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Abstract: As a sound transmitting device based on the nonlinear acoustic theory, parametric acoustic
array (PAA) is able to generate high directivity and low frequency broadband signals with a small
aperture transducer. Due to its predominant technical advantages, PAA has been widely used in
a variety of application scenarios of underwater acoustic engineering, such as sub-bottom profile
measurement, underwater acoustic communication, and detection of buried targets. In this review
paper, we examine some of the important advances in the PAA since it was first proposed by Westervelt
in 1963. These advances include theoretical modelling for the PAA, signal processing methods, design
considerations and implementation issues, and applications of the PAA in underwater acoustic
engineering. Moreover, we highlight some technical challenges which impede further development
of the PAA, and correspondingly give a glimpse on its possible extension in the future. This article
provides a comprehensive overview of some important works of the PAA and serves as a quick
tutorial reference to readers who are interested to further explore and extend this technology, and
bring this technology to other application areas.

Keywords: parametric acoustic array; nonlinear acoustics; signal processing techniques; underwater
acoustic engineering

1. Introduction

Due to the motion nonlinearity and medium nonlinearity, an end-fire array of virtual sources of
the difference frequency can be obtained when two intense waves with slightly different frequencies
propagate in the same medium. The virtual end-fire array is referred to as parametric acoustic array
(PAA). PAA was first proposed and analyzed in the early 1960s by Westervelt [1], who changed the
previous conception that low-frequency sound waves could not form sharp directivity. Since then,
there has been great interest in studying and developing the theory of the PAA. After decades of
research, the PAA has been moved from theory and experimentation to implementation and application.
The nonlinear acoustical theory and the theoretical models of the PAA have been developed and
investigated intensively. Dual-frequency parametric array and broadband parametric array are two
main models of the PAA, with the latter more widely used in practice because of its broad bandwidth
advantage. Despite this advantage, the secondary wave produced by broadband parametric array
has high levels of distortion. Several signal processing techniques therefore have been developed to
generate expected signals and reduce distortion. Besides, to achieve the best performance, a compromise
between various factors including primary frequencies, secondary frequency and transducer array size
should be made when designing the PAA. Therefore, according to the specific application scenarios,
some design considerations and guidelines also have been studied. Due to its prominent advantages,
such as low frequencies with high directivity, small and constant beam-width, side-lobe free beam
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patterns, and broadband capability at low frequencies, PAA has been widely applied in the fields
of underwater acoustic engineering, such as sub-bottom profile measurement, underwater acoustic
communication, detection of buried targets, etc. However, some technical bottlenecks which impede
the further development and application of the PAA remain to be settled. They are concerned with
transmitting transducer performance, conversion efficiency, power consumption, signal processing and
modulation, and detection efficiency. This review paper provides a tutorial overview of the foundation
work in the PAA and its application in underwater acoustic engineering. Further, we give a glimpse on
the recent developments in the PAA and the emphases for its future work.

This paper is organized as follows. The fundamental principles of the PAA are introduced in
Section 2, including a brief summary of nonlinear acoustic theory related to the PAA and theoretical
models of the PAA. This is followed by the analysis and comparison of several signal processing and
modulation techniques for the PAA in Section 3. Next, Section 4 outlines some design considerations
and implementation issues on developing the PAA system. Several successful applications of the
PAA in underwater acoustic engineering are then presented in Section 5. Main technical challenges
and related researches are highlighted in Section 6. Finally, Section 7 concludes this paper with some
directions for future research.

2. Fundamental Principles of the PAA

2.1. Nonlinear Acoustic Theory

Linear acoustics ignore the effects of motion nonlinearity and medium nonlinearity, leading
to a linear acoustic law—when two acoustic waves of different frequencies propagate in the same
medium, they do not interact with each other, and the total sound field is a linear superposition of
the two waves. From the perspective of nonlinear acoustics, however, when two waves travel in the
same direction, each wave propagates in the medium with another wave’s disturbance resulting in
scattering due to the inhomogeneity of the medium. This phenomenon is called the scattering of sound
by sound [2]. As two sound waves of different frequencies with finite amplitude interact with each
other in a medium, distorted waves with the sum, the difference and harmonic components can be
generated due to the nonlinearity of the medium. However, only the difference frequency component
can travel a long distance because sound absorption is increased with frequency generally. Therefore,
the characteristic of difference frequency sound field is the main concern of the PAA. The secondary
source column of the difference frequency is virtually created in the primary beam and is distributed
along a narrow beam, which is similar to an end-fire array (as shown in Figure 1). According to the
directivity characteristics of the end-fire array, the obtained difference frequency beam has narrow
beam-width and high directivity.
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The nonlinear sound field is described above from the perspective of mutual scattering of sound
waves. Another important theory of nonlinear acoustics is finite amplitude effect. The instantaneous
sound speed depends not only on the medium but also on the sound pressure or particle velocity [3].
The velocity is the highest at the crest and the lowest at the trough. As the propagation goes on, the
waveform becomes distorted gradually, and the sine wave turns into saw-tooth wave, even shock
wave (i.e., appearing harmonics).

The two primary frequency waves produce scattered sound during the propagation, and the
forward scattering part (i.e., the part with the same propagation direction of the primary frequency
wave) is superimposed on the previously generated sound in the same direction to gradually strengthen
the sound field. Hence, the sound field of the PAA is an accumulative field, with the total energy of the
difference frequency wave increases as the propagation distance increases. Even after deducting the
absorption effect of the difference frequency wave, the source level measured in the far field is still
higher than that measured in the near field. Therefore, to accurately measure the source level of the
parametric array, the measuring point must be far enough away from the source.

2.2. Theoretical Model of the PAA

2.2.1. Collimated Plane Wave Model

The theory of nonlinear interaction of sound waves was originally studied by Westervelt [1], who
derived non-homogeneous wave equation based on Lighthill theory:

pd =
ω2

dp1p2βS0

8πρ0c4
0r

1√
α2 + k2

d sin4 θ
2

(1)

where pd is the difference frequency pressure produced by the nonlinear interaction of a pair of
superimposed collimated beams, ωd and kd are the angular frequency and wave number of the
difference frequency signal, p1 and p2 are pressure amplitudes of two primary waves, β is the
nonlinearity coefficient of the medium (for sea water, β ≈ 3.6; for fresh water, β ≈ 3.1), S0 is the
cross-sectional area of the sound beam, ρ0 and c0 denote the density of the medium and the sound
velocity in the medium, r is the acoustic wave propagation distance, θ is the direction angle, α = α1 +α2,
where α1 and α2 are the absorption coefficients of the two primary waves, and 1/α is usually called the
efficient length of the virtual end-fire array.

There are some conclusions drawn from the Equation (1):

1. The difference frequency signal pressure pd is proportional to the product of the pressure of two
primary waves. Normally, p1 = p2 = p0 and one derives pd ∝ p2

0.That is, if the primary source
level drops by 3 dB, the secondary source level will drop by 6 dB.

2. pd is proportional to the square of the frequency of the difference frequency signal. In other words,
when the secondary frequency doubles, the secondary source level will increase by 12 dB.

3. The half power beam-width (i.e., 3 dB beam-width) of the difference frequency signal can be

approximately calculated as 2θ−3dB ≈ 4( αkd
)

1
2 . Since θ−3dB ∝ ( 1

fd
)

1
2 , the beam-width of the

difference frequency wave is relatively insensitive to the difference frequency, although the
beam-width increases with the decrease of the difference frequency.

2.2.2. Spreading Effect and Acoustic Saturation

Westervelt deduced Equation (1) on the assumption that the primary waves were collimated
beams. It is assumed that the beam is so narrow that the volume distribution of the sources can be
represented by the line distribution located along the axis of the primary beams. This assumption is
valid within the Rayleigh distance only (i.e., RF = S/λ, where S is the transducer surface area and
λ is the wavelength of the primary wave). Beyond the Rayleigh distance, considering the spherical
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spreading effects, primary waves cannot be approximated by collimated plane waves. Berktay and
Leathy took the spreading dissipation and directivity of the two primary waves into consideration and
gave another expression [4]:

pd =
ωdp1p2β

4πρ0c4
0r

exp((−αd + jkd)R) ×

π
2∫

−
π
2

π
2∫

−
π
2

D1(γ,ϕ)D2(γ,ϕ) cosγ
A + jkd(1− u)

dγdϕ, (2)

where A = 1
2 (α1 + α2) − αd, and αd is the absorption coefficient of the difference frequency signal,

u = cosγ cosθ cos(ϕ − η) + sinγ sinθ, θ, η are the direction angles of the field point, γ,ϕ are the
azimuth angles of the source point, D1, D2 are the directivity functions of the two primary waves, the
other variables refer to the same meaning as those in Equation (1). Therefore, Westervelt’s approach to
the calculation of non-linear effects in acoustic propagation is extended to the cases where the primary
beams are spreading cylindrically or spherically.

In addition to the spread effect, acoustic saturation of the primary wave should also be taken
into account when analyzing the sound field of the PAA. As we all know, the higher the primary
source level, the higher the source level of the generated difference frequency signal. To increase the
amplitude of the secondary wave, it is reasonable to increase the transmitted power of the primary
signal. However, due to the finite amplitude effect, the amplitude of the secondary wave cannot
increase indefinitely. When the propagation distance of the primary wave exceeds a certain value, the
sine wave turns into the saw-tooth wave, and some of the energy in the primary wave is converted to
harmonics, called “excess attenuation” [5]. The propagation distance from where the waveforms start
to become distorted is called the “shock distance” [6]:

Rs =
1

βkM
, (3)

where k is the original frequency wave number, and M is the acoustic Mach number defined by
M = v/c0 (i.e., the ratio of the vibration velocity of the medium particle near the transducer to the
sound velocity). The saturation of the primary beam serves as the limiting mechanism that prevents
the amplitude of the difference frequency signal from increasing indefinitely with the increase of the
transmitted power.

2.2.3. Summary of the Parametric Array Model

To summarize, there are three basic distances which will control the behavior of the PAA. They are
efficient length of the PAA (or the absorption range), i.e., RA= 1/α, the Rayleigh distance RF = S/λ
and the shock distance Rs = 1/βkM. Depending on the values of these three distances, different
mathematical models have to be used to predict correctly the source levels of the secondary wave [6]:

• Absorption limited: Rs > RF > RA, in this case, both spreading and excess attenuation are ignored
and Westervelt’s model can be used.

• Spreading limited: Rs > RA > RF, this model has been initiated by Berktay and Leahy and takes
into account the effects of spreading, but not those of excess attenuation.

• Shock-wave limited: RF > RA > Rs, Moffett and Mellen gave a detailed analysis of this model [7].

To accurately evaluate parametrically generated sound fields, both spreading and excess
attenuation should be taken into account. However, it is a challenge to adaptively use different
models to accommodate with their corresponding conditions. The most useful model equation, to
solve this challenge, is the Khokhlov–Zabolotskaya–Kuznetsov (KZK) parabolic wave equation, which
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combines nonlinearity, dissipation, and diffraction of a directive sound beam in the same order of
magnitudes [8,9]. The KZK equation is described as:

∂2p
∂τ∂z

=
c0

2
∇

2
⊥p +

δ

2c3
0

∂3p
∂τ3 +

β

2ρ0c3
0

∂2p2

∂τ2 , (4)

where p is the acoustic pressure, δ is the sound diffusivity related to sound absorption, β, ρ0,c0 has
the same meaning as those in Equation (1), τ = t− r/c0 is the retarded time, z is the coordinate along
the axis of the beam and ∇2

⊥
= ∂2/∂2x + ∂2/∂2y represents a Laplacian that operates in the x–y plane

perpendicular to the axis of the beam (z axis). The KZK equation is widely used in the calculation
and analysis of the secondary sound field [10–12]. However, it is difficult to solve the KZK equation
analytically. Thereby, numerical methods are developed to obtain the solution [13–15]. On the other
hand, the use of numerical techniques such as finite difference methods that solve the nonlinear wave
equation usually leads to the long computation times, which prevents their use in real-time simulation
as required in some sensor applications. To improve the computational efficiency of the sound field
calculations, expansion techniques based on the idea that sound beams can be expressed as a series of
base functions has been proposed. Using a series of base functions, such as Gaussian–Laguerre [16]
and Gaussian [17–20] base functions, the sound field expressions can be found for the primary and
secondary fields. Then, simple and computationally efficient solutions can be obtained.

In addition to the above three common theoretical models of the parametric array sound fields,
truncated parametric array model is also important in underwater acoustic engineering [21,22].
When parametric arrays are used for sub-bottom profiling or buried objects detection in shallow water,
the array length of the PAA is often restricted due to the existence of the subsea interface, where
the characteristics of the medium have an abrupt change. This creates a truncated parametric array,
which generates a difference frequency signal with increased beam width and decreased sound source
level [23].

2.2.4. Broadband Parametric Array

When the primary waves are two single frequency waves, the difference frequency signal
is a sine wave with only one frequency component. This is called the dual-frequency parametric
array. If the primary signals are broadband, an infinite number of frequency components interact to
generate a broadband difference frequency signal, forming a broadband parametric array. In 1965,
Berktay proposed the “Berktay far-field solution”, extending the theory of parametric array to the
field of broadband signals. The Berktay far-field solution assumed the original wave of the PAA is a
plane wave:

pi(t) = p0E(t) cos(ω0t), (5)

where p0 is the original frequency wave amplitude, E(t) is a function of the envelope, ω0 is the angular
frequency of the original frequency wave.

Assume:
pi(r, t) = p0e−α0rE(t− r/c0) cos(ω0t− kr), (6)

where α0 is the absorption coefficient of the original frequency wave. By applying Equation (6) to the
solution of the nonlinear equations of motion, further derivation can be obtained with respect to the
difference frequency wave sound pressure [4]:

p(t) =
βp2

0S0

16πρ0c4
0rα0

d2

dt2 E2(τ), (7)

Equation (7) is the Berktay far-field solution, which states that the difference frequency
signal pressure is proportional to the second time-derivative of the square of the envelope of the
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amplitude-modulated carrier. That is, the nonlinear effect of the sound field can demodulate the
envelope of the carrier, which is generally called the nonlinear self-demodulation model.

The self-demodulation model of the PAA has been widely recognized for decades. In addition,
bandwidth is important both for communication and detection. Taking advantage of these two
points, the broadband parametric array is more common than dual-frequency parametric array in
practical engineering applications. However, the demodulated secondary wave predicted by Berktay’s
far-field solution has high levels of distortion. An analysis of linear frequency modulated (LFM) pulse
demodulated by the PAA is given here to indicate the severe distortion due to the parametric nonlinear
effects. LFM pulse can be expressed as

s(t) = Am × rect(
t
T
) × cos(2π( f0t +

kTt2

2
)), (8)

where Am is the amplitude, f0 is the starting frequency, kT is the tuning frequency and rect( t
T ) is

a windowing signal whose value is equal to 1 when 0 ≤ t ≤ T, and equal to zero at other times.
According to Equation (7), the self-demodulated signal of LFM can be calculated as

pd =
βp2

0S0Am
2

16πρ0c4
0rα0

×

[
−4kTπ sin(4π( f0t +

kTt2

2
) − 16π2( f0 + kTt)2 cos(4π( f0t +

kTt2

2
))]. (9)

Figures 2 and 3 show an example of the comparison between the original LFM and
self-demodulated LFM, where the frequency range of the original LFM is 5–25 kHz and the time
duration is T = 1 ms.
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As can be seen, the self-demodulated LFM is strongly changed in comparison with the original
LFM, and the amplitude of the high-frequency component is higher than that of the low-frequency
component, which basically accords with the growth trend of 12 dB per octave. Moreover, the bandwidth
of the secondary wave is approximately doubled relative to its original bandwidth. To reduce distortion
and improve signal quality, signal processing and modulation techniques are required, which will be
discussed in the following section.

2.2.5. Recent Theoretical Development in the PAA

The analysis work published to date has dealt almost exclusively with the second-order nonlinear
interactions of primary waves. Recently, it has been shown that third-order interactions derived
from cascaded second-order interactions result in narrower sound beams. The improvement in
beam pattern obtained by the higher-order nonlinear interactions has recently gained attention
in a variety of applications, such as landmine detection [24,25], biomedical imaging [26–28], and
nondestructive evaluation [29,30]. Besides, the third-order intermodulation (IM3) frequency components
at fL = 2 f2 − f1 and fU = 2 f1 − f2 for primary frequencies f1 and f2( f1 > f2) are closely spaced in
frequency to the primary waves, and thus the same transducer may be used to transmit the primary
signals and receive the IM3 signals. This is in contrast to the secondary sum and difference components
which are not close in frequency to the primary waves and would require a different transducer to be
efficiently received. Therefore, more and more interest has been given to third-order and higher-order
nonlinear interactions, leading to the development of models that account for higher-order interactions.
A theoretical development of the third-order nonlinear scattering of sound from two noncollinear
ultrasonic beams was presented by Garner and Steer [31], and they also carried out far-field and nearfield
measurements to validate their theory. A more recent work was conducted by Johnson and Steer [32],
who developed a computationally efficient model for third-order scattered sound fields using the series
expansion of a set of Gaussian base functions. In summary the nonlinear interaction has been extended
to include third-order and higher-order effects, and there is no doubt that the theoretical development in
the PAA will further promote its wider applications in various fields.

3. Signal Processing and Modulation Techniques

Figure 4 shows the configuration of the PAA system. Signal processing module is an important part
of the system, including two main functions, namely pre-processing and modulation. As mentioned
in Section 2, the demodulated secondary waveform is distorted due to the nonlinear effects, so
pre-processing methods are necessary and important for generating the expected signals, such as
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LFM signal, digital modulated signals, etc. Pompei proposed a new processing method including a
double integration and a square root operation [33]. In the work [34], Pompei developed an audible,
small deformation, and practical parametric array for the first time. However, the inverse processing
method proposed in [34] may not be suitable for practice since the integration shifts most of the signal
power to the lower frequency components, and the useful signal generated from the nonlinear acoustic
interaction is relatively weak. To resolve this problem, Li proposed some novel preprocessing methods
to generate LFM signals, digital modulated signals, and a Ricker wavelet [35]. It is one of the most
successful applications of the self-demodulation model to generate a Ricker wavelet in the secondary
acoustic field. Due to the fact that a Ricker wavelet can be derived from the second order derivative
of Gaussian wave, it is easy to generate a Ricker wavelet in the secondary acoustic field via taking
the square root of the Gaussian wave and modulating it onto the carrier. Ricker wavelet can also
be generated by simply using half-cosine wave passing through a low pass filter as the envelope of
primary wave. In practice, transmitting transducer always has the effects of a band-pass filter, which
equals envelop passing through a low-pass filter. Therefore, a half-cosine wave is a better choice due
to its simplicity and practicability. Featuring with large bandwidth and good phase characteristics,
Ricker wavelet is widely used in seismic exploration, sub-bottom profiling, and the detection of buried
targets [36–38].
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Pre-processing is essential for generating expected signals, and modulation techniques play an
important role in reducing the distortion introduced by the self-demodulation process. There are
three common modulation methods, which are double sideband amplitude modulation (DSBAM),
square-root amplitude modulation (SQRAM), and single-sideband amplitude modulation (SSBAM).
Figures 5–7 show the block diagram of the DSBAM, SQRAM, and SSBAM.

An example is given to compare the performance of reducing distortion for different modulation
methods. We use a single-frequency sine wave as the modulation signal, and then analyze the spectrum
of the self-demodulated signals obtained by these three modulation methods.
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For the DSBAM, the modulation envelop is given as E(t) = 1 + mg(t), where m is the modulation
index and g(t) = sin(ωt) is the input signal. Substitution of E(t) into Equation (7) yields:

pd =
βp2

0S0

8πρ0c4
0rα0

(m2ω2 cos(2ωt) −mω2 sin(ωt)) (10)

For the SQRAM, the modulation envelop is given as E(t) =
√

1 + mg(t), where m and g(t) have
the same definition as in Equation (10). The difference frequency signal pressure is:

pd = −
βp2

0S0

16πρ0c4
0rα0

mω2 sin(ωt) (11)

For the SSBAM, the demodulated signal is:

pd = −
βp2

0S0

8πρ0c4
0rα0

mω2 cos(ωt) (12)

From Equations (10)–(12), one derives that if the modulation signal is a single-frequency signal,
the distortion of DSBAM is the second harmonic distortion which is in direct proportion to the square
of the modulation index, while both SQRAM and SSBAM do not have harmonic distortions. Therefore,
DSBAM is not a preferred technique because it incurs high distortion at high m. By reducing the
modulation index m, there is a tradeoff between sound pressure level of the demodulated signal and
lower distortion, which is not desirable for practical applications. SQRAM is able to reduce distortion,
but the transmitting transducer with large bandwidth is required to generate the infinite harmonics
introduced by the square root operation [39,40]. Moreover, the amplitude of the demodulated signal
generated by SQRAM is half of that generated by SSBAM. In conclusion, SSBAM guarantees the best
performance among the three methods, which can reduce the distortion and power consumption
simultaneously. Smith gave the conditions for the distortionless transmission of analog modulation
schemes using the PAA [41]. He pointed out that SSBAM was able to recover the information efficiently,
and it may be sent free of distortion by suitably selecting the carrier frequency, which is consistent with
our analysis.
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4. Design Considerations and Implementation Issues

4.1. Design Considerations of PAA Transducer

The secondary source level and the beam-width of the PAA are determined by various factors
in a complex manner. Main controlling factors include the primary source level, the step down ratio
(i.e., ratio of primary frequency to secondary frequency), the transducer aperture, and the small signal
absorption coefficient. Vyas and Raj gave detailed design considerations of the PAA [42]. They pointed
out that the design of the PAA involved a compromise between various parameters, such as primary
frequencies, secondary frequency, transducer array size and the resulting complexities of the transducer
design. The primary frequency governs the virtual array length, cavitation threshold and the transducer
size. If high primary frequencies are chosen, the transducer size (for required directivity) may turn out
to be small to handle the required powers. If lower primary frequencies are chosen, the corresponding
array size may turn out to be too large to carry and install conveniently. Considering the virtual
array length, one is tempted to choose high primary frequencies because lower primary frequencies
would mean that in any given range, there are only few primary frequency wavelengths available for
mixing resulting in lower secondary source levels. However, higher primary frequencies also lead to
an increase in step-down ratio, which is associated with lower conversion efficiency and thus lower
secondary source level. One way to enhance conversion efficiency and secondary source level is to
increase the secondary frequency, but it also increases the absorption attenuation and thus result in
poorer penetrability. This is especially problematic in the sub-bottom profile measurement, where low
frequency is preferred so as to improve penetration capability. Generally, primary frequencies ranging
from 30 to 100 kHz may be a reasonable choice, and a step-down ratio between five and twenty would
provide the desired performance. Besides, the selection of the transmitting transducer also has a great
impact on the performance of the PAA. On the one hand, the transducer array should have a large
surface area to ensure high transmitted power and high source levels. On the other hand, the law of
Rayleigh limitation demonstrates that a large aperture of transducer is needed for a low-frequency
sonar in order to get a fine directivity, while transducers operated at high frequencies usually do not
need very large aperture to gain a sufficient directivity. In general, the array size is controlled by the
choice of primary frequency, and the care should be taken that for a particular array size, the maximum
transmittable powers are achieved without reaching the cavitation threshold.

Kopp proposed some design equations to optimize the parameters of the PAA from an engineering
viewpoint [6]. The design principles proposed by Kopp are based on the values of three distances
mentioned in Section 2: the efficient length of the PAA RA, the Rayleigh distance RF, and the shock
distance Rs. The optimal design is to make these three values equal (i.e., RF = RA = Rs). RA = RF

implies that the array diameter is matched to the frequency, and RA = Rs indicates that acoustic
power is not wasted through excess attenuation. Given a specific array size, we can easily obtain
the optimum primary frequency and transmitted power using the above equations. In the practical
applications of underwater acoustic engineering, however, it is difficult to fulfill such ideal condition.
Specifically, the absorption coefficient α is small underwater, so the efficient length of the array RA
is large. However, the Rayleigh distance RF cannot be too large since the signal used in underwater
acoustic engineering usually has relative low frequency and the transducer size is limited. As a result,
it is almost impossible to realize RA = RF in practice. The design of a PAA depends upon the type of
application and the mathematical model of the secondary sound field. Each design of PAA is unique
and requires specific analysis.

4.2. Implementation Issues

The PAA system consists of three main modules, namely, signal processing, power amplifier and
transmitter (shown in Figure 4). In addition to the design of the PAA transducer, the implementation
of signal processing and amplifier is also important for developing a PAA system. Compared to analog
circuit system, a digital signal processor has the ability to process more complicated operations without
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extra cost, size, and power consumption. As a result, most PAA systems use digital circuits to perform
the signal processing block. A field programmable gate array (FPGA) is one of the attractive digital signal
processing platforms to implement the PAA because of its flexible configuration and high performance.
A single chip microcomputer, as a substitute for FPGA, also can perform signal processing.

To increase transmitting power and improve penetration, the signal must be amplified before being
fed into the transducer. The Class-D power amplifier is widely used in the parametric loudspeaker
due to its high efficiency and small size. However, Class-D power amplifiers are commonly used to
amplify audio signals whose frequency is between 20 Hz and 20 kHz. When the PAA system is applied
in underwater acoustic engineering and the signal frequency is higher, other amplifier configurations
with broader bandwidth should be used. Svilainis suggested a power amplifier configuration and
obtained 50 kHz to 3 MHz bandwidth [43]. The total harmonic distortion of 4% using 3 kΩ load and
400 Vp-p 1 MHz frequency signal was achieved, which indicated the ability to use such a power
amplifier for high power and high frequency waveform excitation of transducers. Other researchers
have developed power amplifiers for transmitting transducers by various techniques, such as digital
predistortion and dynamic current biasing techniques to ensure high-voltage and low-distortion [44],
power MOSFET linearizer scheme to improve the gain deviation characteristics of the power amplifier
at higher input powers [45], etc.

In addition to the signal transmitting circuit, a complete PAA system in practice also requires
a signal receiving circuit. As an example, Figure 8 shows the system configuration of a parametric
array sub-bottom profiler. The system consists of a dry end and a wet end. The dry end includes a
computer serving as a control and display center, and a battery serving as power supply. The wet
end is composed of an embedded signal processor (DSP), a transmitting circuit, a primary frequency
signal receiving circuit, a difference frequency signal receiving circuit, and a transducer array. The DSP
generates the desired signal after receiving the instructions of the upper computer, and then the signal
is sent out through the transmitting circuit, which comprises a digital-to-analog converter (DAC), some
power amplifiers (PAs) and impedance matching networks (the number of which is in accordance
with the transducer elements). In addition to the need for a high excitation voltage and satisfactory
transducer elements, the successful transducer excitation also requires impedance matching between
the transducer and the excitation source. In most cases, the equivalent impedance of piezoelectric
transducers is capacitive. The parasitic input capacitance of the transducer clamps the PA output, and
thus reduces the amplifier efficiency. If no electrical impedance matching network (EIMN) is adopted,
it will not only seriously affect the power transfer efficiency, but also cause severe heating of the PA,
resulting in permanent damage to components. There are many publications on EIMN design for
piezoelectric transducers. The main design methods include analytical methods [46,47] and computer
aided design (CAD) methods [48,49]. The analytical method is very complicated and requires the
analytical form of the transducer, limiting its practice in engineering. The result of the CAD method is
usually dependent on the choice of the matching network topology. A relatively simple and effective
method is based on the Smith chart, assuming that the bandwidth has an inverse relationship with
the quality factor Q [50]. Moreover, some researchers use optimization algorithms such as the genetic
algorithm to search for optimal EIMN designs [51].
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The receiver is divided into the primary and difference frequency receiving circuits. The receiving
circuit of the primary frequency signal has sounding function, while the difference frequency signal
receiving circuit can provide accurate information of the deeper stratum due to the high directivity
and strong penetrability of the difference frequency signal. In addition, the primary receiving circuit
provides an important reference for the starting point of the time-varying gain (TVG) compensation
to the difference frequency channel. Both primary and difference frequency receiving circuits consist
of a low noise pre-amplifier (LNA), a variable gain amplifier (VGA), a low-pass filter (LPF) and an
analog-to-digital converter (ADC). The difference between the two receiving circuits is that the primary
frequency signal receiver has a transmit/receive (T/R) switch to block high-voltage transmission signals
and protect the receiving circuit. In addition, the cut off frequency of the LPF in the difference receiving
circuit is lower to ensure to filter out the high-frequency primary signal.

5. Applications of the PAA in Underwater Acoustic Engineering

Based on the PAA system, a broadband beam with low frequency, high directivity, and almost
without side-lobes can be realized with small-size transducers. PAA is very suitable for high-resolution
detection of seabed stratigraphic profiles and represents an important development direction in
sub-bottom profile measurement. In addition, the PAA also has many other applications in underwater
acoustic engineering, such as underwater acoustic communication, detection of buried targets, doppler
sonar log, etc.

5.1. Parametric Array Sub-Bottom Profiler

The most mature application of the PAA is the sub-bottom profiler [52–54]. Chirp sub-bottom
profiler is widely used in the field of traditional acoustic detection [55,56], because Chirp sonar transmits
LFM signals with broad bandwidth which carry a lot of information about the submarine stratum.
However, its transducer is usually very large and heavy due to the need to generate a low frequency
signal with sufficient penetrating power, so the installation is quite inconvenient. In addition, the beam
angle of low frequency chirp sonar is large, which results in poor resolution. In contrast, the parametric
array sub-bottom profiler has the advantages of low frequency, high directivity, and small size, and
thus, it is gaining more and more attention. As an example, Table 1 gives a comparison of the technical
specifications of a parametric array sub-bottom profiler (SES-2000 Medium) and a Chirp sub-bottom
profiler (BATHY2010).
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Table 1. Comparison of technical specifications of sub-bottom profilers.

Technical Specifications SES-2000 Medium
Sub-Bottom Profiler

BATHY 2010
Sub-Bottom Profiler

Water Depth Range 2–2000 m 10–12000 m
Sediment Penetration 70 m (depending on sediment type and noise) 200 m (depending on sediment type and noise)

Range Resolution 1 cm 8 cm
Beam Width (−3dB) 1.0◦ × 1.0◦ −3dB:31◦, −6dB:45◦

Primary frequency (PF) 100 kHz (frequency band 85–115 kHz) 3.5 kHz (for sediment penetration)
12 kHz (for sounding)

PF Source Level >247 dB re 1 µPa at 1 m >156 dB re 1 µPa at 1 m
Acoustic Power 5.5 kW 4 kW

Secondary frequency Selectable: 3.5, 5, 6, 8, 10, 12, 15 kHz ——
Pulse Width 0.07–3.5 ms 0.2–50 ms
Pulse Type Ricker, CW, LFM chirp CW, LFM chirp

Transducer Size W 0.50 m × D 0.50 m × H 0.12 m W 0.483 m × D 0.635 m × H 0.40 m

INNOMAR company in Germany has applied the research results of Underwater Acoustics
Research Group of Rostock University to produce a series of SES-96 and SES-2000 parametric array
sub-bottom profilers. This product line covers all ranges of water depth from less than one meter to full
ocean depth. Applications include geophysical imaging of sediments and sub-seabed structures for
dredging purposes, route and offshore site surveys and mapping buried pipelines/cables. For instance,
SES-2000 deep-36 Sub-Bottom Profiler can work in up to 6000 m under water. Its primary frequency is
36 kHz, and the frequency band of the secondary frequency is 1–10 kHz. In addition, its source level
reaches up to 246 dB re 1µPa at 1 m, so the sediment penetration is up to 150 m.

Another advanced parametric sonar system, PARASOUND sub-bottom profiler produced by
ATLAS company, is widely used in marine surveys [57,58]. PARASOUND P70 is suitable for underwater
operations from 10 m to 10000 m. It operates at primary frequencies of 18–39 kHz to provide secondary
frequencies as low as 500 Hz. With a secondary parametric source level of approximately 206 dB, it
provides an ability of bottom penetration more than 200 m, with a high resolution of less than 15 cm
depending on bottom characteristics. Moreover, the system benefits also include heave, roll, pitch
compensation for beam stabilization and electronic beam steering for larger detection coverage.

TOPAS PS18 and PS40 sub-bottom profilers are produced by Kongsberg company. The TOPAS
system can operate with various signal waveforms to achieve optimum performance: Ricker pulses
are used for very high resolution work, Chirp pulses are used for deep water, high penetration work,
and CW pulses are used for narrow band, frequency sensitive work. The transmitted acoustic beam
is electronically stabilized in both roll and heave ensuring that the insonified area on the sea floor is
accurately positioned. In addition, the transmitter can be used in a sequentially beam steering mode for
covering a larger sector. Due to these advantages, TOPAS has been widely used in marine surveys, e.g.,
detecting Atlantic herring [59], investigating cold-water coral structures [60], analyzing the structure
of sediments in the Scotia Sea [61], etc.

5.2. Parametric Underwater Communications

High performance underwater acoustic communications require low carrier frequencies for low
channel attenuation, high bandwidths for high data rates and narrow beam for less multipath effect.
These various and contradictory requirements can be satisfied by employing PAA. MPSK, MFSK,
OFDM, and many modulation methods combined with the nonlinear effect of the PAA, are applied to
underwater communications and achieve good performance [62–65]. Parametric sonar with M-ary
DPSK modulation was used for underwater digital communication in [63]. The system can realize real
time acoustic communications at ranges of tens of kilometers and can achieve data rates of 1, 2, and
3 kbit/s for 2-, 4-, and 8-DPSK, respectively. Further, the narrow beam width achieved by the PAA helps
to secure the data from a spatial point of view, thus the PAA shows the application potential in covert
underwater acoustic communication [65]. This is especially useful in military applications where the
secrecy of transmission signal is extremely important. PAA is also used in under-ice environment, a
direct sequence spread spectrum system based on the PAA was proposed and verified by Tang [66].
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5.3. Detection of Buried Targets

Efficient and accurate detection of objects buried in the seafloor is a major requisite for both of the
military and the public. PAA is the first choice for the detection of buried targets [37,67,68]. However,
most existing parametric sonars operate in single-beam modes, and the detection efficiency is therefore
relatively low, which fails to meet the military requirements. So, the multi-beam parametric array is a hot
research topic for scholars all over the world [52,69,70]. For example, a parametric array whose acoustic
beam can be steered electronically was proposed by Dybedal and Boe [71], its sequential scanning
mode of operation enables it to cover a 3D volume of sub-bottom sediments. Until now, however,
there have been no multi-beam parametric arrays that are matured in operation. Deploying PAA
onto unmanned underwater vehicles (UUV), autonomous underwater vehicles (AUV) and remote
operated vehicles (ROV) offers advantages of low cost, reduced operator risk and potentially improved
coverage rates. Therefore, the combination of the PAA and underwater vehicles shows great potential
for development in the domain of buried objects detection [72,73].

5.4. Long-Range Ocean Research

Long range acoustic propagation in the ocean is characterized by strong mode coupling. Resolving
the travel time variability in several tenths of milliseconds for multi-paths in the ocean waveguide
usually requires sophisticated signal processing techniques or single mode excitation. The directivity
pattern of the PAA can be very sharp and almost independent of the wave frequency. Therefore,
PAA can provide the broad frequency band, single mode acoustic source needed for propagation
in shallow water waveguides [74]. A long-range ocean experiment using a PAA for up to 1000 km
range signal propagation was performed in the early 1990 s [75,76], which has proven the technical
advantages of the PAA that make it “a perfect tool for ocean acoustics”.

6. Technical Challenges of the PAA

6.1. Improvement of Conversion Efficiency

PAA provides a number of advantages over its linear counterpart, but it also has some
disadvantages such as low conversion efficiency and some complexity in design. The typical conversion
efficiency of the PAA is nearly 1%, greatly hindering the further development and application of the
PAA. Improving the conversion efficiency is thus an urgent task. From Equations (1) and (2), one
derives that increasing the primary source level and secondary frequency well contributes to improving
the conversion efficiency. However, the primary source level cannot be increased indefinitely due to the
phenomenon of acoustic saturation. In addition, the maximum transmittable power should be below
the cavitation threshold. Likewise, the increase of secondary frequency is limited as well, because higher
secondary frequency coupled with higher absorption attenuation leads to lower penetration depth or
range. To enhance the conversion efficiency, a number of recent studies investigate the optimization of
the transducer material and design [77–79]. Some researchers fabricated capacitive micromachined
ultrasonic transducers (CMUTs) with vacuum-sealed cavities and used them to project directional
sound using PAA. The devices were used to produce a narrow (8.7◦) beam of 5 kHz sound, which
at 3 m was 58 dB [77,78]. A more recent work on the design of the parametric array transducer was
presented by Ahn, who integrated a dual-resonant-frequency PZT rods into a thinner polymer plate to
increase the radiation surface and thus to enhance power efficiency [79]. The difference frequency wave
generated by the PAA had sound pressure levels of 150 dB re 1 µP (@ 30 kHz) and a high directivity of
3.4◦ half-power beam width.
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6.2. Realization of Multi-Beam Detection

The receiving mode of the PAA is generally low-frequency, wide-beam receiving. If the
low-frequency narrow-beam receiving mode is adopted, the aperture of the receiving array will
inevitably become larger, which will lose the main advantage of the parametric array with small
aperture of the transducer. Therefore, the PAA does not have the ability of a conventional multi-beam
sonar to distinguish signals in different directions by receiving multiple beams. The lower detection
efficiency of the single-beam operation mode is a limiting factor for the wider use of the PAA. Therefore,
how to improve detection efficiency of the PAA is gaining more and more research attention.

The phased parametric array is one of the most promising ways to achieve multi-beam scanning.
However, during the beam steering process, the difference frequency wave of phased parametric
array may have problems of broadening beam lobe and generating high intensity grating lobe and
side-lobe. There are a few pioneer researches on the beamforming method for phased parametric
array [52,69,80–82], but this technique is not matured enough to be of practice use. For a digital
beamsteering system, the available steerable angle is often restricted by the sampling interval of the
digital system. As the sampling frequency is not high enough, the smallest steering angle available is
relatively large, making it difficult to distinguish signals in different directions. A number of fractional
delay or frequency domain algorithms have been developed to improve the steering angle, but some
of the algorithms requires high computational load and others introduce errors during the process.
Gan proposed a digital beamsteerer for difference frequency in parametric array, which is able to steer
to small angles without the need to increase the DSP board sampling frequency or implement fractional
delay [80]. However, this method requires multiplications and additions for each sampling period,
which to some extent increases computational complexity.

Frequency division multiple access (FDMA) and code division multiple access (CDMA)
technologies can distinguish beams in different directions from the perspective of signal spatial
characteristics, thus realizing multi-beam detection through the PAA. However, considering the
self-demodulation effects of the PAA and the requirements for signal bandwidth, pulse length, and
reverberation suppression, the practical application effects of these methods are limited in complex
marine environments. In conclusion, there is a need for further research to realize effective multi-beam
detection by the PAA.

7. Conclusions

This review paper gives an overview for a wide range of important works in the field of the
PAA. Based on nonlinear acoustics, the theory of the PAA has made considerable progress in recent
decades. We examine some of the important advances in the PAA, including theoretical developments
in nonlinear acoustics, mathematical modeling for the PAA, signal processing techniques, and design
guidelines of the PAA for optimum performance. With the development of relevant theories and
technologies, PAA has moved from theory to implementation and application. Due to its outstanding
advantages, PAA is widely used in the air and underwater, and this paper focuses on its applications in
underwater acoustic engineering. Despite wide applications of the PAA, there are still some technical
challenges to overcome. In particular, we highlight the technical challenges concerning conversion
efficiency and detection efficiency. Compared with the traditional linear sonar system, the secondary
source level of the PAA is much lower due to the low conversion efficiency. Increasing the secondary
frequency is one of the feasible methods to enhance the secondary source level and more and more PAA
systems with relatively high secondary frequencies and small step down ratios are being applied in
underwater acoustic engineering. Further, improved transducer performance also improves conversion
efficiency and secondary source level. Some new materials and designs of transmitting transducers are
proposed for the PAA. Another focus of future research will be to develop the multi-beam parametric
array and improve the detection efficiency. To realize effective multi-beam transmission by the PAA,
we should aim to develop the digital beamsteerers with small steering angles and improve the
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beamforming methods to suppress side lobes. We believe the improvements of conversion efficiency
and detection efficiency will further promote the application of the PAA.
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43. Svilainis, L.; Motiejūnas, G. Power amplifier for ultrasonic transducer excitation. Ultragarsas 2006, 58, 30–36.
44. Gao, Z.; Gui, P.; Jordanger, R. An integrated high-voltage low-distortion current-feedback linear power

amplifier for ultrasound transmitters using digital predistortion and dynamic current biasing techniques.
IEEE Trans. Circuits Syst. II. Express Briefs 2014, 61, 373–377. [CrossRef]

http://dx.doi.org/10.1121/1.398348
http://dx.doi.org/10.1016/j.apacoust.2012.02.016
http://dx.doi.org/10.1121/1.1814119
http://www.ncbi.nlm.nih.gov/pubmed/15658688
http://dx.doi.org/10.1121/1.4933846
http://dx.doi.org/10.1016/j.physd.2007.03.007
http://dx.doi.org/10.1109/TUFFC.2010.1609
http://www.ncbi.nlm.nih.gov/pubmed/20679002
http://dx.doi.org/10.1016/j.matdes.2008.05.069
http://dx.doi.org/10.1002/stc.2063
http://dx.doi.org/10.1016/j.apacoust.2011.12.013
http://dx.doi.org/10.1109/TUFFC.2012.005540
http://dx.doi.org/10.1121/1.426497
http://dx.doi.org/10.1121/1.3047378
http://dx.doi.org/10.1007/s11001-005-3712-y
http://dx.doi.org/10.1049/el:20001065
http://dx.doi.org/10.1007/s00367-015-0433-3
http://dx.doi.org/10.1016/j.apacoust.2012.04.001
http://dx.doi.org/10.1121/1.421645
http://dx.doi.org/10.1109/TCSII.2014.2305213


Sensors 2020, 20, 2148 18 of 19

45. Hojong, C.; Park, W.; Jung-Yeol, Y.; Changhan, Y. Power MOSFET linearizer of a high-voltage power amplifier
for high-frequency pulse-echo instrumentation. Sensors 2017, 17, 764. [CrossRef]

46. Fano, R.M. Theoretical limitations on the broadband matching of arbitrary impedances. J. Franklin Inst. 1950,
249, 57–83. [CrossRef]

47. Youlat, D.C. A New Theory of broad-band matching. IEEE Trans. circuit theory 1964, 11, 30–50. [CrossRef]
48. Yarman, B.S.; Carlin, H.J. A simplified “real frequency” technique applied to broad-band multistage

microwave amplifiers. In Proceedings of the 1982 IEEE MTT-S International Microwave Symposium Digest,
Dallas, TX, USA, 15–17 June 1982; pp. 529–531.

49. Sun, G.; Jansen, R.H. Broadband doherty power amplifier via real frequency technique. IEEE Trans. Microw.
Theory Tech. 2012, 60, 99–111. [CrossRef]

50. Huang, H.; Paramo, D. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 2699–2707. [CrossRef] [PubMed]

51. An, J.; Song, K.; Zhang, S.; Yang, J.; Cao, P. Design of a broadband electrical impedance matching network for
piezoelectric ultrasound transducers based on a genetic algorithm. Sensors 2014, 14, 6828–6843. [CrossRef]
[PubMed]

52. Woodward, B.; Cook, J.C.; Goodson, A.D.; Lepper, P.A. A phase steered parametric array for sub-bottom
profiling. In Proceedings of the Sixth International Conference on Electronic Engineering in Oceanography,
Cambridge, UK, 19–21 July 1994; pp. 77–82.

53. Humphrey, V.F.; Robinson, S.P.; Smith, J.D.; Martin, M.J.; Beamiss, G.A.; Hayman, G.; Carroll, N.L.
Acoustic characterization of panel materials under simulated ocean conditions using a parametric array
source. J. Acoust. Soc. Am. 2008, 124, 803–814. [CrossRef] [PubMed]

54. Qu, K.; Zou, B.; Chen, J.; Guo, Y.; Wang, R. Experimental study of a broadband parametric acoustic array for
sub-bottom profiling in shallow water. Shock Vib. 2018, 2018, 3619257. [CrossRef]

55. Schock, S.G.; LeBlanc, L.R.; Mayer, L.A. Chirp subbottom profiler for quantitative sediment analysis.
Geophysics 1989, 54, 445–450. [CrossRef]

56. Plets, R.M.K.; Dix, J.K.; Adams, J.R.; Bull, J.M.; Henstock, T.J.; Gutowski, M.; Best, A.I. The use of a
high-resolution 3D chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site
of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 2009, 36, 408–418. [CrossRef]

57. Mitchell, N.C. Comment on: “The spatial extent of the deep western boundary current into the bounty trough:
New evidence from parasound sub-bottom profiling” by Horn and Uenzelmann-Neben. Mar. Geophys. Res.
2016, 37, 371–374. [CrossRef]

58. Nikolovska, A.; Sahling, H.; Bohrmann, G. Hydroacoustic methodology for detection, localization, and
quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem.
Geophys. Geosyst. 2008, 9, 10010. [CrossRef]

59. Godø, O.R.; Foote, K.G.; Dybedal, J.; Tenningen, E. Observing Atlantic herring by parametric sonar. J. Acoust.
Soc. Am. 2009, 125, 2718. [CrossRef]

60. Muñoz, A.; Cristobo, J.; Rios, P.; Druet, M.; Polonio, V.; Uchupi, E.; Acosta, J. Sediment drifts and cold-water
coral reefs in the Patagonian upper and middle continental slope. Mar. Pet. Geol. 2012, 36, 70–82. [CrossRef]

61. Schreider, A.A.; Schreider, A.A.; Sazhneva, A.E.; Galindo-Zaldivar, J.; Ruano, P.; Maldonado, A.;
Martos-Martin, Y.; Lobo, F. Structure of subsurface sediments in the scan basin (Scotia Sea). Oceanology 2018,
58, 133–136. [CrossRef]

62. Wiedmann, K.; Buch, T.; Weber, T. Parametric underwater communications. In Proceedings of the Meetings
on Acoustics, Acoustical Society of America ECUA 11th European Conference on Underwater Acoustics,
Edinburgh, Scotland, 2–6 July 2012; Volume 17, p. 070021.

63. Zheng, M.; Wang, L.; Stoner, R.; Coates, R.F.W. Underwater digital communication utilising parametric sonar
with M-ary DPSK modulation. IEE Proc. Radar Sonar Navig. 1999, 146, 213–218. [CrossRef]

64. Yin, J.; Zhang, X.; Zhou, Y. Differential pattern time delay shift coding underwater acoustic communication
using parametric array. J. Acoust. Soc. Am. 2015, 137, 2214. [CrossRef]

65. Zhao, A.-B.; Cheng, Y.; An, T.-S.; Hui, J. Covert underwater acoustic communication system using parametric
array. Mar. Tech. Soc. J. 2019, 53, 20–26. [CrossRef]

http://dx.doi.org/10.3390/s17040764
http://dx.doi.org/10.1016/0016-0032(50)90006-8
http://dx.doi.org/10.1109/TCT.1964.1082267
http://dx.doi.org/10.1109/TMTT.2011.2175237
http://dx.doi.org/10.1109/TUFFC.2011.2132
http://www.ncbi.nlm.nih.gov/pubmed/23443705
http://dx.doi.org/10.3390/s140406828
http://www.ncbi.nlm.nih.gov/pubmed/24743156
http://dx.doi.org/10.1121/1.2945119
http://www.ncbi.nlm.nih.gov/pubmed/18681573
http://dx.doi.org/10.1155/2018/3619257
http://dx.doi.org/10.1190/1.1442670
http://dx.doi.org/10.1016/j.jas.2008.09.026
http://dx.doi.org/10.1007/s11001-016-9287-y
http://dx.doi.org/10.1029/2008GC002118
http://dx.doi.org/10.1121/1.4784426
http://dx.doi.org/10.1016/j.marpetgeo.2012.05.008
http://dx.doi.org/10.1134/S0001437018010125
http://dx.doi.org/10.1049/ip-rsn:19990497
http://dx.doi.org/10.1121/1.4920066
http://dx.doi.org/10.4031/MTSJ.53.1.11


Sensors 2020, 20, 2148 19 of 19

66. Tang, S.; Zhu, G.; Zhang, X.; Yin, J.; Guo, L.; Shi, W. Under-ice underwater acoustic communication based
on direct sequence spread spectrum system with parametric emission. In Proceedings of the 2016 IEEE
International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong,
China, 5–8 August 2016; pp. 1–4.

67. Trucco, A. Experimental results on the detection of embédded objects by a prewhitening filter. IEEE J.
Ocean. Eng. 2001, 26, 783–794. [CrossRef]

68. Jacobsen, N.; Morén, P.; Sundin, G.; Pihl, J. System for mono- and bistatic sonar investigation of buried
objects. In Proceedings of the Oceans 2005, Brest, France, 20–23 June 2005; Volume 2, pp. 1147–1150.

69. Zhang, X.; Lin, W.; Wang, X.; Zhang, H. Design and performance evaluation of phased parametric array
for the detection of geological conditions ahead of drill bit. In Proceedings of the 2014 IEEE International
Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 1975–1978.

70. Lee, C.H.; Lee, J.; Bae, J.; Paeng, D.-G.; Lee, S.W.; Shin, J.; Jung, J.W. Digital communication system using
beamsteering for difference frequency in a parametric array. J. Acoust. Soc. Am. 2012, 131, 3445. [CrossRef]

71. Dybedal, J.; Boe, R. Ultra-high resolution sub-bottom profiling for detection of thin layers and objects.
In Proceedings of the Oceans 1994, Brest, France, 13–16 September 1994; pp. I/634–I/638.

72. LePage, K.D.; Schmidt, H. Bistatic synthetic aperture imaging of proud and buried targets from an AUV.
IEEE J. Ocean. Eng. 2002, 27, 471–483. [CrossRef]

73. Boulinguez, D.; Quinquis, A. 3-D underwater object recognition. IEEE J. Ocean. Eng. 2002, 27, 814–829.
[CrossRef]

74. Esipov, I.B. The Parametric array and long-range ocean research. Acoust. Today 2010, 6, 20–26. [CrossRef]
75. Esipov, I.B.; Zimenkov, S.V.; Kalachev, A.I.; Nazarov, V.E. Sensing of an ocean eddy by directional parametric

radiation. Acoust. Phys. 1993, 39, 89–90.
76. Esipov, I.B.; Kalachev, A.I.; Sokolov, A.D.; Sutin, A.M.; Sharonov, G.A. Long range propagation experiments

with a powerful parametric source. Acoust. Phys. 1994, 40, 61–64.
77. Wygant, I.O.; Kupnik, M.; Windsor, J.C.; Wright, W.M.; Wochner, M.S.; Yaralioglu, G.G.; Hamilton, M.F.;

Khuri-Yakub, B.T. 50 kHz capacitive micromachined ultrasonic transducers for generation of highly directional
sound with parametric arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 193–203. [CrossRef]
[PubMed]

78. Wygant, I.O.; Kupnik, M.; Yaralioglu, G.; Khuri-Yakub, B.T.; Windsor, J.C.; Wright, W.M.; Wochner, M.S.;
Hamilton, M.F. 6F-4 50-kHz capacitive micromachined ultrasonic transducers for generating highly directional
sound with parametric arrays. In Proceedings of the IEEE Ultrasonics Symposium, New York, NY, USA,
28–31 October 2007; pp. 519–522.

79. Ahn, H.; Hwang, Y.; Moon, W. Underwater parametric array source transducer composed of PZT rods and
thin polymer plate with high power efficiency for wideband sound generation. J. Acoust. Soc. Am. 2016, 140,
3089. [CrossRef]

80. Gan, W.S.; Yang, J.; Tan, K.S.; Er, M.H. A digital beamsteerer for difference frequency in a parametric array.
IEEE Trans. Audio, Speech Lang. Process. 2006, 14, 1018–1024.

81. Zhang, F.D.; Xu, L.M.; Chen, M. The design of beam-forming for broadband beam-steerable parametric array.
In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China,
5–8 August 2012; pp. 1580–1585.

82. Zhang, F.D.; Xu, L.M.; Chen, M.; Zhang, F.; Xu, L.; Chen, M.; Huang, D. Study on the beam forming method
for phased parametric array based on amplitude weighting. Chin. J. Sci. Instrum. 2016, 37, 429–436.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/48.972119
http://dx.doi.org/10.1121/1.4708967
http://dx.doi.org/10.1109/JOE.2002.1040931
http://dx.doi.org/10.1109/JOE.2002.805097
http://dx.doi.org/10.1121/1.3467644
http://dx.doi.org/10.1109/TUFFC.2009.1019
http://www.ncbi.nlm.nih.gov/pubmed/19213646
http://dx.doi.org/10.1121/1.4969628
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fundamental Principles of the PAA 
	Nonlinear Acoustic Theory 
	Theoretical Model of the PAA 
	Collimated Plane Wave Model 
	Spreading Effect and Acoustic Saturation 
	Summary of the Parametric Array Model 
	Broadband Parametric Array 
	Recent Theoretical Development in the PAA 


	Signal Processing and Modulation Techniques 
	Design Considerations and Implementation Issues 
	Design Considerations of PAA Transducer 
	Implementation Issues 

	Applications of the PAA in Underwater Acoustic Engineering 
	Parametric Array Sub-Bottom Profiler 
	Parametric Underwater Communications 
	Detection of Buried Targets 
	Long-Range Ocean Research 

	Technical Challenges of the PAA 
	Improvement of Conversion Efficiency 
	Realization of Multi-Beam Detection 

	Conclusions 
	References

