cancer diagnostic 

method and means”, Publication Number EP2806274A1 [43]. Two representative classifiers 

distinguishing between all cancer cases and cancer-free controls are given in the supplementary section 

(Supplementary Tables S1 and S2).  

4. Discussion  

In the present study, we aimed at comparing normalization and adjustment of data derived from 100 

lung cancer cases versus 100 matched lung cancer-free controls in terms of effectiveness and influence 

on subsequent data analysis. Furthermore, the study was focusing on the identification of 

immune-profiles by means of protein microarrays for early diagnosis of lung cancer.  

Over the past decade, an increasing number of scientific reports have described the presence of 

autoantibodies, formed in response to TAAs, secreted from solid tumors in sera of cancer patients. In 

contrast to the present study, other TAA studies [16,53–55] use only small panels of already known 

antigens to determine the extent and frequency of corresponding autoantibodies in cancer samples. We 

were using protein microarray technology, which allows screening of differentially reactive antigens to 

detect lung cancer-specific biomarkers. Most recent publications have demonstrated that biomarker 

research has shifted from single maker analysis to analysis of biomarker signatures using highly 

parallel methods like microarrays [56]. The number of biomarkers needed to be included in such a 

panel to establish an efficient and accurate diagnostic tool may vary with the complexity of a disease. 

Lung cancer, comprising four different main histological entities, is known to be very complex and 

heterogeneous in terms of its molecular basis [57]. Therefore, it can be expected that biomarker panels 

rather than a single biomarker would enable lung cancer diagnosis. As the focus of the present study 

was to compare different data pre-processing strategies we have stated classifiers including 100 antigens 

to keep the results comparable. Furthermore, the classifiers reported in the present publication are 

resulting from an initial biomarker screening and will be further validated using a targeted microarray 

approach. Additionally, higher numbers of candidate antigens were taken into account because these 

numbers will be reduced when conducting further planned technical platform change to microsphere-

based Luminex® system. 

We have been using purified IgG samples isolated from plasma instead of diluted serum or plasma, 

widely used in published studies [9,18,58–65]. IgGs are known to be very stable in serum samples, 

allowing to detect antibody signatures long after sample taking [66]. 

The used study population consisted of a well-matched set of lung cancer cases and lung cancer-free 

controls. To cover the whole histological variety of lung cancer, 25 samples from each of the four main 

histological subtypes of lung cancer were included in the sample set. Cases and controls were 

statistically matched for age, sex, and smoking habits to reduce the influence of non-disease-associated 

effects on the data set. Using 25 samples of each histological subtype of this candidate biomarker 
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discovery, a statistical power of 0.9 could be achieved (and α = 0.001). This emphasizes that the use of 

25 biological replicates is sufficient to calculate classifiers with high relevance. 

Moreover, the first four runs were designed to include only samples from one distinct histological 

subtype and matched controls and the last two runs included samples from different histologic types. 

Certain batch effects or non-biological variations are unavoidable in data sets from large experiments. 

Especially when involving clinical samples, elaborate study design can decrease the possibility of 

misleading results. As Luo and colleagues [33] already reported, it is important to carefully remove 

batch effects from data before starting downstream analysis. Batch effects which are strong enough to 

mask true biological variations can be removed using data adjustment methods. If the biological issue 

of the study is completely confounded with the experimental batch design, batch removal methods may 

also remove true biological variation. In order to avoid that, we considered for our experimental design 

that in each run cases and controls are intermixed, that the number of cases and controls is the same, 

and that the maximum possible number of samples belonging to a distinct histological entity is 

processed in one run. By means of this design, class prediction analyses can be performed on single 

histological types of lung cancer and may also be performed on the combined data set, including all 

four entities in order to identify autoantibody-based biomarkers for lung cancer in general. 

Nevertheless, batch effects cannot be completely avoided though careful design of the study and have 

to be removed from microarray data sets, especially when several experimental runs have to be conducted.  

Many studies investigate batch effects and removal methods for microarray experiments [28,33,67–69]. 

The first step is to identify batch effects by visualization with PCA [67]. Quantitative evaluation of 

sources for batch effects can be done by means of PVCA [68]. After investigation of the data with 

these tools, methods for batch effect removal have to be used before further statistical analysis is 

performed. Investigation of our microarray data by means of PCA plots revealed that two main groups 

of samples can be deduced from the unnormalized data. Each group contains three distinct runs of all 

six experimental runs. One group comprised those runs which were processed chronologically first and 

the other group included the latter three runs. The difference between those two groups could be due to 

different days of processing, different stocks of used reagents, or to some other daily circumstances, 

which are not traceable. Therefore, it is very important to properly record all experiments and to use 

methods for batch effect removal when combining data sets for further analysis [41]. PVCA analysis 

conducted on the entire data set showed that the biggest contribution of the batch effect is due to the 

experimental run. This effect could be removed by the use of DWD and ComBat. Quantile 

normalization did even result in an increase of the batch effect. Normalization methods are not 

generally developed for the aim of batch effect removal [33]. It is known that in some cases of 

microarray experiments batch effects become higher after normalization because the underlying 

assumptions of normalization methods are transgressed by batch effects [67]. The sample type (case or 

control) in association with the run showed the second or third strongest influence on variance of the 

data set, which is most likely due to the biological differences between these groups. Other factors, 

which were investigated by means of PVCA, were age, sex, and smoking habit of the 200 individuals. 

None of those variables did contribute to variance in the data. Our sample cohort was statistically 

matched for these variables between the cancer and the control group in order to exclude any influence 

of these factors on the analysis results when comparing cancer cases and controls.  



Microarrays 2015, 4 180 

 

 

Subsequent to PCA and PVCA analysis class comparison was used in order to retrieve significant 

(p < 0.001) antigens for different sample sets treated with different normalization and data adjustment 

methods. Overlaps of run-wise and cross-run-derived significant antigen panels were compared for 

each histological entity of lung cancer (Table 4). Performance of data adjustment methods was 

evaluated according to the percentage of retained significant antigens when comparing the single run 

with the cross-run analysis. The lowest number of significant antigens which could be retained when 

combining two experimental runs in contrast to single-run analysis was observed in unnormalized and  

DWD-adjusted data. The highest number of retained significant antigens was observed in ComBat-

adjusted data, followed by quantile normalization. In respect thereof, ComBat performed the best 

followed by quantile normalization, although this method did not remove the batch effects 

successfully. DWD did perform less effective for our data set. Regarding the total number of 

significant antigens derived from class comparison (Table 3), ComBat outperformed all other methods. 

The second highest number of significant antigens was found in the quantile normalized data. DWD 

adjustment did yield low numbers of significant antigens, similar to the unnormalized data, indicating 

that despite batch effect removal the biological differences might remain masked. 

In line with our findings, also other studies found ComBat to perform better than other 

pre-processing methods [28,41]. Chen et al. found ComBat to be superior compared to other batch 

effect adjustment methods such as DWD and four other methods when using gene expression 

microarray data. ComBat enabled the reduction of batch effects and increased accuracy and AUC 

rates [28]. DWD has some limitations of applicability since only two batches can be adjusted at one 

time. When adjusting more than two batches, this has to be done in a stepwise approach [32]. In the 

case of our microarray data set, we merged the closest batches according to the PCA plot at first, and 

the last merge was done between the two clearly separated groups of samples which are shown in the 

PCA plot of the unnormalized data. This stepwise sequential DWD application could be the potential 

cause of the low performance of DWD in our protein microarray setting. As presented in Table 4, 

DWD provided poor results compared to quantile normalization and ComBat. Moreover, the use of 

DWD as batch adjustment method requires at least 25 samples per batch [31]. Although in our case 

this requirement could be fulfilled, it could be a problem for other studies with smaller batches. 

Since with ComBat and quantile normalization the highest number of significant antigens could be 

retained when combining experimental runs, further class prediction analysis for identification of 

tumor autoantibody-based biomarkers for different lung cancer entities and lung cancer in general was 

done with these two methods. However, to evaluate performance of DWD-adjusted data in class 

prediction, these analyses were also performed but resulting classifier panels were not further 

considered because DWD adjustment was less preferred. Comparing accuracy between different data 

transformation methods showed that DWD adjustment leads to lower correct classification rates 

compared to quantile normalization and ComBat adjustment, except for the AdCa entity. This may be 

due to the fact that on the PCA plot of the unnormalized data the experimental run comprising only 

AdCa and control samples was close to the mixed run which included the remaining AdCa samples. 

Therefore, these two runs were merged early in the stepwise DWD adjustment. Class prediction 

analysis was used to calculate classifier panels specific for each histological subtype, which is of great 

interest for clinical diagnostics. Due to the remarkable molecular heterogeneity of lung cancer, 

predicting whether a future sample is malignant, combined with classification of tumor histology 
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would be an improvement in targeted cancer therapy [3,70–74]. Already used commercial test kits like 

the EarlyCDT®-Lung assay (Oncimmune® Limited, Nottingham, UK) outperform classical diagnostic 

methods. By measuring the sero-reactivity against a panel of seven tumor-related antigens (p53, 

NY-ESO-1, CAGE, GBU4-5, HuD, and MAGE A4, and SOX-2), this assay yields sensitivity and 

specificity of 41% and 87%, respectively [75–77]. However, there is a great need for improving the 

sensitivity of such assays to cover the whole molecular complexity of lung cancer. This could be 

achieved by combining already established assays like the EarlyCDT®-Lung assay with our identified 

immuno-profiles which yielded high sensitivity rates since we achieved correct classification of 85% 

(sensitivity 0.85, specificity 0.85) when using class prediction for the analysis of all lung cancer cases 

versus controls. In this study we were able to calculate histological subtype-specific classifier lists 

which are only slightly overlapping, meaning that there are only few repeatedly occurring antigens in 

classifiers of the four histologies. This is in accordance with the well-known molecular heterogeneity 

of lung cancer and further indicates that future molecular diagnostics of lung cancer need to include 

specific biomarkers for each histological subtype to provide an accurate and minimal invasive method 

to initiate targeted and subtype-specific therapy as fast as possible. 

5. Conclusions  

Since conventional diagnostic methods often fail to detect lung cancer at an early treatable stage, 

tumor-specific autoantibodies, formed already very early in tumor development, represent an attractive 

alternative for lung cancer diagnosis.  

In the present study, a protein microarray-based screening for identification of tumor autoantibody 

markers for lung cancer was performed. In order to evaluate a valid data pre-processing strategy to 

elucidate reliable candidate classifiers, different normalization and data adjustment methods have been 

compared. PCA and PVCA plots have shown that only DWD and ComBat, both batch effect removal 

methods, were able to eliminate non-biological variations from the data set. Further, class comparison 

analysis yielded the highest number of retained significant antigens when comparing single-run versus 

cross-run analysis of the data sets adjusted with quantile normalization and ComBat. But, as quantile 

normalization fails to remove batch effects in the data set, we concluded that using ComBat-adjusted 

data is the best way to pre-process data sets from protein microarrays derived from multiple runs. Class 

prediction analysis subsequent to ComBat adjustment yielded correct classification rates of 85% for all 

lung cancer entities combined and even higher correct classification rates for distinct histological lung 

cancer types ranging from 85% to 98% (Table 5). To the best of our knowledge, these high numbers of 

correct classification outperform accuracy values of current diagnostic methods. 

Handling a large data set and applying different data manipulation algorithms have again shown 

that adjustment methods and data normalization indeed have a strong influence on subsequent analysis 

results and should therefore never be applied without critical evaluation using different statistical 

methods or data visualization tools. Furthermore, with the results of this study we could show that 

performing a protein microarray-based screening together with an elaborate experimental design, 

including samples from each main histological subtype of lung cancer, allows detecting tumor-specific 

autoantibody signatures which are able to cover the whole molecular complexity of lung cancer. 

However, to fulfill the urgent clinical demand of biomarkers for early diagnosis of lung cancer we 
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encourage the validation of the resulting classifier antigens in larger study populations. Therefore, 

validation of candidate markers on targeted arrays using planar microarrays or the Luminex® 

microsphere-based system will be the next step. The data-handling and evaluation procedure as 

described here would be helpful for biomarker stratification of other cancerous or complex diseases, 

especially when disease-specific autoantibody signatures or immune-profiles shall be used for 

biomarker development. Furthermore, for warranting appropriate sample-numbers and statistical 

power in microarray analyses, multiple experimental runs might have to be conducted in almost all 

studies. Therefore, the sequential approach to evaluate batch effect removal efficacy and testing the 

intersection of significant features from single and multiple experimental runs for distinguishing 

e.g., cases versus controls, would be a prerequisite to choose the most reliable candidates from 

microarrays and other highly multiplexed methods for confirmation and further biomarker development. 
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