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When cancer research advanced into the post-genomic era, it was widely anticipated

that the sought-after cure will be delivered promptly. Instead, it became apparent that

an understanding of cancer genomics, alone, is unable to translate the wealth of

information into successful cures. While gene sequencing has significantly improved

our understanding of the natural history of cancer and identified candidates for

therapeutic targets, it cannot predict the impact of the biological response to therapies.

Hence, patients with a common mutational profile may respond differently to the

same therapy, due in part to different microenvironments impacting on gene regulation.

This complexity arises from a feedback circuit involving epigenetic modifications made

to genes by the metabolic byproducts of cancer cells. New insights into epigenetic

mechanisms, activated early in the process of carcinogenesis, have been able to describe

phenotypes which cannot be inferred from mutational analyses per se. Epigenetic

changes can propagate throughout a tumor via heritable modifications that have

long-lasting consequences on ensuing phenotypes. Such heritable epigenetic changes

can be evoked profoundly by cancer cell metabolites, which then exercise a broad remit

of actions across all stages of carcinogenesis, culminating with a meaningful impact on

the tumor’s response to therapy. This review outlines some of the cross-talk between

heritable epigenetic changes and tumor cell metabolism, and the consequences of such

changes on tumor progression.

Keywords: tumor evolution, acidosis and oxidative stress, nutrient sensing and signaling, tumormicoenvironment,

epigenetic regulation

MOLECULAR MECHANISMS OF MICROENVIRONMENTAL
SENSING

Cancer evolution operates through selection, which requires a degree of phenotypic diversity to
present a range of possible responses to microenvironmental selection forces, some of which confer
selective advantage (1, 2). Tumors can be described as complete ecosystems, containing cancer cells,
stromal cells, vasculature, extracellular matrix, and the chemical milieu consisting of variables such
as pH and oxygen tension (3–5). During tumorigenesis—and similarly in response to therapy—the
tumor ecosystem shows considerable plasticity because cancer cells shape their microenvironment,
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to which subsequent generations of them must adapt to thrive,
and these adaptations, in turn, fine-tune the microenvironment
(6). During the various stages of tumor progression, cells can
be exposed to highly variable chemical stimulations, largely
attributed to variable blood perfusion; for example, oxygen
deprivation (hypoxia), nutrient deprivation, metabolic end-
product build-up, and increased acidity. Overall, these stimuli
would be considered, by normal standards, to be survivable to
most cells but exerts some cost on cells fitness, and it is therefore
axiomatic that cancer cells must adapt to these conditions if
they are to thrive. Although the stimuli are survivable, they still
impose stress on the cells which changes their fitness, requiring
acquisition of a novel homeostatic balance that costs more energy
for cells and can be lethal for cells in competition with other cells.

Hypoxia is one of the main environmental factors a cancer
cell must face in order to survive, thrive, and progress. Hypoxia
imposes a metabolic stress on the cell, hindering its ability to
carry out aerobic respiration. Therefore, the cell must be able
to adapt to a hypoxic environment in order to survive. The
cellular response to hypoxia is robust, and exerts most of its
force via the transcription factors HIF-1α and HIF-2α. Another
HIF family protein, HIF-3α, functions to repress the responses
directed by HIF-1α and HIF-2α. All three of these proteins
carry out their function via dimerization with constitutively
expressed HIFβ proteins in the nucleus which allows them
to directly modulate transcription of proteins involved in the
hypoxia response (7, 8), or in the case of HIF-3α repress the
transcriptional response. HIF-1α is a constitutively expressed
protein, whose activity is regulated by the hydroxylation of
conserved proline residues. In microenvironments of high
oxygen tension (>5%), the proline residues are hydroxylated,
tagging the protein for degradation by E3 ubiquitin ligases (9).
When oxygen concentrations are below the tolerable threshold
for a given cell type, HIF-1α is not degraded, and increases in
concentration to allowHIF-1α to induce transcription of its client
genes (10).

Nutrient deprivation is another major stressor within
the tumor microenvironment. When the cell experiences
a critical reduction in a particular nutrient, it must swiftly
adjust in order to maintain productivity in the terms of
metabolism, proliferation, migration, or other processes
essential to evolutionary success and survival. Two main
nutrient sensing proteins implicated in cancer are AMP-
activated protein kinase (AMPK) and the mammalian target
of rapamycin (mTOR) (11, 12). These proteins are capable
of sensing the current energy status of the cell and nutrient
availability, respectively.

The metabolic pathway directed by AMPK is highly context-
specific; depending on the nutrient status of the cell. AMPK is
responsible for the cellular response to glucose deprivation and
acts as a metabolic switch from a highly glycolytic state to an
oxidative state depending on the availability of glucose. This is
particularly important in the context of cancer and the highly
plastic nature of cancer metabolism. AMPK is activated by 5′-
AMP, which indicates that the cell is not regenerating ATP at
a fast-enough rate to meet demand. This induces the uptake of
glucose and the induction of glycolysis to replenish the cellular
ATP (11). The induction of glycolysis via-a-vis respiration is

likely due to the promptness with which glycolytic activation can
occur (13).

mTOR is present in the form of two different complexes,
mTORC1 and mTORC2. These two complexes participate
in associated, but distinct signaling pathways in nutrient
sensing. mTORC1 becomes activated in response to various
growth factors and amino acids that promote cell growth and
proliferation. When inactive, mTORC1 represses growth and
induces an autophagic response. mTORC2 is a sensor of glucose
but also plays a role in amino acid signaling. mTORC2 is activated
by acetyl-coenzyme A (Ac-CoA), which is produced in the
cytoplasm via citrate lyase, when glycolytic flux is abundant.
The result of mTORC2 activation is increased cell proliferation,
in response to the increased glucose metabolism. mTORC2 has
also been implicated in amino acid sensing by having the ability
to suppress the function of the glutamine-cysteine transporter,
system Xc transporter-related protein (12).

Aberrant perfusion in the tumor microenvironment allows
a significant build-up of metabolites in the tumor interstitial
fluid. The main metabolite that is commonly accumulated in the
tumor interstitial fluid is lactic acid, which is associated with
a decrease in pH. A decrease in extracellular and intracellular
pH can dramatically modulate the activities of enzymes,
some of which are more sensitive than others, depending
on how significant the change in pH is and the isoelectric
point of the enzymes optimal activity (14). These alterations
in enzyme activity are pleiotropic and leads to metabolic
reprogramming. Lactate in the tumor microenvironment is a
by-product of increased glucose fermentation, which occurs
even in the presence of oxygen, known as aerobic glycolysis or
the Warburg Effect. Once produced, lactate is shuttled out of
the cell, stoichiometrically with a proton, by monocarboxylate
transporters (MCTs) 1–4. Sensing of extracellular pH is
accomplished through a variety of plasma membrane associated
proteins including two major classes of acid-sensing receptors:
(i) G-protein coupled receptors (GPCR) such as Ovarian
cancer G protein-coupled receptor 1 (OGR1), G-protein coupled
receptor 4 (GPR4), T-cell death-associated gene 8 (TDAG8),
and ii) Acid-sensitive ion channels (ASICs) which include
7 proteins from 4 genes: 1a/b,2a/b,3,4,5, and Ca2+ channel
that includes transient receptor protein channel vanilloid
subfamily 1 and 2 (TRPV1 and TRPV2) (15). Lactate can
also be sensed and regulate cellular functions by activating the
G protein-coupled receptors HCA1/GPR81, HCA2/GPR109A,
and HCA3/GPR109B. These hydroxy-carboxylic acids (HCA)
receptors control physiological homeostasis under changing
metabolic and dietary conditions (16).

Cancer cells commonly overexpress many of the
aforementioned acid sensors, and this can be correlated to
tumor progression and poor outcome (17, 18). Therefore,
investigating these sensors as a factor in malignancy may
identify relevant prognostic biomarkers or may reveal new
therapeutic vulnerabilities. The sensors can be connected
to pathways to activate transcription factors or overexpress
other genes and proteins (Figure 1). However, considering
the ever-changing state of the microenvironment, we propose
that epigenetic regulation may be a more effective factor in
stabilization of emerging phenotypes in cancer cells. Adaptation
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FIGURE 1 | Mechanisms of environmental sensing and their effects on epigenetic modifiers. This figure depicts the various avenues by which cells are able to detect

perturbations in the environment, and the downstream effects of this sensing on epigenetic modifiers. Oxygen sensing mechanisms trigger dimerization of HIF-1α and

HIF-1β proteins to affect epigenetic modifiers; oxygen also direct modulates activity of epigenetic modifiers. Nutrient sensing can initiate a signaling cascade, largely

mediated by the mTORC complexes and AMPK protein, with the ability to alter the activity of epigenetic modifying proteins. Acid sensing proteins located on the outer

membrane of the cell are able to sense the extracellular pH, but have no clear mechanism for altering the activity of epigenetic modifiers.

to an acid-microenvironment has been shown to alter cell
state by pushing cells into a partial EMT phenotype (19); this
may be a manifestiation of these acid sensors inducing a stable
epigenetic change.

HERITABLE EPIGENETIC MODIFICATIONS
ACQUIRED THROUGH
MICROENVIRONMENTAL SENSING

Onemechanism enabling cancer cells to adapt is through changes
to gene expression via epigenetic regulation. Some modalities of
epigenetic regulation are transient (e.g., histone acetylation) and
are imposed to help cancer cells survive acute disruptions in their
microenvironmental homeostasis. In contrast, other epigenetic
mechanisms are more persistent (e.g., DNA methylation) and
have the ability to be passed down through generations to endow
further generations with memory on how to survive in the
tumoral microenvironment.

The term epigenetics was first created by CH Waddington
who described it as “the causal interactions between genes

and their products, which bring the phenotype into being.”
While a commonly agreed upon definition is hard to find
today, the term epigenetics in the modern era is commonly
described as a permanent change in the way genes are expressed.
Types of epigenetic regulation include histone modifications,
DNA Methylation, and non-coding RNA (20), which can all
impact one another to create a complex regulatory dynamic. A
major question is: “How do the external factors of the tumoral
microenvironment play into altering this complex dynamic”?

It is commonly known that the epigenetic signatures of cancer
cells are different compared to their untransformed counterparts
(21–25). Many of these epigenetic alterations exert their function
by altering the metabolism of cancer cells (26), and are acquired
by signaling cascades initiated by sensing of the extracellular
environment. Some of the signaling cascades that can lead to
changes of epigenetic signatures were implied in the previous
section and the specific alterations they are involved in will be
discussed herein.

In many solid tumors, intra-ductal hyperplasia leads to
significant alterations in the physical microenvironment,
especially in peri-luminal cells that are far (>160 microns)
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from their blood supplies. Importantly, the diffusion distance
of oxygen in tissues is 100–200 microns (27), meaning that the
periluminal cells of DCIS can be profoundly hypoxic. The depth
and duration of hypoxia is dependent on the blood flow of the
surrounding stroma. Hypoxia eventually selects for metabolic
reprogramming, leading to acidosis, as well as exacerbating
nutrient deprivation. Over many years in this environment, these
forces (hypoxia, acidity, nutrient deprivation) select for cells with
more highly adaptable, aggressive, de-differentiated phenotypes
(6, 28). The resulting acidosis leads to genome instability, which
could increase the rate of cancer evolution (29). The source
of cytoplasmic (and nuclear) acidosis is lactate accumulation
as a byproduct of glycolysis. Lactate has been shown to have
a variety of effects on the epigenetic mechanisms of the cell,
some of which are confounding. Direct inhibition of histone
deacetylases (HDACs) by lactate has been shown in separate
studies (30, 31); while others have reported multiple times on the
increase in activity of the Sirtuin family of histone deacetylases
upon exposure of cells to a chronically acidic extracellular
environment (32, 33). These examples represent combined
sensing and epigenetic effector mechanisms that act directly on
altering the epigenetic status of the cell.

The oxygen sensing protein HIF-1α can regulate epigenetics
in a variety of ways. Upon activation, HIF-1α leads to
downstream signaling cascades important for the survival of
cells in low oxygen environments. The ultimate effect of
some of these signaling cascades is the epigenetic alteration
of gene regulation (Figure 1). Two epigenetic mechanisms
influenced by HIF-1α are histone methylation and DNA
methylation (Figure 1). Unlike other epigenetic mechanisms,
histone methylation can act in both activating and repressing
fashions depending on the specific location of the covalent
modification. The histone demethylase JMJD2B is activated by
HIF-1α (Figure 1), and is specifically targeted to H3K9me2/3
to demethylate the mark to a monomethylated state (34, 35).
The expression of ten-eleven translocation proteins 1/3 (TET1/3)
is also upregulated upon stabilization of HIF-1α. TET1/3
are 5-methylcytosine (5mC) oxidases, which convert 5mC
into either 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), or 5-carboxylcytosine (5caC) via sequential reactions
(36). The result of these reactions is the deactivation of
the methylation mark and the subsequent reactivation of
the sequence being repressed by the methylation. This has
been validated in neuroblastoma where it was shown that
HIF-1α can induce HIF-1α/hypoxia specific DNA methylation
signatures (37). The fact that HIF-1α activates DNA methylation
supports our hypothesis of inheritable epigenetic changes
to next generation that can be tracked in cancer cells.
Contrary to the upregulation of TET by hypoxia-induced
transcriptional programs, TET proteins have been shown to
have their activity reduced directly by low oxygen availability
in a tumor setting. TET activity is lost in vitro when
exposed to hypoxic conditions, possibly via hypermethylation
of tumor suppressor promoters in hypoxic regions of tumor
samples (38). The opposing forces of the transcriptional and
functional regulation of TET proteins may demonstrate a
physiological feedback system for regulating the epigenetic

response to oxygen deprivation in order to attenuate the response
(Figure 1).

The sensing of nutrients by a cell is vitally important to
its survival and can have long term effects on the downstream
lineage of that cell via epigenetic modifications. Having this feed
forward system of epigenetic regulation directed by nutrient
signaling allows for increased fitness for subsequent generations.
As mentioned previously, cellular nutrient sensing is mainly
achieved through 3 essential proteins and protein complexes:
AMPK, mTORC1, and mTORC2 (Figure 1). AMPK is activated
in response to cellular metabolic stress, and modulates gene
transcription epigenetically in order to respond to this stress.
Unlike the mTORC1/2 complexes, AMPK is able to modulate
transcription directly by phosphorylation of Ser36 on histone
H2B (39). This phosphorylation mark directly promotes the
transcription of response genes needed to handle metabolic
stress. Other papers report the direct phosphorylation of Ser36

on H2B by S6K1 (40), which is also a player in the LKB1-
AMPK-mTORC1 signaling axis, with S6K1 being phosphorylated
by mTORC1. mTORC1 is another player in the epigenetic
response to nutrient sensing. As mentioned previously, mTORC1
is capable of sensing various growth factors and amino acids.
A downstream target of mTORC1 nutrient sensing is SIRT4,
which is repressed in response to mTORC1 activation (41).
SIRT4 is a lysine deacylase (Figure 2) (42), that has the
ability to inhibit glutamine metabolism by inhibiting glutamate
dehydrogenase (GDH). This inhibition of SIRT4 is achieved at
the transcriptional level by mTORC1 stabilizing the CREB2-
βTrCp complex, preventing CREB2 from activating transcription
of SIRT4 (41). mTORC2 exerts its epigenetic function by
activation of the AKT and SGK1 proteins. The effect of these
proteins on epigenetic regulation is the inhibition of KMT2D,
which is a histone methyltransferase specifically targeting H3K4
(Figure 2) (43). Inhibition of KMT2D has been shown to have
anti-tumor effects in some cancers by not allowing the FOXA1-
PBX-ER complex to access the DNA for transcription (44).

While the aforementioned mechanisms involve the sensing
of nutrients to transduce downstream epigenetic changes,
alterations in acetate level can directly influence the epigenetic
status of the cell. Free Acetyl-CoA in the cell nucleus is
produced by Acetyl-CoA synthetase (ACSS2), which catalyzes the
conversion from Acetate, and by ATP-citrate lyase (ACLY) which
catalyzes the conversion from citrate. The levels of free Acetyl-
CoA directly influence the global acetylation status of histones
(45), and henceforth have the ability to regulate epigenetics
without the direct manipulation of an enzyme intermediate.
While there is no direct sensing mechanism, this level of
regulation could be seen as a sensor of the glycolytic state of the
cell considering it has been shown that decreasing the amount of
glucose available to a cell reduces the Acetyl-CoA abundance and
lowers global histone acetylation (46).

A recently described mechanism of both environmental
sensing and epigenetic modification is that of histone lactylation.
In 2019, Zhang et al. described for the first time the modification
of histones by lactate (47). As is commonly known, lactate
is built-up as a byproduct of glycolysis. This epigenetic
modification may provide a direct mechanism for the regulation

Frontiers in Oncology | www.frontiersin.org 4 March 2020 | Volume 10 | Article 373

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ordway et al. Selection for Heritable Metabolic Modifications

FIGURE 2 | Epigenetic alterations mediated by environmentally induced epigenetic modifiers. The epigenetic modifiers altered by the sensing of the cellular

environment go on to carry out a variety of modifications to the epigenome. DNA methylation, and histone methylation and acetylation are the main downstream

targets of the environmental sensing. Phosphorylation of histones by AMPK is also carried out in response to environmental sensing.

of gene expression in response to fermentative glycolytic activity
of the cell.

EFFECT OF HERITABLE EPIGENETIC
MODIFICATIONS ON TUMOR
METABOLISM

Many epigenetic alterations that are acquired throughout
tumor progression alter the metabolism of the tumor’s cellular
population. While the previous section covered specific
epigenetic alterations that occur in response to the metabolic
microenvironment, this section will describe the role of
epigenetic modifications in altering cancer cell metabolism.

Lactate itself has the ability to alter the activity of
epigenetic modifier proteins. The inhibition of HDAC’s by
lactate demonstrated in previous studies (30, 31) has yet to
be phenotypically implicated in the alteration of metabolic
processes; yet it is likely this lactate-mediated mechanism will
play a role in altering metabolism. The activation of SIRT1 by
extracellular acidosis, which is a consequence of acid-inhibition
of glycolysis and the subsequent build-up of NAD+, has been
shown to alter cellular metabolism through histone deacetylation
leading to increased transcription of HIF-2α. This SIRT1/HIF-
2α axis promotes the oxidative metabolism of glutamine, and
suppresses the effects of HIF-1α, inhibiting hypoxia mediated
induction of glycolysis (32). Corbet et al. in a later study showed
that SIRT1 as well as SIRT6 are essential for histone deacetylation
and the induction of fatty acid metabolism when cells are

chronically exposed to an acidic extracellular environment (33).
From a cell survival standpoint, this switch to other methods
of energy metabolism when lactate has accumulated is intuitive,
and has relevancy in the context of cancer progression that is
discussed later.

In response to hypoxia, HIF-1α activation leads to the
induction of JMJD2B activity. JMJD2B has been shown to be
upregulated in ER-positive breast cancer (48) and bladder cancer
(49), and its upregulation has been directly linked to induction
by HIF-1α in colorectal cancer (50) and gastric cancer (51).
This activation of JMJD2B directly drives the demethylation of
H3K9me2/3 to its monomethylated state (Figure 2). JMJD2B
has been shown to play a role in altering the expression of
many cancer associated genes including cyclin-dependent kinase
6 (CDK6) (49), and carbonic anhydrase 9 (CA9) (50), which
can directly affect the transmembrane pH gradient. Also induced
by hypoxia and HIF-1α activation are the expression of TET
proteins 1 and 3 (36). As mentioned previously, TET proteins
are 5mC oxidases that allow for the expression of genes repressed
by DNA methylation. Induction of TET in neuroblastoma has
been shown to increase transcription of hypoxia response gene
(52), and TET1 has been shown to be overexpressed in triple
negative breast cancer (TNBC) where it is associated with
hypomethylation (Figure 2) (53). Hypomethylation increases the
expression of associated genes such as Hexokinase II (HK2) in
liver cancer (54) and glioblastoma multiforme (55). Hexokinase
II catalyzes the conversion of glucose to glucose-6-phosphate, an
essential step in glycolysis. While CA9 and HK2 are both direct
transcriptional targets of the HIF-1α mediated hypoxic response,
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TABLE 1 | Represenation of the types of epigenetic modifications that can be induced by environmental sensing, and the specific modifications made.

Types of epigenetic

modifications

Half-Life (h) Readers Writers Erasers References

DNA Methylation Indefinite MeCP2, MBD1/2/3/4, UHRF1/2,

Kaiso, ZBTB4/38

Dnmt1/3a/3b TET1-3 (70–73)

Histone Acetylation 0.88–1.45 Bromodomain containing

enzymes

HATs HDACs, SIRT1-7 (74–76)

Histone Methylation 5 Proteins containing PHD,

chromo, tudor, PWWP, WD40,

BAH, ADD, ankyrin repeat, MBT,

and zn-CW domains.

Histone

Methyltransferases

KDM1 Family proteins, and

JMJC Domain-Containing

Demthylases

(77–81)

H3K9me3 221 PRC Complex SUV39H1, SETDB1/2 JMJD2/KDM4, LSD1 (82, 83)

H3K27me3 158 BAHD1 EZH2 JMJD3 (40, 82, 84, 85)

H3K9me2 28.5 PRC Complex G9a/GLP, PRDM

Family

JMJD2/KDM4 (82, 83)

Histone Lactylation Unknown Unknown Lactate Accumulation Unknown (47)

Histone Phosphorylation

H2BSer36 Unknown Unknown AMPK, S6K1 Unknown (39, 40)

Informtion including the half-life of the modification, and how the modifications are written, erased, and read is included. This demonstrates the wide variety and complexity of epigenetic

modifications that can be made in response to sensing, and the time-scales at which their effects are applicable.

this epigenetic regulation is important because it imposes the
upregulation of these proteins over longer time scales (Table 1)
and allows for the maintenance of the metabolic phenotype
independently of oxygen status.

Epigenetic marks induced by nutrient sensing proteins and
complexes have the ability to greatly alter cellular metabolism,
making a useful feed-forward mechanism for acclimation and
adaptation to the current metabolic microenvironment. The
phosphorylation of Ser36 on Histone 2B is a significant epigenetic
mark made by two proteins involved in nutrient sensing: AMPK
and S6K1 (39, 40). It has been shown that phosphorylation of
Ser36 on Histone 2B is significantly increased upon treatment
of cells with 2-Deoxy Glucose (39), which mimics a glucose
deprived environment. The resulting effect on the cellular
transcription from phosphorylation of Ser36 on Histone 2B by
AMPK is the recruitment of EZH2 (40). EZH2 is a histone
methyltransferase that trimethylates Lysine 27 on histone 3 when
recruited. It has been shown in Drosophila that trimethylation
of Lysine 27 on histone 3 reduces the glycolytic tendencies of
the cell (56). Considering the presence of this mark in glucose-
deprived cellular states, it would intuitively make sense that the
presence of this mark would decrease the glycolytic capacity of
the cell.

The suppression of SIRT4 by mTORC1 has profound
effects on the metabolism of cancer cells, specifically inhibiting
glutamine metabolism through inhibition of GDH. In colorectal
cancer, decreased SIRT4 expression has been correlated with
progression and increased invasive potential of cancer cells
(57), and in both colorectal and gastric cancers lower SIRT4
expression is associated with poor prognosis (57, 58). All in
all, this leads to the conclusion that when in the presence
of sufficient amino acids and growth factors, the activation
of mTORC1 will lead to the inhibition of SIRT4 and the
subsequent reactivation of glutamine metabolism which can
promote tumor growth (Figure 2).

mTORC2 has the ability to modulate activity of KMT2D.
KMT2D is inhibited downstream during mTORC2 activation,
which in response, inhibits the access of the FOXA1-PBX1-ER
complex from binding the DNA. Prevention of this complex from
binding the DNA has been shown to reduce the expression of key
proteins including: GREB1, SERPINA1, cFOS, and MYC (59). Of
these proteins, MYC has been shown to have the most substantial
effects on reprogramming cancer metabolism in a type-specific
manner. A comprehensive list of metabolic alterations in specific
cancer types driven byMYC has recently been reviewed (60). The
effect MYC has on glycolysis is highly variable depending on the
cancer type, with a MYC-associated increase in non-small cell
lung cancer and hepatocellular carcinoma, and a MYC associated
decrease in renal cell carcinoma and prostatic intraepithelial
neoplasia. MYC’s effect on glutaminolysis was cohesive in the
various cancer types, with an associated increase demonstrated
in hepatocellular carcinoma, pancreatic ductal adenocarcinoma,
and renal cell carcinoma.

In addition to the previously mentioned alterations in gene
expression caused by stimulus-induced epigenetic modifications,
epigenetic upregulation of MCT4 via hypomethylation of
the SLC16A3 promoter has been shown in renal cancers
(61). Although no specific mechanism can be tied to this
alteration, this increase in MCT4 expression will have profound
consequences on the long-term progression and evolution of
the tumor.

CONSEQUENCES OF EPIGENETICALLY
ALTERED METABOLISM ON TUMOR
PROGRESSION

As described previously, a resulting consequence of oxygen
deprivation and stabilization of HIF-1α is the induction of
TET1/3 and hypomethylation of the genome. Hypomethylation
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FIGURE 3 | The effect of environmentally induced epigenetic modifications on tumor cell expression and metabolism. The epigenetic modifications made by the

proteins influenced by the environmental sensing mechanisms go on to alter the metabolic state of the cell. These modifications can alter the cells ability to metabolize

glutamine and carry out glycolysis, as well as influence the transcriptional status of tumor suppressor genes.

has been shown to upregulate the expression of Hexokinase
2 (54, 55), which is associated with an increase in glycolysis
(Figure 3). Increased glycolysis will increase acidosis in the
tumor microenvironment that can induce extracellular matrix
remodeling (15). Thus, increased glycolysis and its sequelae
are barriers that cancer cells must overcome in order to meet
the energy demands of rapid proliferation and to survive and
thrive in a more hostile environment. Altered glycolysis can
also lead to Warburg phenotype leading to even more acidic
microenvironment and more altered genome and epigenome
alteration (28, 62).

Despite the differing sensing mechanisms of the
mTORC1/mTORC2 complexes and SIRT1, all mechanisms
converge on a single metabolic alteration caused by epigenetic
modification: the increase of glutamine metabolism. This may
pose the opportunity to target glutamine metabolism as a cancer
therapeutic, an idea that has drawn enough attention to warrant
various reviews on that subject alone (63, 64). Although this
may seem like a rational therapeutic target, cautionary narratives
have been proposed as to the possible outcome of creating
a resistant cellular population with a heightened metabolic
capacity (65). While glutamine metabolism is non-essential in a
normally proliferating cell, under periods of rapid proliferation,
like tumor growth, glutaminolysis is an essential process (66).
This phenotype is selected for due to the high demand for
metabolic building blocks produced from the TCA cycle. In
the TCA cycle alpha-ketoglutarate can be carboxylated to
citrate, which, if in abundance, is translocated to the cytoplasm

where it is used for fatty acid synthesis. The end product of
glutaminolysis is alpha-ketoglutarate, which is shunted into
the TCA cycle to accelerate the process (67). Supporting the
TCA cycle with the necessary building blocks will give more
chance to glucose to be turned into lactate in glycolysis and
augment a Warburg phenotype. Glutamine-fed TCA cycle can
also give more freedom to cancer cells to use glycolysis for their
fluctuating ATP demand as a quick local source of energy for
cancer cells (13).

DISCUSSION

Genomic data describing tumors and cancer cell populations
is valuable information for studying and classifying a cancers
phenotypic characteristics. Although this information is valuable,
it does not tell the entire story when it comes to cancer initiation
and progression. Recent studies have demonstrated the presence
of single andmultiple driver mutations in significant proportions
of cells comprising healthy tissue (68, 69). This poses the
question as to how cancer arises, as the once thought sufficient
accumulation of driver mutations has been discounted. While it
is no doubt these mutations are necessary and play a significant
role in cancer progression, it is clear there is more to the story.

Metabolic cross-talk and feedback is essential for the survival
of any cell in a highly variable environment. There are many
ways cells can sense perturbations in their microenvironment,
including nutrient, and energy demands. These sensing
mechanisms can transduce signals that lead to the alteration of
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the cell’s epigenome. The epigenetic alterations driven by the
alterations to the cellular environment and metabolic state can
go on to influence the metabolism of the cell in a feed-forward
mechanism. These changes made can have long lasting and
heritable effects and go on to influence the progression of
the tumor.

Nutrient sensing by cells is essential for the survival and
acclimation to an unstable environment (Figure 3). Permanent
changes induced by a given environment may be beneficial to a
cells lineage, in that they are pre-programmed to deal with the
environments endured by their predecessors. In cancer, cells are
dynamically exposed to a variety of environmental conditions
that would be extremely difficult to survive without epigenetic
acclimation handed down from predecessors. Founding cancer
populations may have a difficult time surviving the variety
of harsh environmental factors, but genetic reprogramming
facilitated by epigenetic change would allow the daughter
populations to have an increased fitness.

The hyper-glycolytic state of cancer cells is a hallmark of their
progression and aggressive state (28). At present, a conclusive
mechanism as to the induction of this glycolytic state has yet
to be achieved. Described in this paper are various mechanisms
in which a cell is able to sense its’ current environmental and
energetic state of being, some of which can lead to long-lasting
changes in the metabolic programming of a cell. Many of these
semi-permanent changes converge on the regulation of cellular

energetics, in particular, glycolysis. It is therefore conceivable
that the mechanism for the induction of a glycolytic state in
cancer cells may not be a proposed “switch” or genetic mutation,
but instead the accumulation of various epigenetic alterations
that permanently reprogram the cellular population (Figure 3).
It is possible that this reprogramming would occur early on
in tumorigenesis, caused by a lack of perfusion in the core
of the tumor which would cause many of the environmental
perturbations that induce the epigenetic alterations described in
this paper.What is certain, is that the spatial and temporal aspects
of these epigenetic modifications would be vitally important
for directing tumor progression. More studies need to be
completed in order to elucidate how these epigenetic changes
occur directly in relation to tumor growth in models and in
the patient.
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