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Abstract

Background

The infection rate of syphilis in China has increased dramatically in recent decades, becom-

ing a serious public health concern. Early prediction of syphilis is therefore of great impor-

tance for heath planning and management.

Methods

In this paper, we analyzed surveillance time series data for primary, secondary, tertiary,

congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-

term trend were explored with decomposition methods. Autoregressive integrated moving

average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A sep-

arate multi-variable time series for each syphilis type was also tested using an autoregres-

sive integrated moving average model with exogenous variables (ARIMAX).

Results

The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time

series showed strong seasonality and increasing long-term trend. Both ARIMA and ARI-

MAX models fitted and estimated syphilis incidence well. All univariate time series showed

highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model.

Conclusion

Time series analysis was an effective tool for modelling the historical and future incidence

of syphilis in China. The ARIMAX model showed superior performance than the ARIMA

model for the modelling of syphilis incidence. Time series correlations existed between the

models for primary, secondary, tertiary, congenital and latent syphilis.
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Introduction
Syphilis is a sexually transmitted infection caused by the spirochete bacterium Treponema pal-
lidum subspecies pallidum. Syphilis can present in one of four different stages: primary, sec-
ondary, latent, and tertiary, and may also occur congenitally [1, 2]. The rate of syphilis has
increased dramatically in recent decades, becoming both a burden and a threat to public health.
The reported total syphilis rate in China was 0.2/100,000 in 1993, whereas primary and second-
ary syphilis represented 5.7/100,000 in 2005 [3]. In 2008, an average of more than 1 baby per
hour was born with congenital syphilis in China, with a total of 9480 cases [4]. Syphilis is
among the top five reported communicable diseases in many major municipalities and prov-
inces of China [5]. It can cause serious health problems, increasing the risk of HIV transmis-
sion by two to five times [6]. The increasing incidence of syphilis represents a growing concern
to medical providers, policy makers and community populations. To help devise a health plan
to decrease syphilis’ occurrence and associated patient burden, it is therefore important to ade-
quately strengthen its surveillance and study its incidence and behavior.

Time series methods have been widely used to analyze infectious diseases’ surveillance data
in recent decades, including data for sexually transmitted diseases. Different time series models
were used to forecast the epidemic behavior in previous studies [7, 8]. For example, decomposi-
tion methods were used to forecast nine notifiable infectious diseases in China [7]. Autoregres-
sive integrated moving average models (ARIMA) are widely applied in infection time series
modelling including tuberculosis [9] typhoid fever [10], gonorrhea [11] and hepatitis [12].
Autoregressive conditional heteroskedasticity and generalized autoregressive conditional het-
eroskedasticity models have been used to investigate the risk factors associated with syphilis
[13]. Multi-variable time series analysis were used to explore the association between malaria’s
behavior and weather patterns [14].

Decomposition methods are typically used to analyze the seasonal and long-trend patterns
of a disease [7]: the seasonal behavior is extracted as a seasonal index whereas the secular trend
is expressed with a linear regression model. ARIMA models [15] [16] are widely used to model
the time series based on a differencing process and an autoregressive and moving average
(ARMA) model. The ARMAmodel views the value at time t as a linear combination of its pre-
vious values and residuals. The ARIMAXmodel is a multi-variable time series analysis method,
which includes an additional covariate in the ARIMA model. The model tries to forecast the
infection time series using an exogenous covariate series. The method is widely used to explore
the influence of covariate factors in the infection behavior. For example, the model has been
used to explore the association of the malaria behavior with temperature, rainfall and humidity
[14]. The model was also applied to explore the association of the human and bovine brucello-
sis series [17]. However, there are fewer studies focused on time series modelling of different
sub-types of syphilis, as well as their time series correlation [15].

The aim of the study is to explore the univariate and multivariate time series characteristics of
primary, secondary, tertiary, latent and congenital syphilis. Incidence data of general syphilis,
primary syphilis, secondary syphilis, tertiary syphilis, latent syphilis and congenital syphilis of
China from 2005 to 2012 were used. A statistical decomposition method was used to explore the
seasonality and the long trend of the behavior of the different types of syphilis. The ARIMA was
modelled on the general syphilis univariate time series. The ARIMAXmodel was fitted to explore
the time series association among primary, secondary, latent, tertiary and congenital syphilis.

Data and Methods
In this study, we used publicly available data from the Public Health Scientific Data website
(http://www.phsciencedata.cn/Share/en/index.jsp). The data are collected and reported by the
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Chinese Centre for Disease Prevention and Control (CDC). Specifically we used the monthly inci-
dence of syphilis. The incidence data of syphilis, primary syphilis, secondary syphilis, tertiary
syphilis, latent syphilis and congenital syphilis from 2005 to 2012 were collected by the Chinese
National Surveillance System firstly established in 2004 and are available through the CDC. Since
the new reporting system was established, more cases have been able to be identified and data
have become more complete and reliable [18]. A survey showed that the average omission rate
(percentage of unreported cases) was 13% among the medical institutions throughout the coun-
try. The compliance rate (percentage of the compliant recordings) of out-patient daily registration
was 96%, the registry integrity rate (percentage of reported cases with complete information) was
97%, and the timely report rate (percentage of reported cases within CDC’s time limits) of medi-
cal institutions was 91% [19]. There are 39 notifiable infectious diseases included in the surveil-
lance system, which are divided into Classes A, B, and C [20]. Class A notifiable diseases include
the plague and cholera which can cause large epidemics in a very short time. Class B notifiable
diseases include 26 infectious diseases that might cause epidemics, such as AIDS, viral hepatitis,
polio, rabies, dengue fever, anthrax, scarlet fever, brucellosis, gonorrhea, syphilis, etc. Class C noti-
fiable diseases include 11 less severe and less infectious diseases such as mumps, rubella, acute
hemorrhagic conjunctivitis, leprosy, leishmaniasis, hydatid disease, etc. Syphilis is thus currently
one of the class B notifiable diseases in China. According to Chinese law, once syphilis patients or
suspected patients are detected, it must be reported to the system within 12 hours in urban areas
and 24 hours in rural areas. The trend of syphilis incidence in China from 2005–2012 is shown in
Fig 1. Rates of syphilis incidence have increased from 2005 to 2012. The rate of reported syphilis
in China was 9.73 cases per 100,000 people in 2005, 12.80 in 2006, 15.88 in 2007, 19.49 in 2008,
23.07 in 2009, 26.86 in 2010, 29.47 in 2011 and 30.44 in 2012. Latent syphilis is the most common
type, accounting for 54.64% of total number of syphilis cases in 2012. Primary syphilis is the sec-
ond, accounting for 26.02%, secondary syphilis 15.92%, congenital syphilis 2.68% and tertiary
0.74%. Syphilis incidence increases dramatically from 2005 to 2012. The time series of syphilis
shows a seasonal trend, with higher incidence in summer and lower incidence in winter.

Decomposition methods
Generally, the decomposition method attempts to decompose the two underlying patterns,
long term trend and seasonality, characterizing the infectious behavior in the time series data:

Time series¼ SeasonalityþLong term trendþResidual

Fig 1. Trend of syphilis incidence in China from 2005–2012 by year

doi:10.1371/journal.pone.0149401.g001
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The seasonality of syphilis’ incidence can be expressed by calculating the seasonal indices.
To calculate these, overall incidences are averaged first, and then the averaged incidence is
divided by the mean incidence for each month [7]. The seasonal index is between 0 and 1,
when the incidence is below the average level. Otherwise, the value will be greater than 1. After
deriving the seasonal indices, the seasonality of the series should be removed by dividing by the
corresponding index. A linear regression model is fitted to present the long-term trend of the
incidence. The linear relationship between the deseasonalized syphilis’ incidence (dependent
variable) and time t (independent variable) is estimated in the model.

ARIMAModel
The ARIMAmodel is one of the most popular univariate time series models, which is widely
used in infectious disease modelling. As is described in previous studies [7, 10], the ARIMA
model is established based on the ARMAmodels, expressing the current syphilis incidence lin-
early with its previous incidence (autoregressive) and the residual series (moving average). The
ARMAmodel can be expressed as:

yðtÞ ¼ �1yðt � 1Þ þ . . .þ �pyðt � pÞ þ εðtÞ � y1εðt � 1Þ � . . .� yqεðt � qÞ

where y(t) refers to the value of the time series at time t and ε(t) is the residual at time t. ϕ and
θ are their corresponding coefficients. The ARIMA model deals with non-stationary time series
using a differencing process based on the ARMAmodel. The model can be expressed as
ARIMA (p, d, q) × (P, D, Q)s, where p, d, and q are non-negative integers that refer to the order
of the autoregressive, integrated, and moving average parts of the model respectively whereas
P, D and Q represent the order of the seasonal autoregressive, differencing and moving average
respectively (not shown in the above equation). The subscripted letter “s” shows the seasonal
period length.

The ARIMA modeling procedure introduced by Box and Jenkins, consists of three iterative
steps: identification, estimation, and diagnostic checking [21]. Before the identification step,
data must be stationary, which can be achieved by performing an appropriate seasonal differ-
ence in addition to the regular difference of the ARIMA model. Stationarity can be tested using
the Augmented Dickey-Fuller (ADF) method [22]. The identification step includes the process
of determining seasonal and non-seasonal orders using the autocorrelation functions (ACF)
and partial autocorrelation functions (PACF) of the differenced series. Parameters in the
ARIMA model(s) are estimated using the conditional least square (CLS) method after the iden-
tification step [23]. Finally, the adequacy of the established model for the series is verified by
employing white noise tests [24] to check whether the residuals are independent and normally
distributed. It is possible that several ARIMA models may be identified, and the selection of an
optimum model becomes necessary. The optimum model is usually determined based on the
Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion (SBC) [25]. The AICc is
also calculated based on AIC, which is a correction for finite sample sizes [26].

ARIMAX
In contrast with ARIMA where the previous values of the dependent variable (AR) and residual
series (MA) are taken after the differencing process, the ARIMAX model is an extension of
ARIMA modelling incorporating an explanatory independent variable. An ARMAXmodel can
simply be viewed as a multiple regression with one or more AR and MA terms. The ARIMAX
model can be expressed as:

yðtÞ ¼ bxðtÞ þ �1yðt � 1Þ þ . . .þ �pyðt � pÞ þ εðtÞ � y1εðt � 1Þ � . . .� yqεðt � qÞ
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where x(t) is a covariate at time t and β is its associated coefficient. Y(t − 1). . .Y(t − p) are the
previous values, and ε(t). . .ε(t − q)are the residual series. For each type of syphilis incidence,
all the other types of syphilis incidence were used as the covariate variables. The covariates
which were not significant (p>0.05) in the model were removed afterwards. As in ARIMA
models, several models may be identified in the ARIMAX framework. The selection of the opti-
mum ARIMAXmodel is also based on AIC (AICc) and SBC.

Before fitting the ARIMAX model, cross-correlations between different syphilis time series
are calculated [27]. The ARIMAX model hypothesizes that the time series y(t) is related to past
lags of the x(t +m) series. The cross correlation function (CCF) is defined as the linear correla-
tion between x(t +m) and y(t), for m = 0, ±1, ±2, ±3, etc. CCF can help to identify lags of the x-
variable that might be useful predictors of y(t) [28]. The value of CCF is between −1 and +1.
Absolute CCF values closer to 1 mean higher correlation between the two series.

ARIMAX models were fitted to the primary, secondary, tertiary, latent and congenital
syphilis series from the year 2005 to 2011 and tested by estimating the syphilis incidence for
2012. The covariate variables as well as their interaction terms were determined first by
including all the covariates and the nitration term in the model and then excluding those
which were not statistically significant. ARIMA Procedure in SAS 9.3 was used to fit the
ARIMA and ARIMAX model. The estimation for incidence in 2012 was generated using roll-
ing prediction step by step.

Results

Seasonal indices
Seasonal indices of primary, secondary, tertiary, latent and congenital syphilis were obtained
from the original incidence series (Table 1 and Fig 2). The seasonal indices show the seasonality
of the incidence behavior of each syphilis series. Generally, syphilis shows higher incidence in
summer (June, July, August) than in winter (December, January, February). Primary, second-
ary, tertiary and latent syphilis peak in May to August. However, the peak of the congenital
case is deferred when compared to others, from July to November. The extent of the seasonality
differs by type. The seasonality of the secondary syphilis is more pronounced. The long-trend
of each disease can be shown from the linear regression model for the original syphilis inci-
dence removed of seasonality. The estimation of the coefficient, constant, R2 and p values for
the regression model is shown in Table 2. R2 is the coefficient of determination ranging from 0
to 1. An R2 closer to 1 means that the regression model fits the data with minimal error, while
an R2 near 0 means the regression model does not fit the data well. From the coefficient of the
regression, we can derive how much the incidence changes on average by month; for instance,
for latent syphilis the incidence changing rate increases on average by 0.01390/100,000 every
month after having removed the effect of seasonality.

Table 1. Syphilis incidence seasonal indices.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Primary syphilis 0.88 0.81 1.06 1.03 1.10 1.08 1.09 1.10 1.01 1.00 0.95 0.86

Secondary syphilis 0.86 0.77 0.98 0.99 1.19 1.25 1.27 1.24 1.04 0.96 0.80 0.65

Tertiary syphilis 0.96 0.82 1.05 1.02 1.14 1.07 1.05 1.06 0.97 1.00 0.97 0.87

Latent syphilis 0.82 0.78 1.06 1.01 1.08 1.06 1.07 1.08 1.03 1.04 1.02 0.96

Congenital syphilis 0.90 0.81 0.97 0.91 0.97 0.96 1.08 1.14 1.08 1.12 1.07 0.98

doi:10.1371/journal.pone.0149401.t001
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ARIMAmodels
ARIMAmodels were established to the 5 syphilis time series from the year 2005 to 2011. The
model was tested by estimating the values for 2012. The order of the autoregressive and moving
average are determined based on the autocorrelation function (ACF) and partial autocorrela-
tion function (PACF) [10]. Several ARIMA models were fitted and the results of the estima-
tions for the 5 syphilis incidence time series are shown in Table 3. The final ARIMA model
selected was highlighted according to the criterion of minimum AIC (AICc) and SBC. The 5
syphilis series are in the same ARIMA pattern, and the ARIMA(0,0,1)×(0,1,1) model is consis-
tently the best model for each series. It means that after seasonal differencing, the incidence at
time t is highly relevant to the residual at time t, t-1, t-12 and t-13.

Cross-correlations
Cross-correlations between different syphilis were calculated and the highest CCF values and
the lags are shown in Table 4. The cross-correlation between primary, secondary and other
series are shown as an example in Figs 3 and 4. Highest values appear when the lags are 0
except between secondary and congenital syphilis. In general, CCF values were high, with

Fig 2. Seasonal indices of each type of syphilis

doi:10.1371/journal.pone.0149401.g002

Table 2. Linear regression model for each syphilis time series removed seasonality.

Constant Coefficient Coefficient 95% confidence
Interval

R2 P

Primary syphilis 0.28232 0.00473 0.00442 0.00504 0.908 0.002

Secondary syphilis 0.21493 0.00237 0.00219 0.00255 0.872 <0.001

Tertiary syphilis 0.00550 0.00015 0.00014 0.00016 0.903 <0.001

Latent syphilis 0.16333 0.01390 0.01329 0.01451 0.955 0.007

Congenital syphilis 0.02824 0.00055 0.00050 0.00060 0.848 <0.001

Note: The linear relationship between the deseasonalized syphilis incidence (dependent variable) and time t (independent variable) is estimated in the

model.

doi:10.1371/journal.pone.0149401.t002
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Table 3. Available ARIMAmodels fitted for each syphilis series.

Syphilis Model AIC AICC SBC

Primary Syphilis ARIMA(0,0,0)×(0,1,0) -220.21 -220.21 -220.21

ARIMA(1,0,0)×(0,1,0) -240.1 -240.04 -237.83

ARIMA(0,0,1)×(0,1,0) -264.49 -264.43 -262.23

ARIMA(1,0,1)×(0,1,0) -240.1 -240.04 -237.83

ARIMA(1,0,0)×(0,1,1) -262.03 -261.86 -257.5

ARIMA(0,0,1)×(1,1,0) -273.28 -273.11 -268.76

ARIMA(1,0,0)×(1,1,0) -251.45 -251.28 -246.93

ARIMA(0,0,1)×(0,1,1) -278.38 -278.21 -273.85

ARIMA(2,0,0)×(0,1,0) -248.59 -248.24 -244.06

ARIMA(3,0,0)×(0,1,0) -257.4 -257.05 -250.61

Secondary Syphilis ARIMA(0,0,0)×(0,1,0) -299.15 -299.15 -299.15

ARIMA(1,0,0)×(0,1,0) -317.33 -317.27 -315.07

ARIMA(0,0,1)×(0,1,0) -335.32 -335.26 -333.05

ARIMA(1,0,0)×(1,1,0) -337.25 -337.08 -332.72

ARIMA(0,0,1)×(0,1,1) -350.74 -350.57 -346.22

ARIMA(1,0,0)×(0,1,1) -340.42 -340.25 -335.9

ARIMA(0,0,1)×(1,1,0) -350.34 -350.17 -345.81

ARIMA(2,0,0)×(0,1,0) -323.53 -323.36 -319

ARIMA(3,0,0)×(0,1,0) -331.74 -331.39 -324.95

Tertiary Syphilis ARIMA(0,0,0)×(0,1,0) -656.31 -656.31 -656.31

ARIMA(1,0,0)×(0,1,0) -680.65 -680.59 -678.38

ARIMA(0,0,1)×(0,1,0) -686.42 -686.36 -684.16

ARIMA(1,0,0)×(1,1,0) -689.92 -689.75 -685.4

ARIMA(0,0,1)×(0,1,1) -709.78 -709.61 -705.26

ARIMA(1,0,0)×(0,1,1) -702.65 -702.48 -698.13

ARIMA(1,0,0)×(0,1,1) -649.36 -649.19 -689.84

ARIMA(2,0,0)×(0,1,0) -682.91 -682.74 -678.38

Latent Syphilis ARIMA(0,0,0)×(0,1,0) -129.69 -129.69 -129.69

ARIMA(1,0,0)×(0,1,0) -162.44 -162.38 -160.18

ARIMA(0,0,1)×(0,1,0) -177.83 -177.77 -175.57

ARIMA(1,0,0)×(1,1,0) -182.03 -181.86 -177.5

ARIMA(0,0,1)×(0,1,1) -193.84 -193.67 -189.31

ARIMA(1,0,0)×(0,1,1) -184.44 -184.27 -179.92

ARIMA(1,0,0)×(0,1,1) -193.77 -193.6 -189.25

ARIMA(2,0,0)×(0,1,0) -166.47 -166.3 -161.95

ARIMA(3,0,0)×(0,1,0) -177.47 -177.12 -170.68

Congenital Syphilis ARIMA(0,0,0)×(0,1,0) -519.28 -519.28 -519.28

ARIMA(1,0,0)×(0,1,0) -537.62 -537.56 -535.36

ARIMA(0,0,1)×(0,1,0) -558.88 -558.82 -556.62

ARIMA(1,0,0)×(1,1,0) -546.76 -546.59 -542.23

ARIMA(0,0,1)×(0,1,1) -575.4 -575.23 -570.88

ARIMA(1,0,0)×(0,1,1) -559.86 -559.69 -555.33

ARIMA(1,0,0)×(0,1,1) -565.61 -565.44 -561.09

ARIMA(2,0,0)×(0,1,0) -545.65 -545.3 -541.13

ARIMA(3,0,0)×(0,1,0) -552.22 -551.87 -545.43

Note: the first model for each syphilis ARIMA(0,0,0)×(0,1,0) only included the seasonal differencing term. The second model ARIMA(1,0,0)×(0,1,0), i.e.,

SAR(1) included the seasonal differencing and an autoregressive term. The third model ARIMA(0,0,1)×(0,1,0), i.e., SMA(1), included the differencing and

moving average terms. These three models can be treated as the baseline. The final ARIMA model selected is highlighted in bold.

doi:10.1371/journal.pone.0149401.t003
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primary, tertiary, congenital and latent syphilis over 0.90, while CCF values of secondary syphi-
lis with others were slightly slower.

ARIMAXmodels
The results of the ARIMAX models for the 5 types of syphilis incidence time series are pre-
sented in Table 5. The best ARIMA model is highlighted in Table 5 according to the AIC
(AICc) and SBC criteria. ARIMAX obtained smaller AIC (AICc) and SBC than the

Table 4. The highest cross-correlation between syphilis incidence time series (the values in the brackets are the lags, the lags are 0 except
between secondary and congenital syphilis).

Primary Secondary Tertiary Congenital Latent

Primary 1 0.87(0) 0.95(0) 0.93(0) 0.97(0)

Secondary 1 0.79(0) 0.77(-2) 0.76 (0)

Tertiary 1 0.90(0) 0.95(0)

Congenital 1 0.96(0)

Latent 1

doi:10.1371/journal.pone.0149401.t004

Fig 3. Cross correlation analysis between primary syphilis and other syphilis time series (highest values appear when the lag is 0)

doi:10.1371/journal.pone.0149401.g003
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corresponding univariate ARIMAmodels, which indicates that the fitting performance
improved with the inclusion of the covariate variables. The fitting and prediction of incidence
for the ARIMA and ARIMAXmodels over six years are plotted in Figs 5–9. Syphilis’ incidence
appears well fitted by the two models.

Comparison of ARIMA vs ARIMAX
The contrasts between the observed value of the raw series and the estimated values obtained
through the ARIMA model and ARIMAX model were compared. The mean absolute error
(MAE), mean absolute percentage error (MAPE), the root mean square error (RMSE) and the
mean length of the 95% confidential interval (L95~U95) were selected as measures of evalua-
tion [7]. The result is shown in Table 6. All MAE, MAPE, RMSE and L95~U95 for ARIMAX
model are lower than the ARIMA model in the modelling process. The ARIMAX model shows
better modelling performance than the ARIMA model. For the point estimation in the testing
period, the ARIMAX model for primary, latent and congenital syphilis obtained lower MAE,
MAPE and RMSE than the ARIMA model. However the ARIMAX model for secondary and
tertiary syphilis had higher MAE, MAPE and RMSE than ARIMA. For the confidential interval

Fig 4. Cross correlation analysis between secondary syphilis and other syphilis time series (highest values appear when the lag is 0 except
between secondary and congenital syphilis).

doi:10.1371/journal.pone.0149401.g004
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Table 5. Estimation of available ARIMAXmodels for each series.

Syphilis Model Covariates AIC AICC SBC

Primary ARIMAX
(0,0,0)×(0,0,0)

Secondary, Tertiary, Latent, Secondary*Tertiary -451.83 -451.32 -442.1

ARIMAX
(1,0,0)×(0,0,0)

Secondary, Tertiary, Latent, Secondary*Tertiary -469.62 -468.85 -457.47

ARIMAX
(0,0,1)×(0,0,0)

Secondary, Tertiary, Latent, Secondary*Tertiary -461.87 -461.1 -449.72

ARIMAX
(0,0,1)×(1,0,0)

Secondary, Tertiary, Latent, Secondary*Tertiary -472.02 -470.93 -457.43

ARIMAX
(1,0,0)×(0,0,1)

Secondary, Tertiary, Latent, Secondary*Tertiary -470.54 -469.45 -455.95

ARIMAX
(0,0,0)×(1,0,1)

Secondary, Tertiary, Latent, Secondary*Tertiary -470.54 -469.45 -455.95

ARIMAX
(1,0,0)×(1,0,1)

Secondary, Tertiary, Latent, Secondary*Tertiary -471.67 -470.2 -454.65

Secondary ARIMAX
(0,0,0)×(0,0,0)

Primary, Latent, Primary*Latent -346.31 -346.01 -339.02

ARIMAX
(1,0,0)×(0,0,0)

Primary, Latent, Primary*Latent -376.06 -375.55 -366.34

ARIMAX
(0,0,1)×(0,0,0)

Primary, Latent, Primary*Latent -376.23 -375.73 -366.51

ARIMAX
(1,0,0)×(1,0,0)

Primary, Latent, Primary*Latent -447.15 -446.38 -435

ARIMAX
(1,0,1)×(0,0,0)

Primary, Latent, Primary*Latent -381.75 -380.98 -396.6

ARIMAX
(,0,1)×(0,0,1)

Primary, Latent, Primary*Latent -401.33 -400.56 -389.17

ARIMAX
(1,0,0)×(0,0,1)

Primary, Latent, Primary*Latent -402.89 -402.12 -390.74

ARIMAX
(0,0,1)×(1,0,0)

Primary, Latent, Primary*Latent -441.6 -440.83 -429.44

Tertiary ARIMAX
(0,0,0)×(0,0,0)

Primary, Latent -892.12 -891.97 -887.26

ARIMAX
(1,0,0)×(0,0,0)

Primary, Latent -900.95 -900.65 -893.66

ARIMAX(1,0,
(3))×(0,0,0)

Primary, Latent -902.55 -902.04 -892.83

ARIMAX(0,0,
(3))×(0,0,0)

Primary, Latent -897.93 -897.63 -890.64

ARIMAX
(0,0,1)×(0,0,0)

Primary, Latent -897.57 -897.27 -890.27

Latent ARIMAX
(0,0,0)×(0,0,0)

Primary, Secondary, Tertiary, Congenital, Primary*Secondary,
Secondary*Congenital, Tertiary*Congential

-284.93 -283.46 -267.91

ARIMAX
(0,0,1)×(0,0,0)

Primary, Secondary, Tertiary, Congenital, Primary*Secondary,
Secondary*Congenital, Tertiary*Congential

-283.52 -281.6 -264.08

ARIMAX
(0,0,0)×(1,0,0)

Primary, Secondary, Tertiary, Congenital, Primary*Secondary,
Secondary*Congenital, Tertiary*Congential

-253.77 -251.85 -234.32

ARIMAX
(0,0,0)×(1,0,0)

Primary, Secondary, Tertiary, Congenital, Primary*Secondary,
Secondary*Congenital, Tertiary*Congential

-348.89 -346.97 -327.01

ARIMAX
(0,0,0)×(0,0,1)

Primary, Secondary, Tertiary, Congenital, Primary*Secondary,
Secondary*Congenital, Tertiary*Congential

-304.83 -302.91 -285.39

Congenital ARIMAX
(0,0,0)×(0,0,0)

Primary,Secondary, Latent, Secondary*Latent -672.88 -672.37 -663.25

(Continued)
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estimation, the 95% confidential interval for ARIMAX model are narrower than ARIMA’s,
except for latent syphilis.

Discussion
Syphilis is a serious public health problem in China. Syphilis is an ulcerative genital disease,
which facilitates the transmission of the human immunodeficiency virus (HIV), putting people
with syphilis at greater risk for HIV infection [29]. Early recognition of syphilis behavior is of
great importance for syphilis control and prevention. The surveillance system is an effective
approach to collect and analyze syphilis infection data. Surveillance capacity and reporting
practices for syphilis in China have greatly evolved since 2005 [3, 20]. The infection incidence
behavior may be precisely detected and estimated with high quality surveillance data. Time
series models developed in the current study indicate that disease surveillance data can be uti-
lized to understand the behavior of syphilis over time.

Table 5. (Continued)

Syphilis Model Covariates AIC AICC SBC

ARIMAX
(0,0,1)×(0,0,0)

Primary,Secondary, Latent, Secondary*Latent -682.67 -681.9 -670.63

ARIMAX
(0,0,1)×(0,0,1)

Primary,Secondary, Latent, Secondary*Latent -691.42 -690.33 -676.98

ARIMAX
(1,0,0)×(0,0,1)

Primary,Secondary, Latent, Secondary*Latent -695.71 -694.62 -681.27

ARIMAX
(0,0,1)×(1,0,0)

Primary,Secondary, Latent, Secondary*Latent -692.54 -691.45 -678.1

Note:

* means the interaction term. The final ARIMAX model selected is highlighted in bold.

doi:10.1371/journal.pone.0149401.t005

Fig 5. Primary syphilis incidence fitting and testing performance by ARIMA and ARIMAX (U95 and L95 refer to the upper and lower 95%
confidential interval respectively. The vertical gray line separates modelling from estimates.)

doi:10.1371/journal.pone.0149401.g005
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Modelling of time series
An ARIMAmodel was used to fit the primary, secondary, tertiary, latent and congenital syphi-
lis univariate time series. The method is widely used in infectious disease areas. The models
have been proven powerful in fitting the historical incidence and estimating the incidence in

Fig 6. Secondary syphilis incidence fitting and testing performance by ARIMA and ARIMAX (U95 and L95refers to the upper and lower 95%
confidential interval respectively. The data were divided into modeling and forecasting groups with a vertical line; the left is the modeling part, and the right
is the forecasting part.)

doi:10.1371/journal.pone.0149401.g006

Fig 7. Tertiary syphilis incidence fitting and testing performance by ARIMA and ARIMAX (U95 and L95refers to the upper and lower 95%
confidential interval respectively. The data were divided into modeling and forecasting groups with a vertical line; the left is the modeling part, and the right
is the forecasting part.)

doi:10.1371/journal.pone.0149401.g007
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2012. All syphilis time series obeyed the same pattern, which can be best fitted with the
ARIMA(0,0,1)×(0,1,1) model. The pattern is the same as the ARIMA model reported in previ-
ous studies [7], also showing that the time series patterns of different types of syphilis are the
same under the ARIMA model. An ARIMAX model was fitted to explore the time series corre-
lation among the primary, secondary, tertiary, latent and congenital syphilis time series.

Fig 8. Latent syphilis incidence fitting and testing performance by ARIMA and ARIMAX (U95 and L95refers to the upper and lower 95% confidential
interval respectively. The data were divided into modeling and forecasting groups with a vertical line; the left is the modeling part, and the right is the
forecasting part.)

doi:10.1371/journal.pone.0149401.g008

Fig 9. Congenital syphilis incidence fitting and testing performance by ARIMA and ARIMAX (U95 and L95refers to the upper and lower 95%
confidential interval respectively. The data were divided into modeling and forecasting groups with a vertical line; the left is the modeling part, and the right
is the forecasting part.)

doi:10.1371/journal.pone.0149401.g009
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With the inclusion of the covariate variables in the time series, the fitting performance is
better than the univariate counterparts. The estimation of confidential intervals of the ARI-
MAX model are generally narrower than the ARIMA model. The ARIMAX model adds poten-
tial prediction value in infection surveillance. The ARIMAX model established in this study
effectively captured the trend of the disease. With the ARIMAX model, incidence cannot only
be estimated with its historical data, but also the incidence of other relevant diseases, and its
influential factors during the surveillance process.

Seasonality
Decomposition methods were used to extract the seasonality and secular trend of the syphilis
time series. Syphilis showed a seasonal and increasing long term trend. The seasonality of sec-
ondary syphilis is more obvious than others. The primary, secondary, tertiary and latent syphi-
lis were observed to peak fromMay to August, while the peak of the congenital disease is later
than others, from July to November. May to August is the summer time in China, with warm
temperatures and heavier rainfall. Tan et al. found similar seasonality in primary and second-
ary syphilis peaking from July to September using surveillance data from Chinese Guangdong
province [30].

However, there are still some differences in the seasonal patterns among the syphilis’ time
series. In particular, secondary syphilis has a greater seasonality oscillation than other time
series, which shows a narrower peak and great difference between the peak and the troughs. A
possible reason is that secondary syphilis is more severe than other syphilis’ stages, and patients
are more likely to seek treatment, making its reporting less likely to be affected by reporting
bias.

The seasonality of syphilis epidemic behavior can be related to sexual behaviors in Chinese
populations, the impact of seasonal migration in China, and the patients’ clinical attendance
[31]. Inferring from the results, the Chinese population would appear to be more sexually
active in summer than winter but this might be due to surveillance artefacts. Rural-to-urban
migration on an enormous scale in China may expand localized syphilis outbreaks [32]. Labor
workers from rural areas usually leave for the city from around March (after the Chinese new
year), returning to their rural hometown when winter begins (around late November). Several
studies have shown that the rural to urban migrants have higher risk sexual behavior than their
rural counterparts [32, 33]. As a result, the government has strengthened the screening of

Table 6. Comparison of the performances of the ARIMAmodel and ARIMAXmodel.

MAE MAPE RMSE U95-L95

ARIMA ARIMAX ARIMA ARIMAX ARIMA ARIMAX ARIMA ARIMAX

Modelling Performance Primary 0.0248 0.0109 0.05 0.022 0.0331 0.0134 0.1317 0.0552

Secondary 0.0146 0.0114 0.0464 0.0356 0.0199 0.0143 0.0791 0.0644

Tertiary 0.0013 0.0009 0.1115 0.0771 0.0016 0.0011 0.0063 0.0046

Latent 0.0469 0.0227 0.0621 0.0294 0.0601 0.0288 0.2389 0.113

Congenital 0.0032 0.0027 0.0592 0.0492 0.0041 0.0033 0.0163 0.0132

Testing Performance Primary 0.0754 0.0393 0.1172 0.0598 0.0775 0.0419 0.1476 0.0579

Secondary 0.0183 0.0201 0.0465 0.0504 0.0195 0.0216 0.0947 0.0782

Tertiary 0.001 0.0015 0.0534 0.0802 0.0012 0.039 0.0076 0.0046

Latent 0.1237 0.0795 0.0958 0.0561 0.1463 0.0861 0.2627 0.1815

Congenital 0.0137 0.0089 0.2054 0.1335 0.0149 0.0097 0.0181 0.0147

doi:10.1371/journal.pone.0149401.t006
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syphilis, especially in high risk populations such as staff in the service industry, drivers, sex
workers and drug addicts.

Syphilis serology examination is usually compulsory before marriage, prenatal, for use in
the blood supply, to join the army and in regular physical examinations. Graduated students
typically look for jobs or enlist in the army in summer.Syphilis’ lower incidence in January and
February aligns well with the Chinese Spring Festival (Chinese New Year) when people tend
not to visit the clinics for sexual diseases.

Surveillance artifacts
Many Chinese people with symptoms of a sexually transmitted disease are reported not to seek
medical attention [34]. These patients can be found with screening programs. Surveillance arti-
facts may happen when there is a bias between the trend of surveillance data and the real inci-
dence. When infection happens, patients may not seek medical attention immediately as there
are no symptoms. Even when symptoms appear, especially in the primary stage, there are no
estimates of how long patients typically wait before seeking advice.

The growth of syphilis incidence in recent years is due to several aspects. The rise of
reported syphilis is largely due to the increase of syphilis transmission, which has been ana-
lyzed in previous studies. There are some other reasons which may possibly lead to the rise of
reported syphilis cases compare to before introducing the new surveillance system. The num-
ber of syphilis cases reported in China plateaued for several years before the introduction of the
new surveillance system, at which time the number of reported cases began to increase[5]. Sen-
tinel and non-sentinel reporting centers were reported to have different reporting qualities[3].
Therefore, improvements and expansion of the surveillance system around 2004 onwards
could partly explain changes in the per-capita number of reported cases. On the other hand, it
was reported that very few Chinese people with symptoms of a sexually transmitted disease
sought medical attention 10–15 years ago [34].The improvement in clinical attendance of
symptomatic patients could also have contributed to part of the rise in reported syphilis cases
seen in the current study. The rapid rise of reported syphilis cases can therefore be a combina-
tion of increased transmission and surveillance artifacts. However, based on the available data,
we cannot estimate the extent of these artifacts.

Cross-correlations
Generally, the cross correlation among different syphilis incidence time series are very high
with no lags, indicating that their changes are synchronous. However, there are no obvious bio-
logical or transmission-dynamic explanations for this 0 lag, and this could be due to the afore-
mentioned surveillance artifacts resulting from concentrated testing at particular times of the
year. The model established has shown that each type of syphilis can be estimated by including
the data of other syphilis series. Primary syphilis progresses to secondary syphilis, and then will
evolve into tertiary syphilis without treatment [35]. Secondary syphilis typically occurs 1–2
months after infection, with tertiary syphilis occurs many years after infection. However, the
surveillance shows that there are no lags between primary and secondary incidence series. The
lag can be covered by the peaking of clinical attendance and passive screening.

Latent syphilis
Latent syphilis is typically used to describe an asymptomatic person who is found to be positive
after months or years of subclinical infection. Latent syphilis accounts for over half of all
reported syphilis. Latent syphilis can be detected in various ways, although it is asymptomatic.
An investigation on the incidence of latent syphilis among hospitalized patients has shown that
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78.83% of latent syphilis patients were detected in the departments of surgery and gynecology,
and 12.41% in internal medicine [36]. The incidence of latent syphilis was observed to have
increased the fastest among the different types of syphilis, with an increase of 0.01390/100,000
per month after removing seasonality. The incidence of latent syphilis should be monotonically
increasing in a real expanding epidemic; this would therefore suggest that any remaining peaks
are due to surveillance artifacts.

Congenital syphilis
Congenital syphilis occurs when the disease reaches the fetus [37]. The incidence of congenital
syphilis also reflects seasonal changes. Tan et al. showed that congenital syphilis does not vary
seasonally and any seasonal variation is due to reporting biases because pregnant women can
acquire syphilis at any point during gestation [30]. However, this may neglect the seasonality
of birth rate, which is influenced by social-economic factors [38]. Although there are few
reports on the seasonality of birth rate in mainland China, there is research on the seasonality
of birth rate among Chinese population in Taiwan, Hong Kong, Malaysia and Singapore,
which found that birth rate peaks from September to November [39]. This could explain the
increase of congenital syphilis during this period. The lag of congenital syphilis may be domi-
nated by the birth rate trend.

Congenital syphilis has a narrower period with elevated incidence which is likely related to
the seasonal pattern of births. In contrast, the seasonality of primary, tertiary, and latent syphi-
lis is much weaker, which is possible due to no significant seasonality (especially for tertiary
and latent syphilis) and/or reporting bias.

Limitation
In addition to the aforementioned limitations found in the data, the limitations of this study
are as follows. First, we only obtained syphilis incidence data over an eight-year period and the
short length of the syphilis time series may affect the modelling. Second, regional, gender and
age data was not considered in the models, which can play an important role in exploring the
time series relationship among each type of syphilis. These factors could be included in future
studies. Third, the data appear to be affected by a surveillance artifact, which could explain
some of the trend in reported syphilis cases. The correlation among each series is the highest
with lag 0. This means that we use the same time incidence to estimate other incidences, poten-
tially decreasing the predictive benefit. In ARIMAX, the covariates can become a burden of
modelling if the cross-correlations are not high enough. This is a limitation of the method.
However, it is useful to establish the relationship between the different syphilis incidence
trends, and to forecast the infection behavior. More research is required to exploit the historic
incidence of syphilis for the prediction of syphilis’ incidence in other stages.
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