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Background
Genomic markers are an invaluable source for characterizing genetic variety and to 
elucidate the relationship between genetic and phenotypic variation in breeding pop-
ulations. Dependencies among genomic markers are caused by linkage and linkage 
disequilibrium (LD) between genome regions. Though this condition complicates 
investigations on which genetic variants are truly associated with trait expression 
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[1], dependencies can be advantageous for grouping of markers. For example, clus-
tering based on a greedy algorithm [2], hierarchical clustering (e.g., [3]) or grouping 
via interval-graph modeling [4] exploit the presence of LD blocks which are regions 
of particularly high correlation. To allow for proper inferences of such approaches, 
a suitable measure for the strength of dependence is needed. For instance, meas-
uring LD in terms of r2 [5] is a natural choice but it is meaningful only for popu-
lations without stratification. In livestock and crop breeding, however, populations 
are often characterized by strong family stratification due to non-random mating 
of selected individuals. As examples, large paternal half-sib families are typical for 
cattle populations whereas chicken or fish populations consist of full-sib families. In 
plant breeding, maternal half-sib families are often produced in, for instance, wheat 
and clover. Then, linkage between markers within family leads to haplotype frequen-
cies among progeny that are not conclusive for estimating r2 . Hence, there is need 
to promote measures of marker dependence which takes into account the particular 
family structure.

Especially in  situations of ultra-dense panels of single nucleotide polymorphisms 
(SNPs), it is often sufficient to investigate representative SNPs (“tagSNPs”) out of 
each cluster. This subset can help identifying trait-associated genome regions in 
genome-wide association studies and allows comparing genome characteristics 
between ethnics/species/breeds (e.g., [2]). As the choice of tagSNPs is a consequence 
of grouping, it is also influenced by the underlying population structure.

The objective of this paper is to exploit the family structure of a population for 
specifying groups of associated markers. We generalize the grouping approach of 
Carlson et al. [2] in order to allow binning of markers given a correlation matrix or 
any kind of similarity matrix with scaled entries in [0, 1]. We investigate three case 
studies and a simulation study. For each case study, we visually inspect the correla-
tion matrix and link to the outcome of grouping. Usability for genome-based asso-
ciation studies is shown as one possible field of application. Results were compared 
to the commonly used population-LD approach which ignores family structure. We 
provide a new function to the R package hscovar (available at CRAN) that enables 
grouping of markers and selection of representative markers.

Methods
The dependence between pairs of SNPs, each with two alleles A and B, can be 
expressed in terms of a covariance or correlation matrix. It has already been shown 
in the literature how to calculate the theoretical covariance between markers in a 
population consisting of half-sib families [1]. It requires a genetic map, haplotypes 
of the common parent and LD information (or haplotype frequencies) of the popula-
tion the individual parent comes from. This approach can be extended to be applica-
ble to full-sib families by adding the paternal and maternal contribution into a single 
covariance matrix; the derivation is summarized in Additional file 1. Hence, a covar-
iance matrix can be derived for any family structure, and this constitutes the input of 
the following grouping approach.
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Grouping of markers

We generalized the strategy of Carlson et al. [2] for binning markers and selecting repre-
sentatives to be applicable to any symmetric matrix which reflects a measure of depend-
ence between markers and has entries scaled in [0,  1]. In particular, we considered 
the correlation matrix R. The idea is that SNPs which are associated to each other are 
assigned to groups. Groups are built one after the other—the largest group at first. For 
b = 1, 2, . . . , the b-th group is identified by searching for the SNP that has most occur-
rences of absolute correlation to other SNPs larger than a given threshold t. More pre-
cisely, let Sb denote the set of SNP indices which have not been binned yet. Then, for 
each SNP k ∈ Sb , the set of highly associated SNPs is determined as (Step A)

and a set with highest cardinality (operator #) is chosen,

Thus, Cc constitutes the b-th group, and a tagSNP is selected from this group. SNP c has 
strong correlation with any other SNP in Cc but it can happen that also other SNPs of Cc 
fulfill this criterion. Hence, a set of candidates is given by (Step B)

If more than one candidate remains, then the ⌈#T /2⌉-th SNP becomes the representa-
tive of group b. A next round of iteration is started using Sb+1 = Sb\Cc until Sb+1 = ∅ . 
The number of groups only depends on the threshold t. Similar to [2], t = 0.8 is a suit-
able value. In an extreme case (with t approaching 1), each SNP builds a single group, 
yielding a complexity of this algorithm of O(p2) , with p the total number of SNPs. This 
approach is implemented as function tagSNP in the R package hscovar. A graphical 
representation of this algorithm is shown in Fig. 1.

Evaluation

It is an obvious choice to compare the family approach with a population-LD approach. 
Such an approach requires the population frequency of the different haplotypes ( fA-A , fA-B , 

Ck = {l| l ∈ Sb : |Rk ,l | > t},

c ∈ arg max
k

#Ck .

T = {k| k ∈ Cc ∧ ∀l ∈ Cc : |Rk ,l | > t}.

Fig. 1  a Matrix highlights the SNP pairs with correlation larger than a certain threshold for a given SNP 
panel. The SNP involved most is marked by an arrow (Step A). b Correlations are considered within the 
corresponding SNP subset and a tagSNP is selected (Step B). c All SNPs associated with the tagSNP have 
been removed from the remaining ungrouped SNP panel and the next round of iteration starts with Step A. 
Iterations continue until no ungrouped SNP is left
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fB-A , fB-B ) from which LD between markers is computed in terms of r2 according to [5]. For 
any marker pair k, l with allele frequencies fk = fA-A + fA-B and fl = fA-A + fB-A , we have

The LD matrix can be computed from progeny genotypes using the function ld from 
the R package snpStats version 1.38.0 [6]. This function undertakes phasing of geno-
types using a maximum-likelihood approach [7]. Based on the LD matrix containing r2 , 
representative markers can be derived as described above.

Family and population-LD approach were compared using the Calinski–Harabasz (CH) 
index [8] which measures the cluster quality with respect to inter- and intra-cluster dis-
tances. The method with higher CH index performed better. For this, the function calin-
hara from the R package fpc version 2.2-9 was applied to the groups obtained; the quality 
referred to distances based on the genotype matrix centered within family and scaled (as 
described below). Furthermore, we present the pure number of groups and highlight those 
groups with group size of at least three. This also helped visualizing the location of corre-
sponding representative markers.

Selecting a representative set of markers is a natural tool for dimension reduction prior 
to genomic evaluations in order to reduce the impact of multicollinearity among predic-
tor variables. Representative SNPs capture cumulative effects of the corresponding LD 
blocks on trait expression. We investigated a SNP-BLUP approach, which is widely used 
in genomic evaluations (e.g., [9]), and thereby demonstrate one possible application of the 
suggested approach. Representative markers selected from the family or from the popula-
tion-LD approach were employed as predictor variables in a regression model

with y = (y1, . . . , yn)
⊤ the phenotype vector, β = (β1, . . . ,βτ )

⊤ the vector of genetic 
effects captured by τ tagSNPs, the corresponding design matrix X with dimensions n× τ 
including the genotype codes in terms of major allele counts. The columns of X and the 
vector y were centered within family and scaled to obtain an empirical variance of one. 
The residual errors were assumed to be independently and normally distributed. For 
convenience, no other effects were assumed. We used the R package asreml version 3.0 
[10] to estimate the vector of regression coefficients as

where the shrinkage parameter � was estimated via AI-REML. Significance of the k-th 
SNP effect was tested by a t-like test statistic as in [1],

Significance was reported if Tk ≥ q1−α/2 or Tk < qα/2 using the 1− α/2 and α/2 quantile 
of the standard normal distribution. The SNP-BLUP approach was evaluated in terms of 
sensitivity (i.e., true-positive rate) and specificity (i.e., 1− false-positive rate) over a range 

r2k ,l =

(
fA-AfB-B − fA-BfB-A

)2

fk(1− fk)fl(1− fl)
.

y = Xβ + e,

β̂ =
(
X⊤X + �I

)−1
X⊤y

Tk =
β̂k

SD(β̂k)
.
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of type-I error α . We additionally verified the impact of threshold t ∈ {0.5, 0.6, 0.7, 0.8} 
on grouping and its consequences on the performance of the SNP-BLUP approach.

Data

The data sets used for studying dependencies between SNP markers differed in SNP 
density and family structure. They covered a range of mean inter-marker distances from 
0.003 cM to 0.23 cM. The case study of mouse data was based on low-density genotypes 
of full-sib families; progeny and parents were genotyped. The case study of cattle data 
comprised medium-density genotypes of half-sib families with genotyped progeny only. 
Furthermore, medium-density SNP data were available for full-sib families in maize. 
High-density genotype data of half-sib families were generated in simulations. For eval-
uation, the SNP-BLUP approach was applied to simulated data only. Unless otherwise 
stated, computations were done using R version  4.0.3 [11] and t = 0.8 ; all scripts are 
included as Additional files 2–6.

Mouse data

Genotype data of a heterogeneous stock of mice were available from https​://wp.cs.
ucl.ac.uk/outbr​edmic​e/heter​ogene​ous-stock​-mice/. We investigated chromosome 17 
because it harbors the highly recombining MHC region which affects several immuno-
logical traits [12]. The chromosome data consisted of genotypes at 394 SNPs of 2002 
individuals. After filtering for individual call rate ≥ 90% , 1998 genotyped individuals 
remained comprising 1759 progeny, 120 fathers and 119 mothers. In total, 138 full-sib 
families (family size ranged from 1 to 47) could be identified. The SNP call rate was 
≥ 90% . All genotype data were phased with Beagle version 5.1 [13] and parental hap-
lotypes were selected to set up the correlation matrix. Assuming a 1:1 relationship 
between physical (Build37 genome assembly) and genetic distance of adjacent markers, 
the genetic length was 91 cM. SNP alleles were coded in terms of the major allele in the 
given sample. The population-LD matrix was calculated from progeny genotypes.

Cattle data

Genotype data of Holstein cattle were available from RADAR https​://dx.doi.
org/10.22000​/280. The data comprised 50K SNP-chip data of five half-sib families with 
n = 265 progeny in total; the family size ranged from 32 to 106. A chromosome win-
dow containing 300 SNPs was selected from BTA1. Based on the physical ordering of 
markers according to the genome assembly ARS-UCD1.2, this region corresponded to 
20.59–39.44 Mbp. The haplotypes of sires were imputed from progeny genotypes using 
the R  package hsphase version  2.0.2 [14]. Maternal LD and paternal recombination 
rates between SNP pairs were estimated according to Hampel et al. [15]. However, we 
used a 1:1 relationship between physical (Mbp) and genetic positions (cM) for conveni-
ence; the genetic length of this window was 19  cM. Sire haplotypes and maternal LD 
were also part of the RADAR data set. SNP alleles were coded in terms of the major 
maternal allele among progeny.

https://wp.cs.ucl.ac.uk/outbredmice/heterogeneous-stock-mice/
https://wp.cs.ucl.ac.uk/outbredmice/heterogeneous-stock-mice/
https://dx.doi.org/10.22000/280
https://dx.doi.org/10.22000/280
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Maize data

Raw marker data were available from NCBI GEO database under Accession Num-
ber GSE50558, accompanied with physical coordinates corresponding to the genome 
assembly B73. The data set contained two maize panels, Flint and Dent, for which about 
50K SNPs have been assessed in order to estimate recombination activity in different 
maize populations [16]. We arbitrarily chose the Flint panel and chromosome 2 for fur-
ther analysis. In this panel, 13 full-sib families have been obtained by crossing an inbred 
“central” line and several inbred “founder” lines. Double haploid (DH) lines have been 
derived from the F1 plants. This procedure allowed for studying maternal meioses only. 
A cM:Mbp ratio of 0.80 was reported for Flint [16]; the genetic length of chromosome 2 
was approximately 188 cM. SNP genotypes of DH progeny being heterozygous were set 
to missing value. After filtering the data for SNP and individual call rate ≥ 90% , n = 1248 
out of 1262 DH progeny and 1447 out of 2030 SNPs remained. Rarely missing marker 
information of DH progeny were imputed by sampling the homozygous genotypes 
according to their frequencies. Afterwards loci with minor allele frequency less than 5% 
were discarded, yielding 956 SNPs. As haplotypes of DH progeny were given with cer-
tainty, the population-LD matrix was set up directly using the squared Spearman cor-
relation between SNPs based on haploid data. The family approach solely considered 
the female part of the covariance between SNPs. The haplotypes of F1 individuals were 
inferred from the marker data of inbred lines. SNP alleles were coded according to cen-
tral-line origin.

Simulated data

The simulation study resembled the population structure of a dairy cattle popula-
tion. The setup of simulation design is fully described in [1]. Briefly, we considered 
N = 1, 5, 10 sires of half siblings. The overall number of progeny was n = 1000 equally 
partitioned into half-sib families. Quantitative traits were simulated which were influ-
enced by 2 and 5 QTLs with equal effect sizes. QTLs contributed 30% to the trait vari-
ation (i.e., heritability 0.3). In total, 300 SNPs were simulated on a chunk of DNA with 
1 cM length. The data were generated using the R package AlphaSimR version 0.13.0 
[17]. SNP alleles were recoded in terms of the major allele in the founder population. 
The simulation was repeated 100 times. For assessing the SNP-BLUP approach, a win-
dow of 0.05 cM to both sides of a simulated QTL was accepted as true-positive result.

Results
Case studies

For the mouse data consisting of 138 genotyped full-sib families, the population-LD 
approach exposed a wide region (13.82–21.13 Mbp) that had a strong association with 
the entire chromosome 17 shown as a red band in Fig.  2b. With the family approach, 
this region revealed only high positive interdependence with almost no impact on the 
remaining chromosome, see Fig.  2a. Moreover, a highly fragmented region appeared 
in the range of 27.59–45.88 Mbp that overlaps MHC regions 1 and 2 (https​://www.
ncbi.nlm.nih.gov/assem​bly/GCF_00000​1635.18/). This was caused by high variation of 
parental haplotypes. Though the total number of groups was smaller with the family 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.18/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.18/
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approach than with the population-LD approach (83 vs. 98), the number of large groups, 
i.e., with group size ≥ 3 , was almost equal (49 vs. 51), see Table 1. The CH index was 
about two times higher with the family approach. Figure 2 shows that tagSNPs of groups 
containing at least three markers were distributed more uniformly over the chromosome 
with the family approach than with the population-LD approach. The median of dis-
tances between all tagSNPs was 0.70 cM and 0.52 cM in the family and population-LD 
approach, respectively.

For the cattle data consisting of five half-sib families, 239 SNPs were taken into 
account in the family approach. At 61 out of 300 SNPs, all sires were homozygous 
for the major allele, leading to zeros on the diagonal of the paternal covariance part. 
Thus, these loci were discarded when setting up the correlation matrix R. A clear dis-
tinction of regions with particularly high interdependence was not possible for any 
of the approaches (Fig. 3). In total, 11 groups with size ≥ 3 were found with both the 
family and population-LD approach (Table  1) but the representative SNPs of these 
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Fig. 2  Correlation (a) and LD matrix (b) for mouse data on chromosome 17. The red dots highlight 
representative SNPs of groups with at least three SNPs. In total, 394 SNPs were considered for the correlation 
and population-LD matrix

Table 1  Number of  groups, number of  groups with  at  least three SNPs and  Calinski–
Harabasz index (CH)

Number of SNPs corresponds to the method applied (family or population LD). Average values of 100 repetitions are 
presented for simulated data and t = 0.8 . Computing time for grouping markers was up to 0.2 s except for the maize data 
which required 2 s

Families QTLs Family approach Population-LD approach

SNPs Groups ≥ 3 CH SNPs Groups ≥ 3 CH

Simulation 10 2 283 59 10 80.7 300 21 9 40.0

10 5 282 61 10 75.0 300 17 9 38.9

5 2 282 61 10 71.9 300 29 8 32.6

5 5 281 64 10 85.6 300 24 9 35.0

1 2 281 59 9 61.4 300 56 6 20.5

1 5 282 59 9 83.0 300 49 7 25.0

Mouse 138 394 83 49 38.8 394 98 51 20.6

Cattle 5 237 172 11 2.9 300 210 11 2.4

Maize 13 953 426 93 10.4 956 576 70 21.9
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groups were distributed more evenly over the chromosome window based on the fam-
ily approach. The median of distances between all tagSNPs was 0.08 cM and 0.07 cM 
in the family and population-LD approach, respectively. When only those SNPs were 
used in the population-LD approach that were considered in the family approach, the 
outcome of grouping differed: 239 SNPs were binned into 194 groups (CH index 6.2); 
8 out of them had group size of at least three SNPs vs. 300 SNPs were binned into 210 
groups (CH index 2.4); 11 groups with group size of at least three SNPs.

The correlation matrix corresponding to 13 full-sib families in maize is shown in 
Fig. 4. In three out of 956 SNPs, maternal SNP alleles of F1 plants were missing; these 
loci were discarded in the family approach. In total, 953 SNPs have been binned into 
426 groups based on the correlation matrix but the CH index was about 50% lower 
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than with the population-LD approach where 956 SNPs were grouped into 576 bins 
(Table 1). With both approaches, tagSNPs corresponding to the bins of at least three 
SNPs were similarly distributed over the chromosome (family approach: 93 bins, pop-
ulation-LD approach: 70 bins) except a gap between SNP index 650 and 750 which 
was better covered with tagSNPs from the family approach. The median distance 
between all representative SNPs was 0.29 cM with the family and 0.16 cM with the 
population-LD approach. With both methods, a block of strong (positive) association 
among SNPs appeared in the region of 85.04 to 95.31 Mbp which is in the vicinity of 
the functional centromere [18]. Two F1 plants were the driving factor: they were com-
pletely heterozygous in this window.

Simulation study

The average number of groups over all repetitions, and groups with at least three SNPs 
are listed in Table 1; results are given for t = 0.8 and varying number of half-sib families 
and QTLs. Grouping of markers appeared rather robust based on the family approach, 
about 60 groups have been built, but the number of groups strongly varied with the 
population-LD approach suggesting a dependence on the number of families. Few fami-
lies needed more groups. Note that the number of rows in X was fixed ( n = 1000 ). The 
number of groups containing at least three markers was rather constant between meth-
ods and for different family sizes and QTLs. The CH index was at least two times larger 
with the family approach than with the population-LD approach. The population-LD 
approach becomes competitive with decreasing threshold t and performed better than 
the family approach with respect to the CH index when t ≤ 0.6 (see Additional file 7).

A SNP-BLUP approach was applied to simulated data in order to evaluate sensitiv-
ity and specificity if only tagSNPs were used as predictor variables in linear regression. 
As an example, results based on one half-sib family and two simulated QTLs are shown 
as ROC curve in Fig.  5; the number of groups was almost equal for this scenario. As 
expected, considering all SNPs simultaneously yielded highest accuracy in terms of true-
positive and false-positive rate. However, if the aim was to use filtered data in SNP-BLUP, 
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Fig. 5  Sensitivity and specificity of testing SNP effects depending on threshold t = 0.8 (a) and t = 0.5 (b). 
ROC curves are based on 100 repeated simulations of genotypes and phenotypes in N = 1 half-sib family 
with 1000 progeny (two QTL signals, heritability 0.3)
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then tagSNPs obtained from the family approach was the second best choice. Or in 
other words, using only one fifth of available genotypic information led to almost the 
same accuracy of genome-based association studies as using all genotypic information. 
The choice of t had no influence on which method performed best, see Fig. 5a for t = 0.8 
and Fig. 5b for t = 0.5 . ROC curves looked very similar for all investigated scenarios of 
simulation though the number of groups obtained from the population-LD approach 
increased with decreasing number of families. Hence, a direct relationship between 
number of groups and sensitivity/specificity seems not to exist.

Discussion
We have shown applicability of the suggested software tool to empirical data. Especially 
for the mouse data consisting of many genotyped full-sib families, the correlation matrix 
gave a clear representation of genomic regions with high or low interdependence. In 
contrast to a population-LD approach, which did not account for family stratification, 
it was also possible to identify regions with positive or negative relationship. Spurious 
dependencies with the population-LD approach disappeared with the family approach. 
Also Carlson et al. [2] reported that population stratification may generate artifactual LD 
and hence makes an LD-selection algorithm sensitive.

Instead of selecting representative markers for genome-based evaluations, employing 
the grouping structure itself can be a beneficial option. For instance, the group assign-
ment derived from the family approach can directly be considered in a group lasso 
approach [3, 19]. Then the effects of markers in a group of highly dependent markers will 
jointly be shrunk towards zero or enlarged with respect to the relevance of this group for 
trait expression. Additional sparsity within group can be achieved with a sparse-group 
lasso approach [20]. Grouped approaches shall be investigated in more detail in future 
because they hold potential to cope with high multicollinearity. Possible benefits will 
likely depend on characteristics of the sample, such as the number of families, SNP den-
sity, and population-genetic parameters, e.g., heritability and heterozygosity.

In future research, the functionality of our package should be extended by grouping 
methods based on LD blocks which can optionally put restrictions to the physical dis-
tance between SNPs (similar to [21]). Other options for selecting tagSNPs (e.g., depend-
ing on allele frequency; [22]) will be verified.

Conclusions
The extent of dependence among genomic markers is affected by the underlying pop-
ulation structure. Representative markers can be selected more efficiently if the cor-
responding matrix of pairwise dependencies takes this structure into account. The 
correlation matrix for half- or full-sib families highlights regions of high dependence 
between markers more precisely than the population-LD matrix. Additionally, it reveals 
regions of positive or negative association among markers.

We contributed a new function tagSNP to the R package hscovar which is suited 
to samples from livestock and crop populations with typical family stratification. The 
covariance matrix can be set up in a piecewise manner, either separately for each chro-
mosome or based on other meaningful information. The resulting grouping structure 
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can be exploited in genome-based evaluations to handle the problem of high multicol-
linearity between markers.
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