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OBJECTIVE—KCNQ1 gene polymorphisms are associated with
type 2 diabetes. This linkage appears to be mediated by altered
B-cell function. In an attempt to study underlying mechanisms,
we examined the effect of four KCNQI single nucleotide
polymorphisms (SNPs) on insulin secretion upon different
stimuli.

RESEARCH DESIGN AND METHODS—We genotyped 1,578
nondiabetic subjects at increased risk of type 2 diabetes for
rs151290, rs2237892, rs2237895, and rs2237897. All participants
underwent an oral glucose tolerance test (OGTT); glucagon-like
peptide (GLP)-1 and gastric inhibitory peptide secretion was
measured in 170 participants. In 519 participants, a hyperinsu-
linemic-euglycemic clamp was performed, in 314 participants an
intravenous glucose tolerance test (IVGTT), and in 102 subjects
a hyperglycemic clamp combined with GLP-1 and arginine
stimuli.

RESULTS—rs151290 was nominally associated with 30-min
C-peptide levels during OGTT, first-phase insulin secretion, and
insulinogenic index after adjustment in the dominant model (all
P = 0.01). rs2237892, rs2237895, and rs2237897 were nominally
associated with OGTT-derived insulin secretion indexes (all P <
0.05). No SNPs were associated with {3-cell function during
intravenous glucose or GLP-1 administration. However, rs151290
was associated with glucose-stimulated gastric inhibitory
polypeptide and GLP-1 increase after adjustment in the dominant
model (P = 0.0042 and P = 0.0198, respectively). No associations
were detected between the other SNPs and basal or stimulated
incretin levels (all P = 0.05).

CONCLUSIONS—Common genetic variation in KCNQ1 is asso-
ciated with insulin secretion upon oral glucose load in a German
population at increased risk of type 2 diabetes. The discrepancy
between orally and intravenously administered glucose seems to
be explained not by altered incretin signaling but most likely by
changes in incretin secretion. Diabetes 57:1715-1720, 2009
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ecent genome-wide association (GWA) studies
confirmed the significance of established can-
didate gene regions for type 2 diabetes, i.e.,
PPARG, KCNJ11, TCF7L2, and WFS1, and also
revealed several novel type 2 diabetes susceptibility
loci, i.e., SLC30AS8, HHEX, CDKALI, IGF2BP2, and
CDKNZ2A/B, none of which were considered as functional
candidates (1-5). Comprehensive metabolic analysis of
genotyped cohorts, comprising measurement of insulin
sensitivity and insulin secretion with state-of-the-art meth-
ods, revealed that the novel variants influence insulin
secretion but show little, if any, impact on insulin sensi-
tivity (6-11).

Two recent GWA studies identified KCN@Q1 as a novel
diabetes susceptibility gene (12-13). Similar to the other
novel gene variants that are associated with type 2 diabetes,
the KCNQ!I risk alleles for type 2 diabetes also appear to be
associated with impaired pancreatic 3-cell function as as-
sessed by fasting state— and oral glucose tolerance test
(OGTT)-derived indexes of insulin secretion (13).

KCNQI contains 19 exons and spans more than 400 kb
on chromosome 11p15.5 (14). The KCNQ1 gene encodes
the pore-forming a-subunit of the voltage-gated K* chan-
nel (KvLQT1), which plays an important role in controlling
the ventricular repolarization process (15). Mutations in
KCN@Q1I have been associated with inherited cardiac dis-
orders, such as long QT syndrome and familial atrial
fibrillation. The long QT syndrome may occur in a reces-
sive form that is associated with deafness (Jervell and
Lange-Nielsen syndrome) or in an autosomal dominant
variant not associated with deafness (Romano-Ward syn-
drome) (16). In addition to the heart and cochlea, KCNQ1
is ubiquitously expressed in epithelial cells, including the
exocrine and endocrine pancreas (17). KCNQ1 was reported
previously to be expressed in insulin-secreting INS-1 cells,
and inhibition of this potassium channel by the sulfonamide
analog 293B was found to significantly increase insulin
secretion in the presence of tolbutamide (18).

The aim of the present study was to investigate the
influence of common type 2 diabetes—associated KCNQ1
single nucleotide polymorphisms (SNPs) on insulin secre-
tion kinetics in response to orally and intravenously
administered glucose during an OGTT and intravenous
glucose tolerance test (IVGTT) as well as a hyperglycemic
clamp combined with glucagon-like peptide (GLP)-1 and
arginine administration.

RESEARCH DESIGN AND METHODS

We studied 1,578 nondiabetic participants at an increased risk for type 2
diabetes due to family history of diabetes (first-degree relatives of type 2
diabetic patients), history of gestational diabetes, overweight, impaired fast-
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TABLE 1

Clinical characteristics of the study population

Sex (female/male) 1,044/534
IFG/IGT/IFG and IGT 164/152/123
Age (years) 40 = 13
BMI (kg/m2) 28.9 + 8.2
Waist circumference (cm) 94 + 17
Fasting glucose (mmol/l) 5.11 = 0.55
Glucose: 120-min OGTT (mmol/) 6.27 + 1.66
Fasting insulin (pmol/l) 63.7 £ 52.9
Insulin: 30-min OGTT (pmol/l) 493.5 + 392.7

Data are n or means *= SD. IFG, impaired fasting glucose; IGT,
impaired glucose tolerance.

ing glucose, or impaired glucose tolerance determined in an OGTT (Table 1).
Subjects were recruited from an ongoing study on the pathophysiology of type
2 diabetes (19). A subset of 519 participants was studied by a hyperinsuline-
mic-euglycemic clamp, 314 participants by an IVGTT, and 102 subjects by a
hyperglycemic clamp combined with GLP-1 and arginine stimuli. First-degree
relatedness among subjects was less than 1%. Informed written consent for all
studies was obtained from all participants, and the local ethics committee
approved the protocols.

Subjects were genotyped for rs151290, rs2237892, rs2237895, and
rs2237897 (all located in intron 15) in the KCNQI gene. rs2237897 and
rs2237895 showed the strongest association with type 2 diabetes in a
recent study (12). In the third screening of another study, rs151290 and
rs2237895 were found to be most significantly associated with type 2
diabetes (13). As rs2237895 was already included in the SNPs chosen from
the study by Unoki et al. (12), the SNP with the strongest association with
type 2 diabetes in the replication study by Yasuda et al. (13), rs2237892,
was additionally picked.

Genotyping was done using the TagMan assay (Applied Biosystems,
Forster City, CA). The TagMan genotyping reaction was amplified on a
GeneAmp PCR system 7000, and fluorescence was detected on an ABI PRISM
7000 sequence detector (Applied Biosystems). Genotyping for rs2237897 using
the TagMan assay was successful only in major allele carriers. Therefore, in
those subjects for whom the TagMan assay failed, genotypes were directly
determined by bidirectional sequencing.

Quality control was performed as described previously (19). Overall,
genotyping success rate was 99.9% (100% for rs151290 and rs2237895 and
99.9% for rs2237892 and rs2237897), and the error rate was 0% (3.2% of all
samples were regenotyped by bidirectional sequencing). For OGTT, IVGTT,
and hyperinsulinemic-euglycemic clamp, the assays were performed as pre-
viously described in detail (10).

The hyperglycemic clamp, combined with GLP-1 and arginine administra-
tion, was performed as described previously (20). After 120 min of hypergly-
cemic clamp at 10 mmol/l, a bolus of GLP-1 (4.5 pmol/kg) was given [human
GLP-1 (7-36)amide; Poly Peptide, Wolfenbiittel, Germany], followed by a
continuous GLP-1 infusion (1.5 pmol - kg ' - min~') during the next 80 min. At
180 min, a bolus of 5 g arginine hydrochloride (Pharmacia & Upjohn, Erlangen,
Germany) was injected over 45 s while the GLP-1 infusion was continued.
Blood for the measurement of glucose, insulin, and C-peptide was taken at
—30, —15, 0, 2.5, 5, 7.5, 10, 20, 40, 60, 80, 100, 120, 125, 130, 140, 150, 160, 170,
180, 182.5, 185, 187.5, 190, and 200 min. This clamp allows measurement of
different aspects of stimulus-secretion coupling: first and second phases of
glucose-induced insulin secretion, GLP-1-induced insulin secretion, and the
response to additional arginine administration.

Plasma glucose, insulin, and C-peptide concentrations were measured as
described previously (19). GLP-1 and gastric inhibitory polypeptide (GIP)
immunoreactivitiy were determined using radioimmunoassays specific for the
COOH-terminal of the peptides (21,22). To avoid incretin degradation, venous
blood was drawn into chilled tubes containing EDTA and aprotinin (Trasylol;
20,000 kallikrein inhibitor units/ml, 200 .l per 10 ml blood; Bayer, Leverkusen,
Germany) and kept on ice. After centrifugation at 4°C, plasma for hormone
analyses was kept frozen at —20°C. BMI and waist and hip circumferences
were measured as described earlier (19).

First-phase insulin secretion (picomoles per liter), insulin sensitivity from
the OGTT (arbitrary units), and clamp-derived insulin sensitivity (arbitrary
units) were calculated as reported previously (19). Insulinogenic index was
assessed by (insulin at 30 min — insulin at 0 min)/(glucose at 30 min — glucose
at 0 min). Insulin secretion during the IVGTT was assessed as the sum of
C-peptide levels and insulin levels, respectively, during the first 10 min after
glucose administration. Insulin secretion during the hyperglycemic clamp was
calculated as reported previously using insulin levels determined during the
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clamp (20). Fold increase of incretins during OGTT was assessed by the ratio
of the 30-min incretin value to the basal incretin value.

Statistical analyses. Data are means * SD. Log-transformation of metabolic
variables was performed before simple and multivariate linear regression analy-
ses. Distribution was tested for normality using the Shapiro-Wilk W test. The
secretion indexes were compared using multivariate regression models. In these
models, the trait was the dependent variable, whereas age, sex, BMI, insulin
sensitivity, and genotype were the independent variables. To account for the
number of SNPs tested and the number of independent traits analyzed (anthro-
pometrics, insulin sensitivity, and insulin secretion) in the OGTT study, a
Bonferroni-corrected a-level of P < 0.00425 was considered statistically signifi-
cant. Given that the IVGTT study, the hyperglycemic clamp, and measurement of
incretin levels were hypothesis driven, we considered only the number of SNPs
tested resulting in a Bonferroni-corrected a-level of P = 0.0127. The statistical
software package JMP 7.0 (SAS Institue, Cary, NC) was used. In the dominant
model, dependent on the SNP tested, the OGTT study was sufficiently powered
(18 > 0.8) to detect effect sizes as small as 0.13-0.24 (one-tailed ¢ test), the
hyperinsulinemic-euglycemic clamp 0.23-0.49, the IVGTT study 0.29-0.62, and
the combined hyperglycemic clamp 0.53-0.98. Power calculation was performed
using G*power software available at http:/www.psycho.uni-duesseldorf.de/aap/
projects/gpower. Hardy-Weinberg equilibrium was tested using the x* test.

RESULTS

Characterization and genotyping of a German popu-
lation at increased risk for type 2 diabetes. We
genotyped 1,578 nondiabetic subjects from the southwest
of Germany whose clinical characteristics are presented in
Table 1. Of these subjects, 68.1% had a family history of
diabetes, i.e., at least one second-degree relative with type
2 diabetes. The observed minor allele frequency (MAF)
and the MAF published by HapMap were 0.208 and 0.217,
respectively, for rs151290, 0.064 and 0.075 for rs2237892,
and 0.037 and 0.051 for rs2237897. Whereas the observed
MAF for rs2237895 was 0.427, an MAF for this SNP was not
published by HapMap. All allele frequencies were in Hardy-
Weinberg equilibrium (x? test, P > 0.05).

Association of genetic variation in KCNQ1 with an-
thropometric and metabolic data. The four SNPs were
not associated with anthropometric data, such as BMI,
waist circumference, and body fat content, except for a
nominal association between rs2237895 and BMI in the
additive model only (P = 0.0252; Table 2). rs151290 was
nominally associated with 30-min C-peptide levels dur-
ing OGTT, first-phase insulin secretion, and the insuli-
nogenic index (P = 0.0072, P = 0.0072, and P = 0.0104,
respectively) after adjustment for sex, age, BMI, and
insulin sensitivity (Table 2 and Fig. 1A4). rs2237892 was
significantly associated with 30-min insulin levels during
OGTT (P = 0.0010) and nominally with 30-min C-peptide
concentrations during OGTT and the insulinogenic in-
dex (P = 0.0330 and 0.0472, respectively) after adjust-
ment for sex, age, BMI, and insulin sensitivity in the
dominant model. rs2237895 was nominally associated
with 30-min C-peptide levels during OGTT, first-phase
insulin secretion, and the insulinogenic index (P =
0.0442, P = 0.0410, and P = 0.0409, respectively) after
adjustment for sex, age, BMI, and insulin sensitivity in
the dominant model. rs2237897 was nominally associ-
ated with 30-min C-peptide levels during OGTT (P =
0.0478) after adjustment for sex, age, BMI, and insulin
sensitivity in the dominant model. Whereas indexes
of insulin secretion were improved in minor allele
carriers of rs151290, rs2237892, and rs2237897, minor
allele carriers of rs2237895 depicted reduced insulin
secretion. Nominal associations were found between
rs2237897 and fasting insulin and OGTT-derived insulin
sensitivity (P = 0.0388 and 0.0340, respectively) after
adjustment for age, sex, and BMI in the dominant model.
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TABLE 2

Associations of KCNQ1 SNPs rs151290, rs2237892, rs2237895, and rs2237897 with anthropometric and metabolic traits

1151290 (0.208)

152237892 (0.064)

152237895 (0.427)

152237897 (0.037)

cC CA AA Paaa Paom CcC AA TT Pyga Paom AA AC CcC Pyaa Pyom cC CT TT Pyaa Paom

n 995 508 5 — — 1,384 183 10 — — 521 765 292 — — 1,463 111 3 — —
Age (years) 3913 40 = 14 38 = 14 0.5 0.7 40 = 13 39+ 14 34 =12 0.4 0.5 39 =13 40 = 13 39 =14 0.0091  0.05 40 =13 3815 3715 0.2 0.11
BMI (kg/m?) 28781 29.1 =85 291173 0.6 0.4 288 +83 29.1+7.7 312+66 03 0.3 292 *+8.1 29.0 £ 85 278 = 17.6 0.0252  0.08 288 =82 29.6 = 8.1 34.7+68 016 0.15
Waist circum-

ference (cm) 93 + 17 95 + 18 95 + 17 0.4 0.17 94 * 17 94 + 17 99 + 15 0.4 0.4 94 + 17 94 + 18 92 + 17 0.09 0.10 94 + 17 95 + 17 103 + 23 0.2 0.13
Body fat (%) 30.7 = 10.8 314 +11.0 319+ 110 02 0.3 30.8 = 10.9 32.0 = 10.7 328+87 017 0.2 31.6 = 10.8 30.8 = 11.0 305 =105 017 0.07 30.9 = 10.8 326+11.0 383+52 019 04
Fasting glucose

(mmol/l) 5.11 = 0.56 5.09 * 0.52 515+ 054 05 0.6 5.10 = 0.55 512 *+ 0.52 505+ 052 0.0457 0.7 5.09 = 0.54 5.10 = 0.53 5.13 = 0.61 0.9 0.8 5.11 = 0.55 507+054 545*0.71 0.6 0.7
Glucose: 120-min

OGTT

(mmol/l) 6.32 = 1.66 6.14 = 1.64 6.52 =164  0.0035 0.0303  6.26 * 1.65 6.31 = 1.66 6.96 =220 0.0121 0.14 6.18 = 1.63 6.27 = 1.66 641 =170 05 0.6 6.26 = 1.65 631+ 172 739*260 0.7 0.9
Fasting insulin

(pmol/l) 62.8 = 48.8 64.2 = 59.0 72.6 £ 613  0.13 0.5 62.6 = 51.4 70.8 = 6254  82.7*+67.0 0.18 0.7 65.4 = 51.4 63.3 = 55.7 61.8 =479  0.06 0.0198  62.9 =528 73.6 = 54.4 101 =485 0.11  0.0388
Insulin: 30-min

OGTT

(pmol/l) 477 * 369 512 + 416 584 + 508 0.18 0.2 480 = 379 589 + 473 565 =433 0.0027  0.0010 528 * 424 487 = 380 449 * 362 0.18 0.08 484 * 384 616 + 486 592 £ 368  0.12  0.09
First-phase

insulin

secretion

(pmol/l) 1,235 = 782 1,322 = 906 1,433 £ 1,085  0.0203  0.0072 1,245 = 811 1,470 + 1,024 1,445 900  0.12 0.11 1,343 + 899 1,250 = 824 1,205 + 771 0.09 0.0410 1,253 = 824 1,532 £ 1,027 1,536 + 526 0.2 0.10
Insulinogenic

index

(pmol/mmol) 137 = 398 157 + 174 160 = 142 0.0246  0.0104 140 = 350 174 + 160 136 = 68 0.14 0.0472 171 = 263 126 + 413 144 = 153 0.06 0.0409 145 = 323 136 + 443 139 + 42 0.4 0.3
C-peptidegym

0-10 min

IVGTT

(pmol/)* 8,357 + 3,644 8,355 + 9,508 = 7,534 0.9 0.8 8,299 + 3,423 9,189 *+ 5,624 — 0.9 0.9 8,776 * 4,646 8,208 = 3,313 8432 * ¢ 0.5 0.4 8,286 = 3,399 10772 + 7,904 — 0.4 0.4
ISL: OGTT (U) 16.3 + 10.7 16.6 + 10.9 143 + 9.6 0.0330 0.4 16.6 + 10.9 145+ 9.2 150+ 145 03 1.0 16.1 +10.7 16.3 + 10.8 16.6 +10.7  0.08 0.0245 16.5 + 10.8 14.4 + 10.5 93+82 010 0.0340
ISL: clamp (U)f 0.089 + 0.060  0.080 + 0.047  0.068 + 0.027 0.3 0.14 0.087 + 0.055  0.075 *+ 0.056 0.134 0.4 0.3 0.088 = 0.055  0.080 + 0.056  0.095 + 0.050 0.4 0.3 0.086 = 0.054  0.082 *+ 0.064 — 0.5 0.5

Data are means *+ SD unless otherwise indicated. For statistical analysis, data were log transformed. Anthropometric data were adjusted for sex and age. Indexes of insulin sensitivity were adjusted for sex, age, and BMI. Indexes
of insulin secretion were adjusted for sex, age, BMI, and insulin sensitivity. ISI, insulin sensitivity index; P, 44, additive model; Pg,,,,, dominant model. *IVGTT data were available from 314 subjects. {ISI (clamp) data were

available from 519 subjects.
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FIG. 1. A: Associations of KCNQI SNPs rs151290, rs2237892,
rs2237895, and rs2237897 with insulin secretion. Insulin secretion was
assessed by C-peptide levels at 30 min during an OGTT. Unadjusted
data from 1,578 subjects are presented. B: Association of KCNQ1 SNPs
rs151290, rs2237892, rs2237895, and rs2237897 with increase of GLP-1
levels during an OGTT. C: Association of KCNQ1 SNPs rs151290,
rs2237892, rs2237895, and rs2237897 with increase of GIP levels
during OGTT. Incretin increase was assessed by the ratio of levels at 30
min during OGTT to fasting levels. Unadjusted data from 170 subjects
are presented. Before multivariate linear regression analysis in the
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rs2237895 was also nominally associated with OGTT-
derived insulin sensitivity (P = 0.0245) after adjustment
for age, sex, and BMI in the dominant model. rs151290
was nominally associated with OGTT-derived insulin
sensitivity (P = 0.0330) after appropriate adjustment in
the additive model. However, such an association was
not found in the dominant model (P = 0.4). rs2237892
was not associated with OGTT-derived insulin sensitiv-
ity (P = 0.3).

None of the four SNPs were associated with IVGTT-
derived indexes of insulin secretion (all P = 0.4), and
insulin sensitivity measured with the clamp technique was
not affected by any of the genotypes (all P = 0.14). The
discrepancy between OGTT- and IVGTT-derived insulin
secretion pointed to an influence of common genetic
variation in the KCNQI gene on incretin production or
incretin signaling. Recently, the two diabetes susceptibility
loci TCF7L2 and WFS1 were found to be associated with
impaired GLP-1-induced insulin secretion (23,24). There-
fore, we also studied the influence of the four KCN@QI1
variants on a hyperglycemic clamp combined with GLP-1
administration. However, no associations were found be-
tween the KCNQ1 variants and glucose-, GLP-1-, and argin-
ine-induced insulin secretion during the hyperglycemic
clamp after appropriate adjustment (all P > 0.05; supplemen-
tary Table 1, available in the online appendix at http:/
diabetes.diabetesjournals.org/cgi/content/full/db08-1589/
DC1). To test the influence of genetic variation in KCNQ 1
on incretin secretion, in a subset GLP-1 and GIP levels
were measured during OGTT. rs151290 was significantly
associated with the glucose-stimulated GIP increase and
nominally associated with the GLP-1 increase after adjust-
ment for sex, age, and BMI in the dominant model (P =
0.0042 and P = 0.0198, respectively; Fig. 1B and C). The
reason for the large SEM values of the fold increase of
GLP-1 during OGTT appears to be an outlier with an
extremely high 200-fold increase. After exclusion of this
outlier, the difference between homozygous major allele
carriers and risk allele carriers remains nominally signifi-
cant (CC 2.6 £ 0.3 vs. XA 39 = 0.7, P < 0.05). No
associations were detected between the other three SNPs
and basal or stimulated incretin levels (all P = 0.05; Table
3).

DISCUSSION

Two recent GWA studies showed that common genetic
variation in KCNQ1 is associated with type 2 diabetes
(12,13). One SNP, rs2237892, has been found to be asso-
ciated with a fasting parameter of insulin secretion (ho-
meostasis model assessment of PB-cell function) in a
Japanese population and with an OGTT-derived insulin
secretion parameter (corrected insulin response) in a
European cohort (13).

In a German population at increased risked for type 2
diabetes, we detected nominal associations of KCNQI
SNPs rs151290, rs2237892, rs2237895, and rs2237897 with
several OGTT-derived indexes of insulin secretion, includ-
ing C-peptide at 30 min during OGTT, first-phase insulin
secretion, and insulinogenic index. Whereas insulin secre-
tion was lower in homozygous major allele carriers of

dominant model, non-normally distributed data were log-transformed.
C-peptide levels were adjusted for sex, age, BMI, and insulin sensitiv-
ity. Incretin increase was adjusted for sex, age, and BMI. P values are
given above the columns. Sample sizes are given at the bottom of the
columns.

DIABETES, VOL. 57, JULY 2009
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rs151290 (CC), rs2237892 (CC), and rs2237897 (CC), B-cell
function was improved in homozygous major allele carri-
ers of rs2237895 (AA). Thus, our data confirm the previous
study reporting an association between rs2237892 and
indexes of insulin secretion (13). Furthermore, our
findings are in agreement with the two previous studies
that identified the C allele as the type 2 diabetes risk
allele for rs151290, rs2237892, rs2237895, and rs2237897
(12,13).

None of the SNPs was associated with insulin secretion
during IVGTT, pointing to an influence of common genetic
variation in KCNQ1 on incretin secretion or incretin
signaling. Recently, we found that SNPs of the two diabe-
tes susceptibility genes TCF7L2 and WFS1 were associ-
ated with impaired GLP-1 signaling that contributed to the
pathogenetic mechanism (23,24). In contrast, none of the
KCNQ1 variants were associated with GLP-1-induced
insulin secretion. However, we found an association be-
tween rs151290, the SNP with the most prominent effect
on insulin secretion after an oral glucose load, and glu-
cose-stimulated GLP-1 and GIP levels. These results may
indicate that altered incretin secretion after food intake
provides a potential link between KCNQI gene variants
and impaired B-cell function. In line with this assumption,
KCNQ@LI is expressed along the entire gastrointestinal tract
(25) and is involved in transport mechanisms in gastroin-
testinal epithelia (26).

It is worth noting that associations with alterations of
glucose-stimulated incretin secretion were found only for
rs151290, though rs2237892, rs2237895, and rs2237897
were also associated with indexes of insulin secretion
during OGTT. The reason for these inconsistent results
could be either that the effects of rs2237892) rs2237895,
and rs2237897 on incretin secretion may be too small to be
detected in our limited sample size or that these KCNQ1
variants regulate insulin secretion differently than
rs151290.

We are aware that the SNPs presented are located
within intronic noncoding regions and that, therefore, the
mechanisms of their actions remain elusive. The NCBI
Reference Sequence (RefSeq) of KCN@1 contains 14 mis-
sense mutations, two frame-shift mutations, one nonsense
mutation, and one SNP in the 5'-untranslated region. Only
4 of these 18 mutations are captured by the HapMap data.
None of these SNPs are in linkage disequilibrium with any
of the three chosen SNPs rs151290, rs2237892, and
rs2237897. SNP rs2237895 is also not captured by the
HapMap data. However, we cannot rule out that the
chosen SNPs may be in linkage disequilibrium with a
functional candidate that is not captured by the HapMap
data. Alternatively, given that none of the chosen SNPs are
located in coding regions, common genetic variants in
KCNQ1 may affect gene expression and not the function of
the gene product.

The present study has certain limitations that need to be
taken into account. First, our study comprised subjects at
an increased risk for type 2 diabetes, which may affect the
phenotype of incretin secretion or mask some other effects
of KCNQI1 SNPs. Second, we were not able to detect effect
sizes smaller than 53% with sufficient power (80%) in the
combined hyperglycemic clamp study. Thus, effects sizes
of KCNQ1 SNPs below 53% possibly remained undetected
in this study. Therefore, we cannot rule out that genetic
variation in KCN@1 may, in addition to its effects on
glucose-stimulated incretin secretion, also alter GLP-1-
induced insulin secretion.
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In summary, common genetic variation in the KCNQ1
gene is associated with B-cell function in our German
population at increased risk of type 2 diabetes, confirm-
ing previous data in Japanese and European cohorts.
The discrepancy between orally and intravenously ad-
ministered glucose seems to be explained not by altered
incretin signaling but most likely by changes in incretin
secretion.
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