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Eukaryotic gene regulation is mediated by cis-regulatory elements, which are
embedded within the vast non-coding genomic space and recognized by the
transcription factors in a sequence- and context-dependent manner. A large
proportion of eukaryotic genomes, including at least half of the human
genome, are composed of transposable elements (TEs), which in their ancestral
form carried their own cis-regulatory sequences able to exploit the host trans
environment to promote TE transcription and facilitate transposition.Although
not all present-day TE copies have retained this regulatory function, the preex-
isting regulatory potential of TEs can provide a rich source of cis-regulatory
innovation for the host. Here, we review recent evidence documenting diverse
contributions of TE sequences to gene regulation by functioning as enhancers,
promoters, silencers and boundary elements. We discuss how TE-derived
enhancer sequences can rapidly facilitate changes in existing gene regulatory
networks and mediate species- and cell-type-specific regulatory innovations,
and we postulate a unique contribution of TEs to species-specific gene
expression divergence in pluripotency and early embryogenesis. With
advances in genome-wide technologies and analyses, systematic investigation
of TEs’ cis-regulatory potential is now possible and our understanding of the
biological impact of genomic TEs is increasing.

This article is part of a discussion meeting issue ‘Crossroads between
transposons and gene regulation’.
1. Introduction
Following Barbara McClintock’s foundational maize kernel experiments in
which transposable elements (TEs) were first discovered [1], Davidson & Britten
[2] postulated a possible role of repetitive sequences and TEs in gene regulation.
These prescient early predictions have now found abundant experimental sup-
port. While early work documented individual instances of TE co-option for
regulatory functions, systematic analysis of TE contribution to gene regulation
was for a long time limited by technological challenges. The repetitiveness of
TE sequences across a genome made it difficult to precisely identify mapping
locations of next-generation sequencing (NGS) data from TEs and precluded
systematic perturbative experiments. However, significant advances in compu-
tational software and longer sequencing reads now facilitate mapping of
individual TEs in the genome. The vast majority of TEs have lost their ability
to actively transpose (fewer than 1% of human TEs are capable of transposition,
reviewed in [3]), and over the course of evolutionary time have accumulated
mutations that increase the uniqueness of each TE and enable higher recovery
of mapped NGS reads. Therefore, large-scale epigenomic and transcriptomic
studies can now include the previously ignored approximately 50% (and
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perhaps up to approx. 70% [4]) of the genome derived from
TEs, allowing scientists to systematically identify candidate
TEs that escape epigenetic silencing and gain regulatory sig-
natures. Additionally, high-throughput genomic technologies
(such as massively parallel reporter assays or CRISPR edit-
ing/activation/interference) for quantifying regulatory
potential of specific sequences, deleting genomic regions
or perturbing their function now enable us to determine
functional roles of TEs in gene regulation and genome organ-
ization. These technological advancements have led to a
recent explosion of studies documenting TE contribution to
gene regulation via various cis-regulatory modes, which we
discuss here with a focus on mammalian gene regulation.
Phil.Trans.R.Soc.B
375:20190347
2. Transcription factor binding sites contributed
by transposable elements

Transcription factors (TF) are proteins that regulate gene
expression by binding to DNA at specific sequence motifs.
Chromatin immunoprecipitation (ChIP) maps of genome-
wide TF occupancy demonstrate abundant binding of diverse
TFs (including STAT1 [5], TP53 [6], OCT4, NANOG and
CTCF [7–9]) within TE sequences. Large-scale genome-wide
analyses of 26 TFs by using sequencing (ChIP-seq) in
human and mouse cells [10] revealed that up to 40% (mini-
mum: 2%, average: 20%) of TF-binding events are derived
from TEs [11]. TE-derived TF-binding sites were wide-
spread—every TF assayed had some fraction of binding
events in TEs. Moreover, waves of expansions of various TE
families at different evolutionary times appear to coincide
with the expansion of target repertoire for specific TFs [12].
A majority of the TEs that were bound by the given TF also
contained DNA sequence motifs for the TF, suggesting
direct, sequence-dependent TF binding to TEs. Transcription
factors with more binding locations in the genome also had
higher fractions of binding to TEs [6]. This increase in the
number of TF-binding locations mediated by TEs could be
associated with an increase in the TF’s gene target repertoire
and broader impact on gene expression, although the latter
notion remains to be functionally assessed [13]. This supports
the idea that TEs could contribute to coordinated regulation
in the genome by spreading DNA substrate for TF binding
across the genome [2].

TE-derived TF-binding sites are non-randomly distributed
across TE subfamilies. Specific TE subfamilies enrich for
the binding of distinct TFs [11]. Based on 26 TFs assayed by
ChIP-seq in human and mouse, there are 710 TE subfamilies
that enrich for binding of at least one TF. In the genome, TE
subfamilies have several hundred (up to a few thousands) of
individual insertions, most of which accumulate substitutions
through genetic drift (figure 1a). It has been widely suggested
that TEs form the substrate for TF-binding site evolution and
innovation [14]. However, even for TE subfamilies enriched
for specific TF motifs, not every genomic copy of a TE can
be effectively bound by those TFs for several reasons. First,
most TEs are epigenetically silenced and thus can be accessed
by TFs only under conditions in which this repression can be
overcome by either the high affinity of a TF for the TE-derived
bindingmotif, its ability to function as a pioneer factor that can
directly bind nucleosomal DNA, cooperativity with other
TFs or global or local epigenetic changes [15–18] (figure 1b).
Second, a certain fraction of elements within a TE subfamily
might contain a given TF-binding motif, while many others
might have lost it via genetic drift [6,11] (figure 1a). Alterna-
tively, uneven distribution of TF binding within a TE
subfamily may arise, because only a few actively transposing
TE copies acquired the motif (figure 1a), which they then dis-
tributed throughout the genome. For example, recent work
[19] on the Mus caroli genome revealed a unique variant of
CTCF-binding sites (motif variation: 18C→T) contributed by
the species-specific expansion of rodent B2 SINE (B2_Mm1;
Short INterspersed Elements—Class I, non-autonomous
TEs). Finally, individual insertions within a TE subfamily
may acquire TF-binding activity via mutations that complete
an already present suboptimal motif (figure 1a). All aforemen-
tioned mechanisms contribute to the observed non-uniform
binding of TFs within TE subfamilies.

The majority of TE-derived TF-binding events are species-
specific and are driven by the expansion of different TE
subfamilies at different evolutionary timepoints [6,8,9,11].
Species-specific effects of TEs on gene regulation are demon-
strated for various TFs, including pluripotency factors
(OCT4, NANOG), CTCF, tumour-suppressor TP53, STAT1
(involved in immune response [20]) and pregnancy-associ-
ated factors regulated by cAMP [21]. TEs are widely
involved in placental development in mammals including
the exaptation of syncytin [22–25] and the contribution of pla-
cental enhancers [26]. A DNA transposon (Class II TEs),
MER20, is associated with approximately 13% of the differen-
tially expressed endometrial genes across mammals and is
thought to have re-modelled the placental gene regulatory
network by recruiting cAMP signalling to endometrial cells.
MER20 contains binding sites for various TFs, which also
acquire chromatin signatures associated with functional regu-
latory elements [21]. In addition, ancient mammalian TEs are
enriched for binding sites of TFs associated with hormone
responsiveness and involved in specifying the endometrial
cellular identity [26]. TE-derived TF-binding sites could also
provide robustness to gene regulation programmes by
increasing the redundancy in the network for TF binding.
Alternatively, recent analyses of cancer samples reveal that
TF-binding sites in TEs can also drive tumour formation
and prognosis [27]. Taken together, there is broad evidence
for TEs being bound by TFs and impacting gene regulation
in direct and indirect ways.
3. Diversity of cis-regulatory modules encoded
by transposable elements

Cis-regulatory modules represent clusters of TF binding, and
many TE sequences are bound by multiple TFs. For example,
rodent endogenous retroviruses (ERVs), including a mouse-
specific RLTR13D5, contribute species-specific enhancers to
placental development in trophoblast stem cells (TSCs) and
are bound by critical trophoblast TFs, including Eomes,
Cdx2 and Elf5 [28]. Similarly, pluripotency factors co-bind
certain mouse-specific LTRs (i.e. long terminal repeats—
Class I, autonomous TEs) and are capable of enhancing
gene expression in mouse embryonic stem cells (ESCs) [29].
Specifically, RLTR9B2, RLTR9D and RLTR9E subfamilies
enrich for Esrrb, Kl4 and Sox2-binding motifs, in a specific
organization and orientation. The approximation of the
ancestral TE state (i.e. the RepBase sequence [30], which is
based on a consensus-based approximation of the ancestral
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sequence) for these subfamilies also contains the same cis-
regulatory grammar (arrangement and orientation of
motifs), suggesting that the ancestral TEs spread these
cis-regulatory binding modules (figure 1c) across the mouse
genome, after the mouse–rat split less than 12–14 million
years ago. Functional validation (using massively parallel
reporter assays, MPRA [31]) of the modularity of these bind-
ing motifs reveals synergy (rather than merely additivity) to
enhance gene expression in the ancestral TEs [13], as opposed
to acquiring the regulatory potential via de novo mutations
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over evolutionary times [12]. Similarly, in human naive plur-
ipotent cells, evolutionarily young, ape-specific LTR5HS and
SVA elements are bound and regulated by pluripotency TFs
OCT4 and KLF4 [32,33].

Early embryos express totipotency/pluripotency factors
and have lower epigenomic restriction which provides a
window of opportunity for transcriptional reactivation of
TEs (figure 1c; [34–37]). Indeed, preimplantation embryos
have widespread TE transcription, mediated by permissive
chromatin and pluripotency TFs that bind to TEs. Once
somatic gene expression programmes are switched on, epige-
nomic restriction increases and reduces TE activity. It is
likely that ancestral TEs lack complete and optimized binding
motifs for an entire repertoire of TFs that would be required for
overcoming epigenomic restriction in a given somatic tissue,
and instead in some instances gain these motifs via neutral
substitution (figure 1c). In agreement with this notion, only a
fraction of TEs within a specific class show active epigenomic
states and TF-binding activity in somatic tissues, while
most are silenced. Nonetheless, recent analyses of epigenomic
states of TEs across 127 human cell types and tissues [10,38,39]
revealed that TEs compose one-quarter of the regulatory
epigenome (defined as active regulatory and transcribed
chromHMM states, DNase hypersensitivity peaks and
H3K27ac peaks) [40]. One emerging theme in these studies is
that motif-rich LTRs of ERVs are particularly fruitful
substrates for evolving new regulatory elements for the host,
with many LTRs acquiring inducible or cell type-specific regu-
latory potential. Across the 127 human cell and tissue samples,
almost half the TEs have a signature of putative active regulat-
ory state in at least one of the analysed cell types. Interestingly,
although TEs represent a significant fraction of regulatory and
transcribed chromatin states across all epigenomes, in a given
epigenome TEs are relatively depleted in active states, as most
are silenced [40,41].

Cis-regulatory elements such as enhancers and promoters
(figure 2a) are densely populated clusters of TF-binding
motifs which typically require occupancy of multiple TFs
for their activation (reviewed in [42]). TEs that escape silen-
cing and are bound by multiple TFs are much more likely
to acquire features of the bona fide enhancer or promoter
elements and in turn exert a functional impact on gene regu-
lation. For example, the aforementioned mouse and human
LTR elements bound by multiple pluripotency TFs are
enriched for chromatin signatures associated with enhancers
including H3K27ac and H3K4me1. More broadly, epigenomic
surveys of different cell types and organisms found that a
substantial portion of open chromatin regions are derived
from TEs, including 63% of primate-specific regions [43].
Overall, TEs represent a potent source of context-specific
regulators in the genome.
4. Transposable elements as a substrate for
evolving new enhancers

Enhancers are canonically defined as non-coding DNA
sequences that act to drive transcription independently of
their relative distance, location or orientation to their cognate
promoter (figure 2b). The ability of enhancers to act at a dis-
tance and in a modular and spatio-temporally restricted
manner allows a gene to be regulated bymultiple distal enhan-
cers. This facilitates enormous combinatorial complexity of
gene expression repertoires and allows the emergence of
diverse phenotypic outcomes from the fixed set of genes
[42,44–46]. As determinants of tissue-specific gene expression,
enhancers can be considered as information integration hubs
(reviewed in [47]) where genomic (i.e. sequence) information
is read in the context of a specific cell type (by the lineage-
specific TFs), signalling environment (by TF effectors of
signalling pathways) and chromatin state (permissive or
restrictive for TF access), and together is translated into precise
spatio-temporal control of transcription. Over evolutionary
times, enhancers are rapidly evolving regulatory elements
compared with promoters and gene expression [48]. Indeed,
developmental enhancers are fertile targets for evolutionary
change, as they both are tissue-selective (allowing modulation
of target gene transcription in a subset of tissues without
affecting other pleiotropic gene functions) and commonly
exist in groups of redundant or partially redundant elements
(facilitating accumulation of genetic variation by buffering
the risk of lethality). Thus, it comes as no surprise that TEs,
which harbour TF-binding sites and can transpose to dissemi-
nate them across the genome, emerged as a major substrate for
evolving tissue- and species-specific enhancers.

TE-derived enhancers are involved in context-specific
gene regulation [47], affecting various biological cellular states,
including pregnancy-related gene expression [21], early
embryonic stages in humans [49] and innate immunity [20].
In the latter case, functional contribution of MER41 to STAT1-
mediated interferon-γ-responsive enhancers and gene
expression has been directly demonstrated [20]. Contributions
of TEs to regulatory landscapes are particularly pronounced
when species-specific enhancers are considered, including
through waves of repeat expansions [12]. For example, the
majority of ape-specific and human-specific liver enhancers
overlap TEs (77% of ape-specific enhancers compared with
16% of evolutionarily conserved enhancers) [50]. Quantitative
comparisons of enhancer landscapes between chimpanzee and
human cranial neural crest cells (CNCCs) showed that species-
specific changes in enhancer activity can be explained by the
underlying regulatory sequence divergence and is linked to
expression differences in genes involved in development of
craniofacial structures [51]. Even when just orthologous human
and chimpanzee sequences are considered (excluding species-
specific TE insertions from the analysis), nearly half of the
species-specific enhancers in CNCCs are derived from TEs and
enriched for specific ERV and L1 families. Thus, TE sequences
contribute towards enhancer evolution between closely related
species and likely drive phenotypic differences too.
5. Transposable element origin of an hourglass
developmental divergence?

Despite the key contribution of TEs to species-specific enhan-
cers, in most mouse and human tissues TEs enriched for
enhancer signatures are mostly ‘older’ than non-regulatory
genomic TEs [40,41]. This suggests thatmutations that occurred
over evolutionary times allowed individual insertions within
specific TE subclasses to acquire mutations facilitating gain of
enhancer function (figure 1a). Indeed, uterine and liver enhan-
cers have often evolved from ancient TE sequences [26,48].
Similarly, enhancer activity divergence between human and
chimpanzee CNCCs commonly arises from just a few single-
nucleotide mutations in older TE insertions [51]. Interestingly,
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this picture changes in preimplantation embryos and pluripo-
tent cells, where evolutionarily young LTR elements, such
as ape-specific LTR5HS in humans and murine-specific
RLTR9B2, RLTR9D, RLTR9E and RLTR13D6 in the mouse,
appear to have been broadly co-opted for enhancer function,
with a large subset of individual elements within the given
class showing the occupancy of pluripotency TFs (figure 1c)
and chromatin signatures of active enhancers [29,52].

We speculate that such broad activity of evolutionarily
young LTRs in naive pluripotency may not only result from
permissive epigenetic state associated with global DNA
hypomethylation, but may be a consequence of the fact that
these ancient retroviruses must have been able to replicate
in germ cells or preimplantation embryo cells in order to
persist through vertical transmission (figure 1c). Thus, LTRs
of retroviruses that successfully endogenized have likely
been optimized for directing expression in early embryo/
germ cells to begin with, and accumulating mutations over
evolutionary times may decrease, rather than increase, their
regulatory activity. One such example of a TE is HERV-H
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whose expression in human ESCs is not only abundant but
also a pluripotency marker [53] and is mediated by pluripo-
tency TFs [54,55]. Maladaptive insertions of such elements
can be selected out of the population prior to implantation,
whereas those that persist either are neutral or provide some
adaptive benefits for the host. Interestingly, an hourglass
model of developmental constraint postulates high regulatory
divergence between closely related species in early and late
development, and greater constraint at the phylotypic stage.
It is tempting to speculate that the broad utilization of young
(and often highly species-specific) TEs for regulation in the
early embryo provides a major contribution to the species-
specific differences in gene expression that have been observed
during early embryogenesis [56–58].

Importantly, studies that perturb the function of these
naive pluripotency-associated LTRs via CRISPR interference
(CRISPRi) or LTR editing have found support for their contri-
bution to long-range gene regulation [49,52]. Interestingly,
however, effects of LTR5HS inactivation on gene expression
in human cells are much more pervasive and stronger
in magnitude that those seen for RLTR13D6 elements in
mouse cells. Nearly 300 human genes, spanning a wide
range of distances and distinct orientations with respect to
the LTR, show significant dependency on the LTR5HS
activity [49]. By contrast, only a minority RLTR13D5/
RLTR13D6 elements seem to have a detectable effect on
gene regulation in mouse ESCs [52]. Although a more
robust CRISPRi approach used in the human study could
potentially account for these disparate observations, it is
also possible that genuine biological differences in inherent
enhancer strength of the LTRs, distinct redundancies within
regulatory landscapes or differences in selective pressures
may account for diverse magnitude of LTR contributions to
early embryonic gene regulation in apes and rodents. Regard-
less, these observations underscore the importance of
functional assessment of regulatory contributions of specific
TEs—or indeed, any candidate enhancer sequences—via
perturbative experiments.

Over the recent years, since more systematic perturbative
experiments of candidate non-coding sequences have become
possible, we have learned that mammalian regulatory land-
scapes are extremely complex and often contain redundant
enhancers and that the impact of individual putative enhan-
cer deletion/silencing on expression of target genes is
dependent on inherent enhancer strength, number and
strength of other active enhancers acting on the same gene
in a given cell type, and spatial constraints reflected in the fre-
quency of contact with the target promoter(s) [59–63].
Furthermore, while relationships among enhancers within a
regulatory landscape are often additive [64], examples of
other relationships, including synergistic, competitive and
hierarchical, have been described in the literature (reviewed
in [42]). We should expect that TE-derived enhancers will
participate in these complex relationships and thus their
activity (or lack thereof) should be interpreted in a broader
context of a given regulatory landscape.
6. Transposable element-derived promoters drive
context-specific gene expression

Transcriptional promoters, like enhancers, consist of multiple
TF-binding sites. While enhancers can act over very large
genomic distances, promoters are immediately proximal to
gene transcription start sites and contain cis-signals that
allow efficient assembly of the Pol II preinitiation complex
[45] (figure 2c). Although many promoters are bidirectional,
most show a strong bias in the direction of transcription (of
long stable transcripts), again in contrast with most enhan-
cers, which give rise to bidirectional transcripts termed
eRNAs (typically short and unstable) [45]. There is currently
much debate in the field as to which functional features dis-
tinguish enhancers from promoters, and there appears to be a
continuum, with a subset of elements able to function as
both. In that context, it is interesting that LTR elements,
which, by definition, are retroviral promoters, can also act
as long-range enhancers for the host genes, independently
of the transcriptional directionality or orientation of the LTR
relative to the target promoter [49].

Nonetheless, LTRs in ERV sequences provide ready-made
promoters in human and mouse [55,65–67]. TE-derived pro-
moters [68] can either fuse with/replace a canonical gene
promoter or serve as an alternative promoter either upstream
or downstream from the canonical transcription start site
(figure 2c). TE-derived alternative promoters can drive
expression of chimeric transcripts, which may vary in levels
when compared with those driven by the canonical promoter
(figure 2c; reviewed in [69]). In some cases, such transcripts
can also differ in their coding potential, giving rise to either
chimeric or truncated proteins, and thus facilitating evol-
utionary innovation at the protein level [69]. Around 18%
of human transcription start sites are defined by CAGE-seq
overlap TEs [70], and tend to be in gene-dense regions
often functioning as alternative promoters [71]. The first
well-characterized example of TE-derived promoters was
found in viable yellow agouti (Avy) mice, where the Avy

allele contains an IAP (intracisternal A particle; LTR) element
in the 50 end of the agouti (A) allele [72]. Variable DNA
methylation levels across individuals at the Avy promoter
result in a variable coat colour in each mouse, in addition
to other traits [73], and can also be influenced by maternal
diet [74,75]. In the totipotent two-cell stage (2C) of mouse
embryos and in 2C-like cells which spontaneously arise in
mouse ESC cultures, MERVL elements are bound by TF
Dux and serve as alternative promoters, giving rise to
chimeric transcripts of the so-called 2C genes [76,77].
The human genome also encodes context-specific TE-derived
promoters. For example, more than a thousand human genes
have promoters derived from TEs [78,79]. LTRs among these
TE-derived promoters enrich for cell-specific gene regulation.
Epigenetic modification by deleting DNA methyltransferases
in human neuronal progenitor cells results in specific
activation of young, hominoid-specific LINE-1 (L1) elements
[80], which can then serve as alternative promoters for
neuronal protein-coding genes.

LINE-L1 (i.e. Long INterspersed Elements; Class I auton-
omous TEs) elements are also capable of bidirectional
transcription: L1s have two promoters in their 50 UTR—one
sense and one antisense [81]. L1 antisense promoters produce
many chimeric transcripts from adjacent genes [82]. Disease
conditions that alter epigenetic landscape can promote aber-
rant activation of promoters contained within TEs. Recent
work analysing transcripts in thousands of cancer samples
(from The Cancer Genome Atlas—TCGA—Program) demon-
strates are epigenetic reactivation of cryptic promoters in TEs
that can drive gene expression in cancer, often referred to
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as onco-exaptation ([27,83]; examples are listed in [69]).
TE-derived onco-exaptation events are not only responsible
for a significant fraction of the target oncogene’s expression
in the examined samples but were also associated with
poor patient survival. Taken together, TE-derived gene
promoters can impact both developmental and diseased
transcription states.
ing.org/journal/rstb
Phil.Trans.R.Soc.B
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7. Role of transposable elements in three-
dimensional genome architecture

In addition to sequences that promote or enhance gene
expression, TEs also contribute to the maintenance of
genome architecture. Three-dimensional chromatin organiz-
ation not only determines the packaging of DNA in the cell,
but also influences gene regulation by demarcating
regulatory neighbourhoods (figure 2d ). Measurements of
chromosome contacts (from a genome-wide chromosome
conformation capture assay—Hi-C, as reviewed in [84])
identified self-associating domains known as topologically
associating domains (TADs; [85,86]). TAD boundaries are
enriched for binding of CTCF, a zinc finger protein that
mediates the formation of structural chromatin loops by
restraining cohesin-mediated loop extrusion [86–88]. SINE
elements are enriched for CTCF binding [9,11], and are over-
represented at TAD boundaries [85]. However, TAD
boundaries are typically deeply conserved in evolution
[89], suggesting that species-specific rewiring of TADs by
TEs is not common. Instead, it has been suggested that
rodent SINEs can contribute to the maintenance of clustered
CTCF sites at TAD boundaries, which in turn promotes the
maintenance of genome organization [90]. Clusters of
CTCF sites are over-represented at TAD boundaries and
likely provide buffering against turnover of individual sites
to stabilize TADs and chromatin loops. Along with main-
taining chromatin contact loops through TE-derived CTCF
sites, TEs can also contribute to the establishment of
species-specific chromatin loops by depositing novel
anchor CTCF motifs [91].

Although most TAD-boundary elements are cell-type
invariant, evolutionarily conserved and enriched for CTCF
motifs, a small subset of TAD boundaries appears to escape
this generality [92]. Indeed, a recent report highlights pluri-
potent stem-cell-specific TAD boundaries that are detected
in human ESCs, but weakened during differentiation to
cardiomyocytes [93]. These cell-type-specific boundaries are
devoid of clusters of CTCF sites, and instead enriched in
highly transcribed HERV-H elements, a primate-specific
class of LTR TEs with previously described roles in pluripo-
tency [53,54]. The establishment of TAD boundaries is
dependent on the transcription of HERV-H (figure 2d ), as
directed silencing of the HERV-H can eliminate the insulation
and impact the gene regulatory landscape. Similarly, in
mouse 2C cells, MERVL elements are not only the main
source of promoters for directing expression of the early
2C genes, but also facilitate the formation of chromatin
domain boundaries in a manner that coincides with their
transcriptional upregulation [94]. Intriguingly, these new
observations again highlight a particularly prevalent role
for TEs in genome regulation and organization during early
development.
8. Collateral effects of transposable element
silencing on gene regulation

Although TEs provide a rich substrate for evolving diverse
cis-regulatory elements for the host, most genomic TEs are
epigenetically silenced to prevent mutagenic effects of their
transposition. These silencing events often occur within tran-
scriptional gene units, as a large subset of TEs (estimated at
approx. 60% in the human and mouse genomes) is located
in introns [95]. For genes that are active, this can lead to
conflicts between polymerase passage through the gene and
heterochromatin formation at intronic or promoter-proximal
TEs, and in turn can affect host gene expression (figure 2e).
One feature of heterochromatin is its ability to spread
beyond the initial recruitment site via mechanisms that often
involve coupling of the epigenetic writers and readers
(reviewed in [96]). For example, in tetrapod vertebrates,
KRAB zinc finger proteins mediate the repression of specific
TE subclasses via DNA-sequence recognition and recruitment
of a repressive complex including H3K9me3 methyltransfer-
ase SETDB1 and the reader of H3K9me3, HP1 [97,98].
KRAB-domain-mediated silencing typically spreads to
several, and in some cases even tens of kilobases away from
the initial recruitment site, which can lead to the repression
at neighbouring gene promoters [99,100]. Similarly, DNA
methylation can spread from TEs to nearby promoters,
although some studies suggest that such events are relatively
rare and actively counteracted by the host [100,101].

Interestingly, TE silencing events can impact gene
expression even over large genomic distances from promoters.
For example, evolutionarily younger, full-length LINE-1 (L1)
elements located within introns of active genes are preferen-
tially targeted for repression and H3K9me3-deposition by the
human silencing hub (HUSH) complex [102,103]. From the
genome defence perspective, such elements—encompassing
transposition-competent L1PA1 (L1Hs)—need to be sup-
pressed as they pose the highest threat to genomic integrity,
especially when embedded within a transcriptionally permiss-
ive environment. However, these intronic silencing events
create heterochromatic islands of at least 7 kb length (the
length of a full-length L1) that elongating Pol II must pass
through, and genic H3K9me3 as well as L1 insertions have
both been shown to decrease Pol II elongation rates [104,105].
Consequently, transcript levels of active genes containing
evolutionarily young full-length L1s are downregulated,
often subtly, in an L1 sequence-dependent and HUSH com-
plex-dependent manner [102]. These L1s can be thought of as
genetically determined but epigenetically regulated silencer
elements that can quantitatively modulate expression levels
of hundreds of human genes at large distances from gene
promoters. Thus, the host genome needs to balance the need
for young intragenic TE suppression with the collateral effects
that such silencing can have on gene expression.

9. Concluding remarks
Evolutionary differences across species are thought to be
largely driven by changes in gene expression, mediated by
divergence in cis-regulatory elements [106,107]. Recent
progress in the field revealed that a substantial portion of
mammalian cis-regulatory sequences is derived from TEs.
These TE-derived cis-regulatory elements are often cell
type- and species/clade-specific and can contribute to gene
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expression regulation through many diverse mechanisms,
which we have reviewed here.

The prevalence of TE utilization for regulatory functions
may differ between cell types and developmental stages.
Indeed, TEs seem to play an outsized role during mammalian
pre- and peri-implantation development, where whole
subclasses of TEs (such as MERVL in mice, or HERV-K and
HERV-H in humans) function in host gene regulation as
alternative promoters, enhancers or boundary elements. This
widespread utilization of TEs during early development is
likely facilitated both by the global epigenomic de-repression
during this time of embryogenesis and by the fact that to suc-
cessfully propagate through vertical transmission, ancestral
TEs must have been able to direct transcription of their own
sequences in toti/pluripotent cells or germ cells. Conse-
quently, many evolutionarily young TEs, which are typically
species- or clade-specific, can bind toti- and pluripotency-
associated TFs. We speculate that, at least in mammals,
transcriptional divergence during early development, as
postulated by the hourglass model, is largely mediated by
the massive co-option of TEs for host gene regulation.

By contrast, in somatic tissues, epigenomic control is
restored and TEs are largely repressed via a multitude of chro-
matin-silencing mechanisms. However, different fractions of
TEs, often representing older insertions, escape the epigen-
omic control by accumulating sequence changes that make
them compatible with cell-type- and context-specific func-
tions. Since we have only begun to systematically assess the
function of TEs in gene control, it is likely that we are still
vastly underestimating their impact as well as the diversity
of mechanisms by which TEs can influence transcription,
post-transcriptional gene regulation, genome organization
and evolutionary divergence. Nevertheless, our understand-
ing of TEs has come a long way from the notion of ‘junk’
DNA. What persists is Barbara McClintock’s early vision of
TEs as ‘controlling elements’ [108].
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