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Abstract: American foulbrood is a dangerous bee disease that attacks the sealed brood. It quickly
leads to the death of bee colonies. Efficient diagnosis of this disease is essential. As specific odours
are produced when larvae rot, it was investigated whether an electronic nose can distinguish between
colonies affected by American foulbrood and healthy ones. The experiment was conducted in an
apiary with 18 bee families, 9 of which showed symptoms of the disease confirmed by laboratory
diagnostics. Three units of the Beesensor V.2 device based on an array of six semiconductor TGS gas
sensors, manufactured by Figaro, were tested. Each copy of the device was tested in all bee colonies:
sick and healthy. The measurement session per bee colony lasted 40 min and yielded results from
four 10 min measurements. One 10-min measurement consisted of a 5 min regeneration phase and a
5 min object-measurement phase. For the experiments, we used both classical classification methods
such as k-nearest neighbour, Naive Bayes, Support Vector Machine, discretized logistic regression,
random forests, and committee of classifiers, that is, methods based on extracted representative data
fragments. We also used methods based on the entire 600 s series, in this study of sequential neural
networks. We considered, in this study, six options for data preparation as part of the transformation
of data series into representative results. Among others, we used single stabilised sensor readings as
well as average values from stable areas. For verifying the quality of the classical classifiers, we used
the 25-fold train-and-test method. The effectiveness of the tested methods reached a threshold of
75 per cent, with results stable between 65 and 70 per cent. As an element to confirm the possibility
of class separation using an artificial nose, we used applied visualisations of classes. It is clear from
the experiments conducted that the artificial nose tested has practical potential. Our experiments
show that the approach to the problem under study by sequential network learning on a sequence of
data is comparable to the best classical methods based on discrete data samples. The results of the
experiment showed that the Beesensor V.2 along with properly selected classification techniques can
become a tool to facilitate rapid diagnosis of American foulbrood under field conditions.

Keywords: AFB; Peanibacillus larvae; gas sensor; electronic nose; k-nearest-neighbour algorithm

1. Introduction

American foulbrood is a dangerous disease of the honeybee caused by the bacterium
Paenibacillus larvae larvae (white). This bacterium produces highly resistant spores [1] and
can therefore survive for decades [2]. The spores can be carried by bees with food and by
the beekeeper on beekeeping equipment. In this way, the disease spreads rapidly first in
the apiary from colony to colony and then from apiary to apiary.

The disease is widespread worldwide [3] and has been recorded in apiaries on five
continents [4]. Monitoring studies of honey contamination with P.l. larvae spores conducted

Sensors 2022, 22, 1148. https://doi.org/10.3390/s22031148 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031148
https://doi.org/10.3390/s22031148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9383-5335
https://orcid.org/0000-0002-6043-3313
https://orcid.org/0000-0003-4692-5474
https://orcid.org/0000-0001-5508-9856
https://orcid.org/0000-0002-3137-7957
https://doi.org/10.3390/s22031148
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031148?type=check_update&version=2


Sensors 2022, 22, 1148 2 of 20

in Poland [5] have shown that there are regions where the risk of American foulbrood
symptoms is high. An example is the Warmia and Mazury Province, where the presence of
sporocarps was confirmed in almost 50% of the examined apiaries, 20% of which showed
a high degree of contamination [5]. The results of this study translate into the current
epizootic situation in the area (results of observations during field work by a co-author of
the project, a veterinary surgeon specialising in bee diseases).

American foulbrood manifests itself in the dying and rotting of bee brood underneath
the sealing caps (Figure 1. Consequently, this disease leads to the weakening of a strong
colony and its death [6].

Figure 1. The bee comb with diseased brood for American foulbrood. Visible dragging rotten larvae,
which emit a specific odour.

Beekeepers have difficulty perceiving and recognising the early symptoms of American
foulbrood. As a result, they find that something bad is happening to their bee colonies
when it is too late for rescue. Confusing symptoms of American foulbrood with symptoms
of other diseases of sealed brood is also a problem. To confirm the presence of the disease
in the apiary, laboratory diagnostics are necessary. This involves taking bee and brood
samples for testing, protecting them properly, sending them to a laboratory, and waiting a
long time for the results. Such tests are often expensive, especially when the apiary is large,
and the number of samples sent for laboratory tests must also be significant. Other tools are
therefore being sought for rapid and cheap diagnosis of American foulbrood, which will
alert the beekeeper to the problem at an early stage of the disease under field conditions.

Our study took advantage of the fact that rotting brood produces a mixture of valerian,
isocaproic, and caproic acids [7]. This causes a specific odour to be emitted by a colony
suffering from American foulbrood, which can even be detected by the human nose.
It therefore made sense to use an electronic nose to detect American foulbrood. The
effectiveness of electronic nose detection has been scientifically proven many times. These
devices have found applications in the diagnosis of diseases in plants [8], animals [9],
and humans [10]. In the case of bee diseases, an array of six solid-state gas sensors
can distinguish bee colonies heavily infected with the Varroa destructor parasite from
healthy colonies [11] and can diagnose Varroa by examining brood samples infected with
this mite [12]. The effectiveness in detecting American foulbrood in bee colonies by the
multi-sensor device in preliminary studies was confirmed by a team of scientists from
Australia [13].
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The study tested the effectiveness of the Beesensor V.2 multi-sensor recorder in detect-
ing American foulbrood in bee colonies and thus to answer the question of whether this
electronic nose could become an effective tool in diagnosing American foulbrood.

2. Materials and Methods
2.1. Multi-Sensor Recorder Beesensor V.2

In the experiment, three units of Beesensor V.2 (Beecom 1, Beecom 2, and Beecom 3) con-
structed at the Wrocław University of Technology in the Laboratory of Sensor Techniques
and Indoor Air Quality Research were tested (Figure 2). Beesensor V.2 is an advanced
multi-sensor signal recorder based on semiconductor gas sensors TGS823, TGS826, TGS832,
TGS2600, TGS2602, and TGS2603 from FIGARO. The sensing layer of the Taguchi Gas
Sensors (TGS) used in the experiment was SnO2. This MOS is more sensitive than others
and can operate already at 300 degrees Celsius. The sensitivity and selectivity of TGS
sensors is achieved by enriching SnO2 with various chemical elements, including noble
metals (Pt, Pd, and Ru) or rare earth metals (Y). However, the exact composition and
proportions of added elements of individual TGS sensor models are a trade secret of the
company. Each sensor reacts to the presence of different substances (Table 1).

Figure 2. Multi-Sensor Recorder Beesensor V.2.
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Table 1. The characteristics of semiconductor gas sensors, which were used in the multi-sensor array
([12], https://www.figaro.co.jp/en (accessed on 4 December 2021)).

Sensor Substances Detected Detection Range

TGS823 Organic solvent vapors 50∼5000 ppm, ethanol, n-hexane, benzene, acetone
TGS826 Ammonia 30∼300 ppm, ethanol, ammonia, isobutane
TGS832 Chloro f luorocarbons 100∼3000 ppm, R-407c, R-134a, R-410a, R-404a, R-22
TGS2600 Gaseous air contaminants 1∼100 ppm
TGS2602 VOCs and odorous gases 1∼30 ppm, ethanol, ammonia, toluene

TGS2603 Amine-series and sul f urous odor gases 1–30 ppm, ethanol, 0.1–3 ppm trimethylamine
0.3–2 ppm methyl mercaptan

The device has two inputs (regeneration path and measuring path) and one gas outlet
provided with quick plug connectors. Beesensor V.2 is built up of several modules. The
pneumatic module is responsible for gas sampling and sample preparation. The essence of
this module is a gas pump, which supplies gas samples to the sensor block by using Teflon
tubes. A carbon filter is placed in the reference path and a dust filter composed of a mixture
of cellulose ester (MCE 13 mm, 0.45 microns) in the measurement path.

The user interface is the communication module, which is made up of the following
elements:

- Main switch,
- LCD display,
- Alphanumeric keypad,
- Four rocker switches controlling GPS, USB, GSM, and sound
- Optical controls (LEDs),
- Loudspeaker,
- USB sockets.

Furthermore, the device includes a microcomputer, microcontroller, GSM and GPS
communication modules, and an internal clock. Beesensor V.2 is equipped with a stand-
alone power module consisting of a battery with a capacity of 22 Ah and a voltage of 12 V,
so it can be used independently of the access to main power.

Beesensor V.2 has software modules for data acquisition, processing, and transmission.
Furthermore, this multi-sensor recorder is fully controllable and programmable. It enables
identification of the class of tested samples thanks to the possibility of introducing a
classifier, in which the method of construction of the feature vector is the selection of a
moment from the time series containing measurement data for each sensor independently.
The classifier can be trained by pointing to files containing reference data for a given class
from the previously performed measurements under controlled conditions. Based on the
indicated feature vector and the previously built set of benchmarks, the classifier calculates
the class and reports it to the user.

2.2. Experimental Scheme

The study was conducted in September 2020 in an apiary located in the Warmińsko–
Mazurskie (Poland) province. This apiary consisted of 18 bee colonies (Apis mellifera carnica),
of which 9 colonies showed symptoms of American foulbrood. Official laboratory tests on
samples of the brood taken from the affected colonies confirmed infection with P.l. larvae.
Bee colonies were housed in Warsaw beehives. The average strength of sick colonies was
7.3 combs, while healthy colonies were occupying an average of 10.3 combs. The bee colonies
were classified according to their health status. Thus, two classes were distinguished:

• Class 0—colonies suffering from American foulbrood (visible clinical symptoms; the
disease was confirmed by laboratory diagnostics)—9 objects,

• Class 1—healthy colonies—9 objects.

In the experiment, three twin units of Beesensor V.2 called: Beecom 1, Beecom 2, and
Beecom 3 were used. Each unit was warmed up for at least 12 h before measurements were
taken. Eighteen measurement sessions were performed. Each unit of the device measured a

https://www.figaro.co.jp/en
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different colony in a single measurement session, and in subsequent sessions, it alternately
measured a healthy and a sick colony (Figure 3). The probe tip was placed in the middle of
the bee nest, between two brood combs. The object of measurement was a gas sample from
this inter-comb space.

Figure 3. Multi-sensor recorder Beesensor V.2, unit BEECOM 1, during the measurement session of
the different bee colonies.

The research lasted 3 days. The main assumption of the measurements was to examine
each bee colony by each device in similar conditions of the same apiary, hive type, and
management method. Unfortunately, in the fifth session, the BEECOM 3 device crashed,
which caused it to examine only 17 bee colonies: 9 sick and 8 healthy (Table 2).

The single measurement procedure was already implemented in each device. The
parameters of the device for performed measurements are shown in the Table 3.

Table 2. The schedule of measurements taken, stating that each device shall test alternately sick and
healthy bee colonies, and each device shall test all bee colonies participating in the experiment.

Session BEECOM 1 BEECOM 2 BEECOM 3 Data

No. Health No. Health No. Health
Bee Colony Status Bee Colony Status Bee Colony Status

1 44 sick 10 healthy 1 sick 07.09.2020
2 10 healthy 44 sick 5 healthy 07.09.2020
3 1 sick 5 healthy 44 sick 07.09.2020
4 5 healthy 1 sick 10 healthy 07.09.2020
5 2 sick 11 healthy - 07.09.2020
6 11 healthy 2 sick 3 sick 07.09.2020
7 3 sick 12 healthy 11 healthy 07.09.2020
8 12 healthy 3 sick 2 sick 8.09.2020
9 6 sick 14 healthy 12 healthy 8.09.2020
10 14 healthy 6 sick 20 sick 8.09.2020
11 20 sick 15 healthy 14 healthy 8.09.2020
12 15 healthy 20 sick 6 sick 9.09.2020
13 19 sick 16 healthy 15 healthy 9.09.2020
14 16 healthy 19 sick 13A sick 9.09.2020
15 13A sick 9 healthy 16 healthy 9.09.2020
16 9 healthy 13A sick 19 sick 9.09.2020
17 13B sick 11B healthy 9 healthy 9.09.2020
18 11B healthy 13B sick 13B sick 9.09.2020
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Table 3. The measurement parameters.

Pump power 30%

Temperature in the measuring chamber 39 ◦C
Humidity in the measuring chamber 25% (21–29%)

Temperature in the central part of the bee colony nest 35 ◦C
Temperature outside the hive 13 ◦C (11◦–15◦)

A single measurement session per bee colony lasted 40 min and consisted of four
individual measurements. For simplicity in data handling, the measurements were named
“beex.y” where “bee” is the abbreviation for BEECOM; “x” is the number of the next
Beesensor V.2; and “y” is the next measurement in the measurement session, whereby the x
value x ∈ {1, 2, 3} and the value y ∈ {0, 1, 2, 3}. Each measurement lasted 10 min, of which
5 min were the regeneration (cleaning) phase, and 5 min were the object-measurement
(scent saturation) phase (Table 4). During the regeneration phase, the devices sampled pure
air outside the hive, and during the measurement phase, gas samples were collected from
the centre of the bee nest, from between two brood patches. Measurements covering the
first 20 min of the measurement session, where y = 0 and y = 1, were not taken for analysis
at all, as they gave unstable readings.

Table 4. The scheme of the measurement session including the duration of each phase and the names
of the obtained measurements. Legend: reg.—regeneration phase; meas.—measurement phase.

Measurement Session
(t = 2400 s)

Measurement 0 Measurement 1 Measurement 2 Measurement 3
Device (t = 600 s) (t = 600 s) (t = 600 s) (t = 600 s)

reg. meas. reg. meas. reg. meas. reg. meas.
(t = 300 s) (t = 300 s) (t = 300 s) (t = 300 s) (t = 300 s) (t = 300 s) (t = 300 s) (t = 300 s)

BEECOM 1 bee1.0 bee1.1 bee1.2 bee1.3
BEECOM 2 bee2.0 bee2.1 bee2.2 bee2.3
BEECOM 3 bee3.0 bee3.1 bee3.2 bee3.3

2.3. Data Processing

One reading of the sensor is understood as taking the average volt recorded by the
sensor during 1 s. The result of measurement session one for the bee colony was to obtain
four raw measurement files. One file with a given device consists of 300 s of cleaning and
300 s of scent saturation. Both phases have their stabilisation intervals; in the cleaning
phase, the minimum value was reached, and in the saturation phase, the maximum value
was reached. An example of a reading in the cleaning and saturation phases can be seen in
Figure 4.
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Figure 4. An example of a 600 s gas sensor reading, representing a single measurement. It shows
areas where the readings stabilise. The stable areas provide the basis for selecting values for the
classification process.

3. The Experimental Part Design

In the field tests we had access to nine bee colonies of each class. The differences in the
size of sites in the classes for devices and reading numbers were due to some difficulties
encountered during the tests. In class 0, we considered colonies with numbers: 1, 2, 3, 6,
13A, 13B, 19, 20, and 44. In class 1, we considered colonies with numbers: 5, 9, 10, 11, 11B,
12, 14, 15, and 16. The colony numbers we use for each test are in Table 5.

Table 5. The number of bee colonies correctly examined during each test. Only this number of
colonies was used in the tests. no.o f .col.in.classi = number of colonies available in classi, i ∈ {0, 1}.

Device Measurement no.of .col.in.class0 no.of .col.in.class1

BEECOM 1 bee1.1 7 9
bee1.2 7 9
bee1.3 7 9

BEECOM 2 bee2.1 9 9
bee2.2 9 9
bee2.3 9 9

BEECOM 3 bee3.1 9 9
bee3.2 9 9
bee3.3 9 8

The starting point for investigating classification possibilities is to visualise the average
readings of the individual TGS sensors—see Figures 5–7. We visualised the data before and
after the baseline correction. We used the Multiple Train and Test method (Monte Carlo
Cross Validation technique [14,15]) to verify the quality of the classification models. We
performed 25 tests where each split is applied to all classifiers simultaneously. To assess the
quality of the results, we used the balanced parameter accuracy [16], which is the average
classification accuracy of all classes. As an auxiliary parameter, we used the true-positive
rate (TPR), i.e., the percentage hit in the class.
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In the experimental part, we test the effectiveness of classical classification techniques
(applied on extracted data with a selected strategy) and a technique based on the analysis
of data sequences using neural networks. Let us start with our approach in the context of
the use of classical techniques.

3.1. Classical Classifiers—Using an Extracted Representation of the Data

For an algorithmic basis, we used the classifier: 1nn (see [17]), nb ([18], Devroye et al. [19],
and Duda et al. [20]), Support Vector Machine (svm) with fixed kernels, svm_linear [21],
svm_radial [21], svm_polynomial [21], svm_sigmoid [21], Generalized Linear Regression (lg)
[22], Random Forests (rf) [23] and the Committee of Classifiers (com3) [24]. We also used a
classification committee as a tuning element.

All classification methods used in the study are sourced from the R language [25]
packages. They were used with default settings. The classification committee—i.e., the
com3 method—was designed based on the 1nn, svm_linear, and lg methods—see the
scheme in Figure 8.

Figure 5. Visualisation for device bee1: Squared the average reading in classes 0 and 1; bee1.2 and
bee1.3 (left) and (right), respectively.

Figure 6. Visualisation for device bee2: Squared the average reading in classes 0 and 1; bee2.2 and
bee2.3 (left) and (right), respectively.
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Figure 7. Visualisation for device bee3: Squared the average reading in classes 0 and 1; bee3.2 and
bee3.3 (left) and (right), respectively.

Figure 8. Diagram showing the operation of the com3 method.

The general scheme of the research carried out is shown in Figure 9.

Figure 9. The general scheme of our experiments.
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3.1.1. Variants of Data Preprocessing

Assuming j is the bee colony number, i the TGS sensor number, i ∈ {823, 826, 832, 2600,
2602, 2603}, and s the measurement second number, we defined the following variants of
the test methodology.

VARIANT1:

In this variant, we applied the following transformation.

TGSnewi(objectj) =
∑580

s=521 TGSs
i (objectj)

60

VARIANT2:

In this variant, we applied the following transformation, which we call the baseline
correction.

TGSnewi(objectj) =
∑580

s=521 TGSs
i (objectj)

60
−

∑290
s=281 TGSs

i (objectj)

10

VARIANT3:

This time we used maximum readings in the scent saturation phase.

TGSnewi(objectj) = max599
s=301TGSs

i (objectj)

VARIANT4:

In the fourth variant, we had a baseline correction based on subtracting from the
maximum reading of the saturation phase the minimum reading of the cleaning phase.

TGSnewi(objectj) = max599
s=301TGSs

i (objectj)−min299
s=1TGSs

i (objectj)

VARIANT5:

In this variant, we combined the attributes from variants 1 and 2. The result was a
system with twelve conditional attributes.

VARIANT6:

In the final variant, we combined the conditional attributes from variants 3 and 4. The
result was an analogous extended system as in variant 5.

3.1.2. Results of the Experiments for Classical Techniques
Analysis of the Results for the 25 Times Train and Test Method

First, we used six baseline research methodologies—see Section 3.1.1—and 9 reference
classification techniques.

The testing methodology we chose to evaluate the models with was to split the entire
sample set 25 times into training and test systems, using a split ratio of 0.6. This solution
was chosen because the tested decision system contains less than 20 test samples and
because classical cross-validation cannot be applied. During testing, the selected classifiers
were applied to the same data splits, and the results were averaged. We used the balanced
accuracy as a parameter to measure the quality of classification and the sensitivity and
significance (specificity) of the tests, i.e., the percentage effectiveness in indicating the class
of diseased samples and the class of healthy samples. An example of the detailed result
for the best variant can be seen in Tables 6–11. It is worth noting that the third and fourth
measurements from devices BEECOM 1, BEECOM 2, and BEECOM 3, marked as bee1.2,
bee1.3, bee2.2, bee2.3, bee3.2, and bee3.3 were selected as reference measurements because
they showed stabilised readings compared to the first and second measurements. Let us
move on to a summary of the experimental part.
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Summary of Results

In Tables 12–14, we have a summary of the results for the tested classification tech-
niques and the v1:v6 test methodologies. We have results for three classification quality
intervals (accuracy-balanced) 0.6, 0.65, and 0.7. The best result encountered was 0.748 for
the svm_linear method and the v4 variant. Variant v4 won slightly, but the second best
was variant v2. The best classification method was found to be the svm_linear technique,
which performed stably in all tested variants. The second best was com3 (i.e., a committee
of three classifiers 1nn, svm_linear and lg).

Table 6. Summary of results for data.bee1.2 with baseline correction.

Method bacc acc0 acc1

1nn 0.692 0.653 0.73
nb 0.575 0.6 0.55

svm_linear 0.748 0.667 0.83
svm_radial 0.677 0.493 0.86

svm_polynomial 0.587 0.213 0.96
svm_sigmoid 0.683 0.547 0.82

lg 0.565 0.6 0.53
rf 0.702 0.613 0.79

com3 0.73 0.68 0.78

Table 7. Summary of results for data.bee1.3 with baseline correction.

Method bacc acc0 acc1

1nn 0.543 0.547 0.54
nb 0.453 0.387 0.52

svm_linear 0.688 0.547 0.83
svm_radial 0.485 0.12 0.85

svm_polynomial 0.512 0.173 0.85
svm_sigmoid 0.452 0.133 0.77

dt 0.5 0 1
lg 0.713 0.707 0.72
rf 0.502 0.453 0.55

com3 0.675 0.6 0.75

Table 8. Summary of results for data.bee2.2 with baseline correction.

Method bacc acc0 acc1

1nn 0.6 0.63 0.57
nb 0.625 0.68 0.57

svm_linear 0.735 0.67 0.8
svm_radial 0.595 0.7 0.49

svm_polynomial 0.535 0.46 0.61
svm_sigmoid 0.585 0.58 0.59

lg 0.6 0.61 0.59
rf 0.53 0.54 0.52

com3 0.655 0.63 0.68
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Table 9. Summary of results for data.bee2.3 with baseline correction.

Method bacc acc0 acc1

1nn 0.59 0.58 0.6
nb 0.605 0.71 0.5

svm_linear 0.685 0.6 0.77
svm_radial 0.6 0.57 0.63

svm_polynomial 0.61 0.34 0.88
svm_sigmoid 0.55 0.5 0.6

lg 0.595 0.57 0.62
rf 0.53 0.54 0.52

com3 0.66 0.59 0.73

Table 10. Summary of results for data.bee3.2 with baseline correction.

Method bacc acc0 acc1

1nn 0.645 0.74 0.55
nb 0.565 0.6 0.53

svm_linear 0.51 0.34 0.68
svm_radial 0.54 0.41 0.67

svm_polynomial 0.49 0.05 0.93
svm_sigmoid 0.47 0.3 0.64

lg 0.55 0.46 0.64
rf 0.585 0.64 0.53

com3 0.595 0.49 0.7

Table 11. Summary of results for data.bee3.3 with baseline correction.

Method bacc acc0 acc1

1nn 0.64 0.6 0.68
nb 0.653 0.76 0.547

svm_linear 0.62 0.52 0.72
svm_radial 0.593 0.36 0.827

svm_polynomial 0.5 0.08 0.92
svm_sigmoid 0.435 0.47 0.4

lg 0.71 0.66 0.76
rf 0.615 0.63 0.6

com3 0.69 0.66 0.72

Table 12. Best results for THRESHOLD 0.6: We counted the number of times the sensitivity thresh-
old of 0.6 was exceeded. We considered variants v1 to v6. The best method was found to be svm_linear
and com3 and variants v4 and v2. Slightly better were v4 and svm_linear. It is worth noting that
com3 also includes svm_linear. In yellow, we highlighted the best methods and variants.

Method v1 v2 v3 v4 v5 v6 sum(v1:v4) sum(v1:v6)

1nn 0 3 2 4 1 2 9 12
nb 0 2 1 3 0 1 6 7

19svm_linear 4 5 5 5 6 5 19 30
svm_radial 0 3 1 2 1 0 6 7

svm_polynomial 0 0 1 1 0 0 2 2
svm_sigmoid 0 0 0 1 0 0 1 1

lg 4 3 5 3 0 0 15 15
rf 1 2 0 2 3 1 5 9

com3 4 6 4 5 − − 19 −
sum 13 24 19 26 11 9
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Table 13. Best results for THRESHOLD 0.65: We counted the number of times the sensitivity
threshold of 0.65 was exceeded. We considered variants v1 to v6. The best method was found to be
svm_linear and com3 and variants v4 and v2. Slightly better were v4 and svm_linear. It is worth
noting that com3 also includes svm_linear. In yellow, we highlighted the best methods and variants.

Method v1 v2 v3 v4 v5 v6 sum(v1:v4) sum(v1:v6)

1nn 0 1 0 1 1 0 2 3
nb 0 0 0 1 0 0 1 1

svm_linear 2 5 3 4 4 3 14 21
svm_radial 0 0 0 0 0 0 0 0

svm_polynomial 0 0 0 0 0 0 0 0
svm_sigmoid 0 0 0 1 0 0 1 1

lg 1 0 2 2 0 0 5 5
rf 1 1 0 1 1 0 3 4

com3 0 5 3 5 − − 13 −
sum 4 12 8 15 6 3

Table 14. Best results for THRESHOLD 0.7: We counted the number of times the sensitivity thresh-
old of 0.7 was exceeded. We considered variants v1 to v6. The best method was found to be svm_linear
and com3 and variants v4 and v2. Slightly better were v4 and svm_linear. It is worth noting that
com3 also includes svm_linear. In yellow, we highlighted the best methods and variants.

Method v1 v2 v3 v4 v5 v6 sum(v1:v4) sum(v1:v6)

1nn 0 1 0 0 0 0 1 1
nb 0 0 0 0 0 0 0 0

svm_linear 0 3 1 2 2 1 6 9
svm_radial 0 0 0 0 0 0 0 0

svm_polynomial 0 0 0 0 0 0 0 0
svm_sigmoid 0 0 0 0 0 0 0 0

lg 0 0 0 2 0 0 2 2
rf 0 0 0 1 0 0 1 1

com3 0 1 1 1 − − 3 −
sum 0 5 2 6 2 1

3.2. v4: Results with BASELINE CORRECTION Max Measure between 301:599 Minus Min
Measure between 1:299

Seeing the experimental results on the tested data, given the fact of having few samples,
we decided to perform an additional visualisation of the mean class values in the best,
variant 4, so far.

3.3. Classification Using a Sequential Neural Network—Using the Full Sequence of Data
3.3.1. Description of the Input Data

The input data are a set of samples containing multivariate values of variables over
time; for each sample, we assigned one of two decisions that classify this sample appropri-
ately. Each sample contains 600 s of time-varying data and contains six attributes—values
from the following sensors: TGS823, TGS826, TGS832, TGS2600, TGS2602, and TGS2603.

The input data are organised as follows: we had three sets of measurement data:
bee1, bee2, and bee3 coming from different units of the device: BEECOM 1, BEECOM 2,
and BEECOM 3, respectively. Each data set contains three consecutive data subsets from
successive measurements that were collected in short intervals; the whole process is related
to the specificity of the measurement data. Due to the need to stabilise the level of odours,
and the need to obtain as far as possible undisturbed data with initial conditions, the first
data subgroup called “pack1” was rejected; the model training and prediction process
used data from three units of device (bee1, bee2, and bee3) and from two measurements
(measurement2 and measurement3). For each 600 s data sequence, we had one decision
assigned, which clearly determined whether the sample belonged to healthy bee colony
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or whether we were dealing with a disease entity. The decision data came from experts.
To create a data model that is useful in the diagnosis or prognosis of American foulbrood,
a sequential neural network was proposed, composed of many layers of appropriately
selected neurones and processing units. In the case of neural networks that are in favour
of analysing data composed of long data sequences, architectures are used that show
high resistance to fading or exploding gradient problems. Examples of such networks are
architectures that use LSTM or GRU cells. The presented architecture uses Gated Recurrent
Unit (GRU) units, due to their simpler structure compared to LSTM units, their having a
similar performance, and their ability to learn long data sequences. The structure of the
data used and the visualisation of our model can be seen in Figures 10 and 11.

Figure 10. Data structure.

Figure 11. Neural network model.

The proposed neural network architecture includes five layers. The first two layers are
GRUs 150 in the first layer and 50 in the second layer, respectively. Then, there are dropout
units with a coefficient of 0.5, whose task is to ensure appropriate network regularisation.
This process affects the quality of learning, which is to minimise the possibility of overfitting
the network. The next layer is a layer of 10 fully connected units and the last decision layer
containing two output neurones. Because the network is to be used for the classification
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of the input samples, the softmax activation function was used in the last layer, which
provides an indication of the decision class with a certain probability.

3.3.2. Results for Sequential Network

The input data were divided into training and test data in the proportions of 90% and
10%, respectively.

The training data included 600 s of six-element vectors in one training iteration
(batch_size = 600, features = 6), and the number of training iterations was set to 200 (epochs).
Then, after training the network, the model was validated using test data. The network has
two exits, and each of them determines the group’s affiliation to a given class (healthy or
sick). For training the network, 117 records were used, while 11 were for testing. In total,
421,200 values were used for training the network and 39,600 values for testing. The model
for test samples showed an accuracy of 72.72%—for details see Table 15.

Table 15. Results for the TRN-TST sample (90 percent of sites to 10 percent).

seria1.2_1: [1 0] -> [0.7803 0.2197]
seria1.2_10: [1 0] -> [0.84 0.1597]

seria1.2_13: [0 1] -> [0.8584 0.1415]
seria2.2_11: [1 0] -> [0.7495 0.2502]
seria2.2_14: [0 1] -> [0.8613 0.139 ]
seria2.2_17: [0 1] -> [0.849 0.1508]
seria3.2_1.: [1 0] -> [0.8296 0.1704]
seria3.2_10: [1 0] -> [0.8496 0.15 ]
seria3.2_11: [0 1] -> [0.4597 0.54 ]

seria3.2_12: [1 0] -> [0.8364 0.1636]
seria3.2_13: [0 1] -> [0.003414 0.996]

Accuracy: 72.72727489471436

3.4. The Visualisation of the Tested Classes Based on the Average Intensity of TGS Sensor Readings
For Data Prepared According to Variant 4

In this section, we illustrate the visual differences between the 0 and 1 classes. The
visualisations presented support the claim that the artificial nose can distinguish between
sick and healthy bee colonies. Visualisation is an important support because the number of
samples we had did not allow to statistically verify this thesis with certainty. We considered
two options for visualisation. In the first option—see Equation (2)—we presented the
squared mean sensor readings of the decision classes. See Figures 5–7. In the second option—
see Equation (3)—we used logarithmic averages and squared them—see Figures 12–14.

average(TGS
classj
i ) =

∑
|classj |
k=0 TGSj(obl)

|classj|
, where obl ∈ classj (1)

In the f irst option, we used : (average(TGS
classj
i ))2 (2)

In the second option, we used : (log(average(TGS
classj
i )))2 (3)
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Figure 12. Visualisation for device bee1: The average readings were logarithmised and squared in
classes 0 and 1; bee1.2 and bee1.3 (left) and (right), respectively.

Figure 13. Visualisation for device bee2: The average readings were logarithmised and squared in
classes 0 and 1; bee2.2 and bee2.3 (left) and (right), respectively.

Figure 14. Visualisation for device bee3: The average readings were logarithmised and squared in
classes 0 and 1; bee3.2 and bee3.3 (left) and (right), respectively.

4. Discussion

Electric noses based on metal oxidesemiconductors (MOS) have been used with good
detections for many human diseases such as the following: urinary tractinfections [26],
cancer [27], diabetes [28], and bowel diseases [29,30]. They also work well in detecting
animal diseases. Fend et al. 2005 [31] used successfully an electronic nose to diagnose
Mycobacterium bovis infection in badgers and cattle. Devices based on semiconductor sensors
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operation have also been successful in veterinary diagnostics in cases: Acute liver failure
of rats [32], Cutaneous myiasis of sheep [33], and white-nose syndrome of cave-dwelling
bats [9].

Our team focused on the ability to detect the most dangerous honeybee diseases such
as varrosis and American foulbrood. The Figaro 6-sensor TGS device we used has so
far given satisfactory results in Varroa diagnostics, both in the laboratory (ref. [12] and
in the field conditions [11]. We also successfully detected colonies on MYPGP media P.l.
larvae [34]. In this article, we presented the results of using a BeesensorV.2 device based
on an array of the same six sensors to detect American foulbrood under field conditions
in live bee colonies. The diagnostic studies of American foulbrood under field conditions
have not been conducted by anyone until now. This is completely innovative research. The
team of scientists Moran i in. (2019) [13] did, by gas chromatography mass spectrometry
(GC-MS), preliminary identification of volatile compounds (VCs). These were to become
AFB volatile biomarkers and to be used in the future as indicators of diagnostic electronic
nose. However, further results of the study were not presented. It is also not known on
which sensors the device was to be based.

The analysis of the graphs showing the time-course readings of the individual results
has shown that the readings from the first two measurements are unstable in many cases.
In particular, the first measurement marked as 0 stands out from the next three measure-
ments. This is because at the beginning of sampling, the bee colony gas was beginning
to saturate with odour. Only the third and fourth measurements were stable. Thus, we
can conclude that to diagnose American foulbrood, BeesensorV.2 cannot work on a single
colony for less than half an hour. It must be remembered that these are field conditions.
The situation is different in the case of laboratory tests, where the array of the same sensors
already gave stable readings in the first and only measurement (10 min of measurement
session) [12,34,35].

The nine classification techniques were selected for data analysis. The best method
was svm_linear. It gave the highest efficiency of class distinction for samples of BEECOM
1 (75%) (Table 6) and BEECOM 2 (74%) (Table 8). Support vector machines (SVM) is an
efficient classifier, which is often used by other data scientists [36]. Good classification
results were obtained with this classifier in earlier studies on Varroa diagnosis [11]. For
BEECOM 3, the best results were obtained with the lg method. A classification efficiency
of 71% was obtained (Table 11. Considering all the analyses for the three units and all
the third and fourth measurements, a good classification tool becomes the classification
committee based on the three techniques of 1nn, lg, and svm_linear.

The performance of the nine classifiers tested was subjected to both raw data and
data with baseline correction performed using different techniques. These measures are
described as variants 1–6 Section 3.1.1 The best results were obtained for variants 4 and 2,
i.e., with a baseline correction. Many researchers recommend baseline correction for sensor
readings that may be affected by environmental factors [37–40]. The bee colony is an active
and rich-in-volatile-compounds (VCs) organism. Its smell can particularly change in late
spring and summer when the bees are working intensively. We deliberately conducted our
experiment in autumn months and on cold days (13 ◦C). Bee activity was low then, and
there were no additional scent factors both inside the bee nest (e.g., influx of fresh nectar
and swarming) and outside the hive (flowering of intensely scented plants) that could
significantly interfere with the sensor readings. Additionally, the timing of the experiment
helped reduce to zero the possibility of triggering a robbery in the apiary, which could
contribute to the transmission of American foulbrood from sick to healthy colonies.

When testing different classification methods, we could not combine the results of three
different units of the same device, so we had to treat the data from each unit individually.
This is due to a phenomenon called sensors drift [41]. It is a certain imperfection of MOS
sensors, where individual copies of the same sensor, used in the same conditions, do not
give identical readings. The visualisation of the squared average reading according to
variant 4 proved that the array image of the sensor readings obtained from the three copies
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of BEECOM 1, BEECOM 2, and BEECOM 3 are different Section 3.4. Therefore, each piece
of semiconductor sensor-based equipment requires an individual approach to calibration,
e.g., by using a special algorithm [42]. We proceeded differently in the case of the sequential
neural network. Here, the results from three pieces of equipment were finally treated
collectively. However, in the learning phase, the classified objects were separated. The
sequential neural network gave us satisfactory results of classification on the level of 73%.
This result was fully consistent with the average classification result obtained by the best
classifiers for the three BeesensorV.2 units. We must remember that in a bee colony, different
volatile compounds (VCs) are released by both elements of the hive environment (honey
bee, pollen, wax, and propolis) and by living organisms: bees and brood. Therefore, we
are dealing with a gas that is a mixture of several dozen substances, and we conducted
research on various bee diseases in field conditions. Thus, it was found that the device
could not be based on a single sensor. A matrix of six sensors was created, each of which
reacts to different substances. We analysed the matrix image of the complicated gas coming
from the tested object. It was therefore concluded that the best method of device calibration
would be the use of learning algorithms. The best classifiers for a particular device will
be trainable.

In conclusion, Beesensor V.2 along with appropriate classification techniques showed
great potential as a tool to distinguish bee colonies affected by American foulbrood from
healthy ones. Thus, this electronic nose can become an effective tool for diagnosing this
extremely dangerous disease in the apiary. Rapid detection of infection P.l. larvae in a single
bee colony will allow the beekeeper to react immediately. In this way, it will prevent further
spread of the disease to other bee colonies and neighbouring apiaries. This will save the
apiary from extinction.

5. Conclusions

1. Beesensor V.2 distinguishes between bee colonies infected with American foulbrood
and healthy bee colonies at a level of 73%.

2. During the field tests, the third and fourth measurements out of four measurements,
which is the result of the measurement procedure implemented in the device, proved
to be the most stable regardless of the device used.

3. As the third measurement was already stable, the time of measurement of a single
bee colony with Beesensor V.2 could be shortened to 30 min.

4. A baseline correction was required to obtain optimal classification results. Both
winning variants v4 and v2 use it.

5. The svm classifier with a linear kernel (svm_linear method) proved to be the best tool
for classification (among classical methods) in the context studied. The second most
stable method was the classification committee based on the three techniques: 1nn, lg,
and svm_linear.

6. The results of data analysis using sequential neural networks on the entire data series
were found to be comparable with the results for the best classical methods, which
are based on a baseline correction and an extracted discrete data sample.

Author Contributions: Conceptualization, B.B. and J.W. (Jakub Wilk); methodology, B.B., J.W. (Jakub
Wilk) and P.A.; software, B.B., J.W. (Jakub Wilk), J.S. and P.A.; validation, B.B., J.W. (Jerzy Wilde), J.W.
(Jakub Wilk), J.S. and P.A.; formal analysis, B.B., J.W. (Jakub Wilk) and P.A.; investigation, B.B. and
J.W. (Jakub Wilk); resources, B.B., J.W. (Jakub Wilk) and J.W. (Jerzy Wilde); data curation, B.B. and J.W.
(Jakub Wilk); writing—original draft preparation, B.B. and P.A.; writing—review and editing, J.W.
(Jakub Wilk), J.W. (Jerzy Wilde) and P.A.; visualization, B.B. and P.A.; supervision, J.W. (Jerzy Wilde)
and B.B.; project administration, J.W. and B.B.; funding acquisition, J.W. (Jerzy Wilde) and B.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Centre for Research and Development under
grant N° BIOSTRATEG3/343779/10/NCBR/2017.

Acknowledgments: Andrzej Oponowicz for helping to prepare data.



Sensors 2022, 22, 1148 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boligon, A.A.; de Brum, T.F.; Zadra, M.; Piana, M.; dos Santos Alves, C.F.; Fausto, V.P.; dos Santos Barboza Júnior, V.;

de Almeida Vaucher, R.; Santos, R.C.V.; Athayde, M.L. Antimicrobial activity of Scutia buxifolia against the honeybee pathogen
Paenibacillus larvae. J. Invertebr. Pathol. 2013, 112, 105–107. [CrossRef] [PubMed]

2. Matheson, A. World Bee Health Report. Bee World 1993, 74, 176–212. [CrossRef]
3. D’Alessandro, B.; Antúnez, K.; Piccini, C.; Zunino, P. DNA extraction and PCR detection of Paenibacillus larvae spores from

naturally contaminated honey and bees using spore-decoating and freeze-thawing techniques. World J. Microbiol. Biotechnol. 2007,
23, 593–597. [CrossRef]

4. Antúnez, K.; D’Alessandro, B.; Piccini, C.; Corbella, E.; Zunino, P. Paenibacillus larvae larvae spores in honey samples from
Uruguay: A nationwide survey. J. Invertebr. Pathol. 2004, 86, 56–58. [CrossRef] [PubMed]
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