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ABSTRACT

Many next-generation sequencing datasets contain only relative information because of biological and techni-
cal factors that limit the total number of transcripts observed for a given sample. It is not possible to interpret
any one component in isolation. The field of compositional data analysis has emerged with alternative meth-
ods for relative data based on log-ratio transforms. However, these data often contain many more features
than samples, and thus require creative new ways to reduce the dimensionality of the data. The summation
of parts, called amalgamation, is a practical way of reducing dimensionality, but can introduce a non-linear
distortion to the data. We exploit this non-linearity to propose a powerful yet interpretable dimension method
called data-driven amalgamation. Our new method, implemented in the user-friendly R package amalgam,
can reduce the dimensionality of compositional data by finding amalgamations that optimally (i) preserve the
distance between samples, or (ii) classify samples as diseased or not. Our benchmark on 13 real datasets
confirm that these amalgamations compete with state-of-the-art methods in terms of performance, but result
in new features that are easily understood: they are groups of parts added together.

INTRODUCTION

Compositional data are a kind of relative data in which each part is only interpretable relative to the other parts (1,2). In
the health sciences, many datasets produced by next-generation sequencing (NGS) have this property because of biological
and technical factors that limit the total number of transcripts observed for a given sample (often called the ‘constant-
sum constraint’) (3–9). As mutually dependent elements, it is not possible to interpret any component in isolation (at least
without invoking the often untestable assumptions that underpin data normalization). The field of compositional data
analysis (CoDA) offers an alternative way to analyze relative data by using log-ratio transforms. These transformations use
one or more references to recast the data as log-contrasts (10). The log-contrasts can then be analyzed using routine statistical
methods, but must get interpreted as a ratio of the numerator parts to the reference denominator parts. Example log-ratio
transformations include the additive log-ratio (alr) (which uses a single component as the reference) (1), the centered log-
ratio (clr) (which uses the per-sample geometric mean as the reference) (1), and the isometric log-ratio (ilr) (which uses an
orthonormal basis to define a set of arbitrary log-contrasts) (11).

Compositional data exist in a simplex with one fewer dimensions than parts. The ilr offers a theoretically ideal solution
because its log-contrasts move the data from the simplex into real Euclidean space (11). However, arbitrary log-contrasts
lack interpretability. For example, how does an analyst make sense of the difference between the log of the product of two sets
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of parts, where each part is raised to a unique power? Balances were proposed as a more interpretable log-contrast, where
each balance is a log-contrast between two geometric means (12). An example 3-part balance is log(

√
ab) − log(c). Indeed,

Pawlowsky–Glahn et al. have shown how a set of ‘principal balances’ can explain an ever-decreasing portion of the variance
in analogy to principal components (13) (though principal balances can be correlated). Although more complicated than a
simple log-ratio, having more parts means that a single balance can describe more variance than a single log-ratio. Balances
have recently become popular for the analysis and classification of microbiome compositions (14–18).

Recently, Greenacre et al. have challenged the interpretability of balances (19). We summarize the Greenacre et al. critique as
follows: because the geometric mean depends on the ratios of the parts within, balances are not balances in the plain English
sense of the word. Consider the balance between ‘a and b’ versus ‘c’ where b > c. We would expect that the ‘balance’ would
lean toward the combined weight of ‘a’ and ‘b’. However, with a geometric mean, the balance will tip more toward ‘c’ when
‘a’ is rare. This is because the ilr balances are defined in log space. Instead of balances, Greenacre et al. proposed the summed
log-ratio (SLR) as a more interpretable alternative (20). An example 3-part SLR is log (a + b) − log (c). The summation of
parts is called amalgamation, and Greenacre et al. encourage using domain knowledge for amalgamation (i.e. expert-driven
amalgamation) as a practical way of dealing with parts (21). However, Egozcue & Pawlowsky-Glahn have criticized SLRs
because, while scale-invariant, they are ‘non-linear functions in the Aitchison geometry of the simplex’ and so inter-sample
distances can have ‘anomalous behavior’ after amalgamation (10). In summary, Greenacre et al. argue that SLRs are an
interpretable way to reduce the dimensionality of the data, while Egozcue & Pawlowsky-Glahn argue that SLRs introduce
a non-linear distortion to the data. Yet, non-linearity might be advantageous for situations in which the data need to be
summarized in a non-trivial way. In this case, SLRs could provide a valuable addition to the CoDA toolkit: an interpretable
non-linear transform.

In this article, we propose data-driven amalgamation as a new method for reducing the dimensionality of compositional data.
Unlike expert-driven amalgamation which uses domain knowledge, data-driven amalgamation uses an objective function.
This objective function is user-defined for a given task, and combined with a search algorithm to answer the question, ‘What
is the best way to amalgamate the data to achieve the objective?’. We show that data-driven amalgamation can be used to
find a new 3-part simplex that efficiently visualizes the data according to any user-defined objective. We benchmark data-
driven amalgamation across 13 health biomarker datasets, for two separate objectives: (i) to preserve a suitable distance
between samples (where we consider three different measures), and (ii) to classify samples as diseased or not. We show that
the amalgamated features, which we call ‘amalgams’, can preserve inter-sample distances as well as principal components.
Moreover, amalgams outperform principal components and principal balances as a feature reduction step before classifica-
tion. We argue that amalgams are biologically meaningful concepts, and conclude the article by highlighting future areas of
research.

MATERIALS AND METHODS

Motivation

Greenacre et al. showed that using a pairwise log-ratio selection method in the presence of SLRs does not necessarily distort
inter-sample distances (20). However, their example has two limitations. First, none of the ‘principal log-ratios’ (i.e. the ones
which explain the most variance) were SLRs. In other words, the SLRs happened to be the least important ratios. This raises
the question, ‘What happens when the important log-ratios are SLRs?’. Second, they only discuss expert-driven amalgama-
tion. This raises another question, ‘Is it possible to replace expert-driven amalgamation with data-driven amalgamation?’.

While we do discuss SLRs in this article, we will focus on amalgamation more generally. Our motivation is to answer two
research questions:

Can we use a search heuristic to find an amalgamation that best preserves distance?

(i) Can we use a search heuristic to find an amalgamation that best preserves distance?
(ii) Can we use a search heuristic to find an amalgamation that maximizes the prediction of a dependent variable?

The first question is an unsupervised machine learning problem that seeks to find a reduced feature space (i.e. a latent space)
that accurately projects the data in fewer dimensions. The second question is a supervised machine learning problem. In
both cases, amalgamation adds value over traditional dimension reduction methods because it makes the lower dimension
features highly interpretable.
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Figure 1. This figure presents an overview of the benchmark pipeline run for each dataset. After feature removal and zero replacement, each dataset
underwent dimension reduction by PCA, PBA, log-ratio selection (PRA), or data-driven amalgamation. The data-driven amalgams were then analyzed
directly, or first converted to SLRs. We used two criteria to benchmark the goodness of a dimension reduction method: (i) agreement between the baseline
distances and the reduced-dimension distances and (ii) accuracy of the reduced-dimension classifier.

In this article, we benchmark data-driven amalgamation against the other dimension reduction methods used routinely
for CoDA, including principal components analysis (PCA), principal balance analysis (PBA) (13) and pairwise log-ratio
selection (PRA) (22). We define two tasks: (i) to obtain a compressed representation of inter-sample distances, and (ii) to
perform a feature reduction for binary classification. Figure 1 presents a schematic overview of our benchmark procedure.

Data-driven amalgamation

The amalgamation matrix. An amalgamation is defined as the result of adding D components into D′ ≤ D mutually exclu-
sive subsets (1). A compositional dataset X describing N compositions and D components can be amalgamated into a set
of D′-part compositions via an amalgamation matrix A with D rows and D′ columns:

Y = X · A

where Aij ∈ {0, 1} and
∑D′

j Ai j ≤ 1 for all i ∈ {1, 2, . . . , D}. In other words, the amalgamation matrix is binary and all
rows (representing components) sum to 1. The intuition here is that each component D (as rows) either does or does not
contribute to an amalgam D′ (as columns), and that each component contributes to one amalgam at most.

The amalgamation has D′ new components which we call amalgams. The amalgamation matrix describes to which amalgam
(as a column) the original component (as a row) belongs. Since one component should never contribute to more than
one amalgam, the row sums of A is limited to 1 (when any

∑D′
j Ai j = 0, the amalgamation is also a sub-composition).

Meanwhile, the column sums of A indicates how many components a single amalgam represents. Note that we use the
term ‘amalgamation’ to refer both to the amalgamation of the complete composition and to the amalgamation of a sub-
composition. Figure 2 shows an example of amalgamation, and illustrates how one could conceptualize amalgamation as a
feed-forward network.

The objective functions. Data-driven amalgamation seeks to find the best amalgamation matrix A for a given dataset X:

Aa = fa(X) (1)

where fa is chosen to optimize an arbitrary objective denoted by a. Here, we consider two kinds of objectives: unsupervised
(Type 1) and supervised (Type 2) objectives.
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Figure 2. This figure shows an example amalgamation procedure, from the input compositions (Panel A) and the amalgamation matrix (Panel B) to the
resultant amalgams (Panel C). The purpose of data-driven amalgamation is find the best amalgamation matrix for a given task. One could conceptualize
amalgamation as a type of feed-forward network where each component has only one outgoing connection (Panel D). In this study, we search for an
amalgamation matrix that maximizes an objective function; since this is equivalent to minimizing a loss, one could further conceptualize amalgams as a
hidden layer in a (linearly activated) neural network. Although this suggests that we could use gradient descent, we choose to minimize the loss with a
genetic algorithm because the amalgamation matrix is binary.

In all cases, the amalgamated data are first transformed using either a centered log-ratio transformation, isometric log-ratio
transformation, or SLR transformation.

Type 1 objectives. Our Type 1 objectives seek to preserve the distance d between samples. This is an ‘unsupervised’ objective
that is designed for visualization tasks. We can express this objective in terms of maximizing the Pearson’s correlation �
between the vectors of the original distances and the amalgamated distances:

Ad = argmax
A

ρ (d(X), d(X · A)) , (2)

We consider three distances. First, we consider the log-ratio, or Aitchison, distance, which is the Euclidean distance obtained
from clr-transformed data. It has a number of advantages, including scale invariance and sub-compositional dominance,
that make it a preferred distance for compositional data. It can be defined as:

d2
A(x, y) =

D∑
j=1

(
clr j (x) − clr j ( y)

)2
. (3)

(Here we denoted the j-th component of the clr-transformed data by clrj.)
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However, this may not be the most appropriate measure when considering amalgamations. Instead, we may want our dis-
tance measure to observe a natural continuity property: when we amalgamate parts that are identical in two samples, the
distance between these samples should be unaffected by the merging of the parts. For compositional data, the notion of
identity between parts across samples can be thought of loosely as a proportionality of the parts. Proportional parts have a
vanishing log-ratio variance (i.e. they behave in an entirely coordinated way) (5). Such parts are also known as ‘distribution-
ally equivalent’ (23).

Second, we consider the weighted Aitchison distance which, unlike its unweighted form, has distributional equivalence (23),
meaning that it is unaffected by the merging of proportional parts. It can be defined as:

d2
WA(x, y) =

D∑
j=1

ω j
(
clr j (x) − clr j ( y)

)2
. (4)

The exact form of the weights �j is not important, and we will use the simplest possibility by weighting each part by the
total sum of all counts for that feature (i.e. the column sum). Note that, when merging parts, their weights will be added too.

Third, we consider a distance based on information-theoretic considerations. A composition is formally equivalent to a
vector of discrete probabilities, and thus we could apply the Shannon index H. Advantageously, this measure is also scale-
invariant when compositions are normalized to 1. Amalgamations over indices j ∈ A can then be considered a coarse-
graining (24,25) of the parts. It is well known (25,26) that Shannon entropy can be expressed as the sum of the entropy of
the parts resulting after coarse-graining and of the coarse-grained parts themselves, where the latter are renormalized and
weighted by their sum:

H(x) = H

⎛
⎝x{1,...,D}\A,

∑
j∈A

xj

⎞
⎠ + H

(
xA∑
j∈A xj

) ∑
i∈A

xj . (5)

It is easy to show that the relative entropy:

D(x||y) =
D∑

j=1

xj log
xj

yj
(6)

also remains invariant when merging distributionally equivalent parts (see Supplementary Data). For simplicity, we consider
the symmetrized version:

d2
SR = D(x||y) + D( y||x)

2
. (7)

It is well known that the maximum-likelihood estimator of entropy is negatively biased for under-sampled data, e.g. (27).
To obtain a better empirical estimate of relative entropy from genomic data matrices, one could use the James-Stein type
shrinkage estimator implemented in the R package entropy (28). Since it allows for an estimate of the frequencies themselves,
the shrinkage estimator can be used in conjunction with the other distance measures too. This approach is potentially ad-
vantageous because it naturally imputes the zeros that present a major problem for log-ratio analysis, though more research
is needed to validate amalgamation for zero-laden data.

Type 2 objectives. Our Type 2 objectives seek to maximize the percent of variance within the amalgamated data that is
explained by a constraining matrix L. This is a ‘supervised’ objective that is designed for prediction tasks. We can express
this objective in terms of maximizing the relative size of the constrained eigenvalues of a (discriminant or) redundancy
analysis (RDA) of ilr-transformed data:

Ac = argmax
A

RDA (ilr(X · A) ∼ L) (8)

One can think of RDA as a multivariable extension of a simple linear regression (29). The way dependence on variables
of the external dataset L is evaluated is easiest understood when these variables are discrete (e.g. they are experimental
groups). In this case, RDA is equivalent to a discriminant analysis. RDA finds a linear rotation of a dataset X such that the
new coordinates partition the total variance into two fractions: (i) the redundant axes which can be explained by another
dataset L; and (ii) the principal axes which cannot be explained by another dataset L (these are equivalent to the ones from
a principle component analysis). The fraction of the variance from (i) over the total variance provides an estimate of the
‘goodness-of-fit’ for X ∼ L in a regression sense, and is the value maximized by Type 2 objectives. Note that the motivation
behind using an RDA instead of an ordinary regression is that this implementation can easily generalize to multivariable
problems.
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Note that the ilr transformation implies an unweighted Aitchison distance for the RDA. Instead, any distance measure can
be used via a square matrix of pairwise distances. These can be subjected to a classical multidimensional scaling to obtain
principal coordinates that can be fed to the RDA.

The summed log-ratio variant. We can create a set of SLRs from an amalgamation by a function fslr that takes the log of
the first column of Y divided by the second column, the log of the third column divided by the fourth column and so on:

S = fslr(Y) = fslr(X · A)

where the SLR matrix S contains D′/2 log-ratios.

Since SLRs have already moved the data out of the simplex, the Aitchison distance dA (or its weighted version) is replaced
with the Euclidean distance dE in the Type 1 objectives:

Aa = argmax
A

ρ(dA(X), dE(S)) (9)

and the ilr-transformation is not performed in the Type 2 objectives:

Ac = argmax
A

RDA(S ∼ L). (10)

We do not use the SLRs when evaluating relative entropies.

The genetic algorithm. Since the amalgamation matrix is a binary matrix whose rows sum to 0 or 1, its parameters can be
solved by a genetic algorithm with only D ∗ ceiling(log2(D

′ + 1)) bits. To implement the genetic algorithm, we used the GA
package (30) with default hyper-parameters (except for the number of bits, the fitness function and the maximum number
of iterations).

Note that the genetic algorithm is not required to include all components in its optimal solution. It is possible for the algo-
rithm to learn an amalgamation that is also a sub-composition if this improves the ‘fitness’ of a solution (i.e. if it minimizes
the loss). In practice, this happens regularly; however, the resultant amalgams still contain many components. One could
force sparsity within the learned amalgamation matrix by adding a regularization penalty that decreases the ‘fitness’ of a
solution if it contains too many components. For example, a regularized Type 1 objective might look like:

Ad = argmax
A

ρ (d(X), d(X · A)) − λ

D∑
i

D′∑
j

Ai j , (11)

where � is a hyper-parameter that controls the sparsity of the amalgamation matrix. Higher values of � would result in
amalgams that contain fewer parts.

Implementation. Here we present the amalgam package for the R programming language which solves the aforementioned
objectives as a reproducible and easy-to-use software tool. Below, we show an example of its use for mock data.

# install from GitHub

devtools::install github(’’tpq/amalgam’’)

# Load package and sample data

library(amalgam)

data(iris)

# find best amalgamation

A <- amalgam(x = iris[,1:4],

n.amalgams = 3, # how many amalgams to return

maxiter = 50, # how long to run genetic algorithm
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Table 1. This table describes the datasets used to benchmark dimension reduction

Study Code Source Type Features Group 1 Size Group 2 Size

1a selbal 16s 48 CD 662 HC 313
1b selbal 16s 60 MSM 73 Non-MSM 55
2a Franzosa et al. Shotgun 153 IBD 164 HC 56
2b Franzosa et al. Shotgun 158 CD 88 UC 76
2c Franzosa et al. Metabolites 885 IBD 164 HC 56
2d Franzosa et al. Metabolites 885 CD 88 UC 76
3a MicrobiomeHD 16s 278 C. diff 93 Diarrhea 89
3b MicrobiomeHD 16s 610 C. diff 93 HC 154
3c MicrobiomeHD 16s 1133 CRC 120 HC 172
3d MicrobiomeHD 16s 1302 CRC 120 Adenoma 198
4a TCGA microRNA 188 Tumor 1078 Non-Tumor 104
4b TCGA microRNA 188 Her2 77 Non-Her2 927
4c TCGA microRNA 188 LumA 524 LumB 194

CD: Crohn’s disease; HC: Healthy control; MSM: Men who have sex with men; UC: Ulcerative colitis; IBD: Inflammatory bowel disease; CRC: Colorectal
cancer. This table is reproduced from (18).

objective = objective.keepDist, # if preserving distance

# objective = objective.keepWADIST # another distance

# objective = objective.keepSKL # another distance

# objective = objective.maxRDA, # if maximizing RDA

z = iris[,5], # only needed if maximizing RDA

asSLR = FALSE, # if TRUE, n.amalgams must be even

shrink = FALSE) # toggles James-Stein type shrinkage

# visualize results

plot(A, col = iris[,5])

The x argument defines the input data, the n.amalgams argument sets the number of amalgams, the maxiter argument
sets the number of genetic algorithm iterations, the objective argument defines the objective, the z argument defines the
constraining matrix, the asSLR argument toggles whether to convert the amalgams into SLRs, and the shrink argument
toggles whether to use James–Stein type shrinkage. This package depends on the GA (30), compositions (31) and vegan (32)
packages.

Benchmark evaluation

Competing compositional methods. We benchmark amalgamation and SLRs against competing dimension reduction meth-
ods designed for compositional data. This includes (i) a PCA of clr-transformed data (33) [implemented in compositions
(31)], (ii) a PBA (using the log-ratio variance clustering heuristic) (13) [implemented in balance (34)] and (iii) the pairwise
log-ratio selection method proposed by (22) (PRA) [implemented in propr (35)]. For each dimension reduction technique,
we consider the best two dimensions and the best three dimensions separately. Note that using three amalgams only occupies
two dimensions because of the simplex.

Data acquisition. We use the same 13 health biomarker datasets previously used to benchmark binary classification
pipelines for compositional data (18). These datasets were acquired from multiple sources (17,36–43) and span several
difficult-to-study NGS data types (including 16s, metagenomics, metabolomics and microRNA). The number of samples,
number of features, and outcomes-of-interest are described in Table 1. To facilitate between-study comparisons, these data
underwent the same pre-processing steps as in (18): for all datasets, we removed features that had more than 90% zeros;
for the metabolomic and microRNA datasets, we only included features in the top decile of total abundance. The data are
available already pre-processed for immediate use from https://zenodo.org/record/3378099.

https://zenodo.org/record/3378099
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Figure 3. This figure shows the agreement between the baseline Aitchison distance and the distance computed on the dimension-reduced data (y-axis) for
each method (x-axis), as grouped by the dataset studied (color). Methods toward the left of the x-axis agree more with the baseline on average. Here, we
see that using four amalgams or three SLRs can actually preserve the inter-sample distances quite well. A statistical analysis of the differences is presented
in Supplementary Table S1.

Zero replacement. All competing log-ratio methods fail in the presence of zeros. To address this impediment, we first
replace zeros using the cmultRepl function from the zCompositions package (44). Although we do not necessarily need zero
replacement when using amalgamation or SLRs, we use the zero-replaced data to make a fair comparison.

Amalgams for preserving distance. The ‘gold standard’ distance for compositions is the Aitchison distance (45,46). As such,
we can evaluate the quality of a dimension reduction method based on how well the dimension-reduced distances agree with
the true Aitchison distances (20). For each dataset, we measure this agreement as the Spearman’s correlation between the
inter-sample distances from the dimension-reduced data and those from the full data. Note that when the reduced dimensions
are already in log space, we compute a Euclidean distance instead.

We also compare how well each of our three dimension-reduced distances agrees with the corresponding baseline distances
after 100 iterations, with and without James–Stein type shrinkage. This agreement is measured as Pearson’s correlation (as
defined in the Type 1 objectives).

Amalgams for classification. In a supervised setting, a good dimension reduction method should help classify a withheld
test data. As such, we can evaluate the goodness of a dimension reduction method in terms of classification accuracy. For
each dataset, we measure classification accuracy by cross-validation. Model training occurs in three steps: (i) we use data-
driven amalgamation to reduce the dimensionality of the training set; (ii) we CLR- or SLR-transform the resultant amal-
gams; and (iii) we fit a logistic regression classifier. During model deployment, the test set has its dimensions reduced accord-
ing to the training set rule, thus ensuring test set independence. We repeat this procedure on 20 separate 67–33% training-test
set splits, and report the ‘out-of-the-box’ performance without any hyper-parameter tuning because of the small sample
sizes. The workflow is arranged using the exprso package (47).
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Figure 4. This figure projects the Franzosa et al. microbiome data across three amalgams (left panel) and four amalgams (right panel), chosen to preserve
inter-sample distances. Light yellow dots show samples with inflammatory bowel disease, while dark purple dots show healthy samples. From Figure 3, we
know that the distances in these figures are as coherent as a PCA plot of equal dimension. Yet, the variables of the simplex (i.e. the corners of the triangle)
are easily understood, and allow the analyst to visualize the data in the same space that they exist: a simplex.

RESULTS AND DISCUSSION

Amalgams can preserve Aitchison distances

For NGS health biomarker data, each clinical sample is a composition. We can calculate inter-sample distances using the
Aitchison distance. One critique against the use of amalgamation for dimension reduction is that it distorts inter-sample
distances (i.e. it is not ‘sub-compositionally dominant’) (10,12,48). A more relevant property of distance measures in this
context, however, seems to be information monotonicity (24), i.e. the fact that distances do not increase when parts are
amalgamated. While this is a known property of relative entropy, it has been shown recently to also hold true for Aitchison
distance (49). Although amalgamation can distort distances, we perform data-driven amalgamation with an objective that
preserves the Aitchison distances. Figure 3 shows the agreement between the baseline Aitchison distance and the distances
computed using the top-2 or top-3-reduced dimensions. The x-axis presents 10 methods ranked from highest-to-lowest based
on the (geometric) average agreement. Here, we see that the use of amalgamations (or SLRs) preserves distances as well as
a PCA, and both do better than a PBA of equal dimension. Supplementary Table S1 shows the 95% confidence interval for
the median of the differences between each method, computed using the Wilcoxon Rank-Sum test.

Although data-driven amalgamation does not outperform PCA, it is arguably more interpretable. Although PCA is just
a linear rotation of the data, its application to compositional data requires the use of clr-coordinates. Consequently, the
coefficients of each principal component actually form a complex log-contrast where each variable (e.g. gene or microbe)
is raised to an arbitrary power, then multiplied together. On the other hand, each amalgamation is a simple sum of parts,
and therefore exists as a pooled construct that is intuitive to biologists (indeed, one might relate each amalgam to a ‘gene
module’ or a ‘bacteria community’). Advantageously, amalgamation allows the analyst to visualize the data in the same
space that they exist: a simplex. As an example, Figure 4 shows the 3-part (2D) and 4-part (3D) amalgams computed for the
Franzosa et al. microbiome dataset. Based on Figure 3 and Supplementary Table S1, we know that the distances in these
figures are as coherent as a PCA plot of equal dimension. Yet, the variables of the simplex (i.e. the corners of the triangle)
are easily understood: they are groups of bacteria added together.

Importantly, the amalgamations learned by our software do not appear arbitrary. Supplementary Figure S4 shows a heatmap
of amalgam membership for each taxa from the Franzosa et al. case study, after 20 replications of n.amalgams = 2 with
a Type 1 objective function. A clear pattern emerges: several dozen taxa consistently cluster together across all 20 random
seeds, while many more switch only sparingly. This suggests that the amalgam memberships learned by the genetic algorithm
carry meaning beyond chance occurrence. On the other hand, consensus clustering across replications might lead to more
robust results, especially when the analyst plans to interpret amalgam membership directly.
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Figure 5. This figure shows the four-panel output from the amalgam software, next to boxplots of the amalgam sums and their corresponding geometric
means. The top-left panel shows a PCA of the ilr-coordinates. The top-right panel shows the ‘fitness’ over each generation of the algorithm. The bottom-left
panel shows a PCA of the ilr-coordinates of the amalgams. The bottom-right panel shows a ternary plot of all samples along the three amalgams selected
to maximize the separation of sick guts (light yellow) and healthy guts (dark purple). The boxplots refer to these amalgams, where the per-sample sums
are computed without a re-closure of the data (i.e. they are summed using the raw proportions). By only comparing the geometric means, one would miss
the exciting insight that there exists a ‘sick gut community’ signature that uniquely occupies up to one half of the sick gut.

Amalgams can improve disease prediction

In the previous section, we show that data-driven amalgamation can successfully represent inter-sample distances in a co-
herent way (analogous to a principal coordinate analysis). By changing the objective function, we can instead search for
an amalgamation that maximizes the separation between a binary class (analogous to a discriminant analysis). Supple-
mentary Figures S1 and 2 show the area under the receiver operating curve (AUC) for classifiers trained on the top-2 or
top-3-reduced dimensions, (respectively), where each boxplot shows the distribution of AUCs across 20 randomly selected
test sets. In both figures, we see the same trend: amalgams perform as well as or better than PCA, principal balances, and
select log-ratios. Amalgams (and SLRs) only under-perform on the Franzosa et al. data. Supplementary Table S2 shows the
95% confidence interval for the median of the differences between the AUCs for each method, computed using the Wilcoxon
Rank-Sum test. Interestingly, the use of just three amalgams outperforms the use of three principal balances, the latter being
a higher-dimensional representation.

As an example, Figure 5 shows the four-panel output from the amalgam software. Notably, the bottom-right panel shows
the distribution of samples across the 3-part simplex designed to maximize class separation. Visually, we can confirm that
the amalgams do separate healthy guts from unhealthy guts based on the microbiome composition. However, amalgamation
gives us a unique insight into the underlying process: the first amalgam not only associates with a sick gut, but makes up most
of the sick gut. This perspective is reinforced by a boxplot of the per-sample pre-closure amalgam sums: the first amalgam
takes up ∼10–60% of the entire gut composition of sick patients, compared with only ∼5% of healthy guts. Therefore, we
can interpret the first amalgam as a kind of ‘sick gut community’ whose members hardly ever appear in healthy patients.
Interestingly, the 53 taxa that belong to this amalgam all tend to have low average abundance, suggesting that data-driven
amalgamation can identify useful signals even among rarer taxa (see Supplementary Figure S3).

Below the boxplots of the per-sample amalgams, we see boxplots of the per-sample geometric means. Just as amalgams are
the building blocks of SLRs, geometric means are the building blocks of balances. Although amalgamations and geometric
means do not have to agree (as Greenacre et al. show in the beer-wine-spirit data), they do in this example. As such, mis-
interpreting a balance as if it were an amalgamation is of little consequence. However, by only comparing the geometric
means, one would miss the exciting insight that there exists a ‘sick gut community’ signature that uniquely occupies up to
one half of the sick gut.
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Figure 6. This figure shows the logistic regression classification AUC (y-axis) based on the number of amalgams (x-axis) used to train the model, organized
by the dataset under study (facet). Each point describes a different training-test set split, and a line is drawn to show the trend. Here, we see that 8 of the
13 datasets have a better classification AUC when using more amalgams. This might suggest that using three amalgams under-fit these data. Interestingly,
three datasets do markedly worse with more amalgams. This might suggest that using more amalgams over-fit these data.

Table 2. This table reports the 95% confidence interval for the median of the difference between the amalgam-based logistic regression classifier AUCs
and the other procedures benchmarked in (18)

top3amalg versus top4amalg versus top2slr versus top3slr versus

Selbal −0.0357 to 0.0033 −0.0330 to 0.0048 −0.031 to 0.007 −0.023 to 0.014
PBA −0.055 to −0.014 −0.053 to −0.013 −0.051 to −0.011 −0.0413 to −0.0031
ABA −0.053 to −0.012 −0.052 to −0.010 −0.0501 to −0.0096 −0.0401 to −0.0014
RBA −0.057 to −0.016 −0.055 to −0.014 −0.053 to −0.013 −0.043 to −0.005
DBA −0.07 to −0.03 −0.069 to −0.027 −0.065 to −0.027 −0.056 to −0.017
ACOMP −0.018 to 0.024 −0.018 to 0.026 −0.016 to 0.027 −0.007 to 0.035
CLR −0.064 to −0.023 −0.062 to −0.021 −0.059 to −0.020 −0.049 to −0.012

Here, we see that amalgam-based classifiers perform as well as the balance selection method selbal (17), but under-performs when compared to using
all ilr-transformed or clr-transformed features. SLR: Summed log-ratios; PBA: Principal balance analysis; ABA: Anti-principal balance analysis; RBA:
Random balance analysis; DBA: Distal balance analysis; ACOMP raw proportions; CLR: Centered log-ratio transformed data.

Amalgamation as an information bottleneck

The data benchmarked in this study were also benchmarked for other CoDA classification procedures, including balance
selection. Compared to these, we find that data-driven amalgamation performs as well as the balance selection method selbal
(17), but under-performs when compared to using all ilr-transformed or clr-transformed features (see Table 2). This is not
surprising when we consider that using only three (or four) amalgams would have a limited capacity to explain the total
structure of the data. In other words, it is possible that classifiers trained on so few amalgams under-fit the data. To test this
hypothesis, we also trained logistic regression classifiers for k = [3, 6, ..., 18, 21] amalgams. Figure 6 shows that 8 of the 13
datasets have a better classification AUC when using more amalgams. These findings reinforce the intuition that amalgams
act as an ‘information bottleneck’ when reducing the dimensionality of the data. If there are too few amalgams, the model
will under-fit.
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Figure 7. This figure shows how well the Aitchison (ADIST), weighted Aitchison (WADIST) and relative entropy (SKL) dimension-reduced distances
agree with the corresponding baseline distances for 13 datasets (after 100 iterations, with and without James–Stein type shrinkage). Here, we see that the
distributionally equivalent distances tend to have better agreement after amalgamation. We see further improvement with James–Stein type shrinkage.

Alternatives to the Aitchison distance

Although the Aitchison distance has a number of advantages, including scale invariance and sub-compositional dominance,
it may not be the most appropriate measure when considering amalgamations. Instead, we may want our distance measure
to observe a natural continuity property: when we amalgamate parts that are identical in two samples, the distance between
these samples should be unaffected by the merging of the parts. This property, called distributional equivalence, is found in the
weighted version of the Aitchison distance (23), and also in relative entropy (see Supplementary Data). Figure 7 shows how
well each of these three dimension-reduced distances agrees with the corresponding baseline distances for 13 datasets. Here,
we see that the distributionally equivalent distances tend to have better agreement after amalgamation. Better agreement
means that the closest samples will remain close together while the furthest samples will remain far apart (though our use
of Pearson’s correlation allows for any scale factor). This finding supports our hypothesis that distributionally equivalent
distances are appropriate for amalgamated data. Interestingly, we see further improvement for all distances with James–Stein
type shrinkage. This is noteworthy because for non-zero shrinkage, zeros are imputed directly, making it potentially useful
for zero-laden compositional count data like those encountered in microbiome or single-cell research.

LIMITATIONS AND FUTURE DIRECTIONS

A major critique of amalgamation focuses on its non-linear behavior. However, we acknowledge this when designing our
search heuristic, and instead use the non-linearity to our advantage. Still, data-driven amalgamation has some limitations.
First, genetic algorithms, although faster than an exhaustive search, are still quite slow (especially when compared with a
PCA). For example, the Franzosa et al. microbiome data starts to converge after ∼1500 iterations, which takes ∼3.5 min on
an Intel i7 laptop computer. A PCA of an ilr of the same dataset takes ∼50 ms. Second, data-driven amalgamation appears
less effective than other simple-but-fast methods for binary classification (e.g. the distal discriminative balance analysis
method described in (18)), but easily generalized to multivariable regression. Third, data-driven amalgamation requires
the user to select ‘hyper-parameters’ to guide the dimension reduction, for example the number of amalgams. We see the
importance of this hyper-parameter in Figure 6, where using too few (or too many) amalgams can impair classification
accuracy. Fourth, amalgamation assumes that the relationship between the parts is explained by addition (a logical OR);
as such, amalgamation would miss relationships explained by multiplication (a logical AND). On the other hand, balances
would capture AND relationships but miss OR relationships.
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It may be possible to resolve the first two limitations by relaxing the definition of the amalgamation matrix, for example by
allowing the amalgamation matrix to become non-binary. This would allow an amalgam to equal the sum of parts of parts
(not just the sum of parts). Although this expands the search space, it may enable the use of a faster search algorithm, such as
gradient descent. Indeed, a total relaxation of all amalgamation matrix constraints would leave us with a single-layer neural
network where the hidden layer is analogous to the amalgam set. We expect that re-factoring data-driven amalgamation as
a neural network would improve the representative power of the amalgams and also decrease the run-time. However, care
is needed to define the weight constraints in a way that maintains the interpretability of the hidden layer. For example, the
subtraction of parts would work arithmetically, but it is unclear what interpretation this would imply. One might maintain
some interpretability by introducing explicit neural network constraints. For example, one might require that a component
never contributes more than itself (i.e.

∑D′
j Ai j ≤ 1), or that a component always contributes positively (i.e. 0 ≤ Ai j ′).

An important property that we have only mentioned in passing is the implicit handling of zeros that is achieved by amal-
gamation. We could envision objective functions that remove zeros across samples by specifically merging zero-laden parts
with other parts, though more research is needed to validate amalgamation for zero-laden data. Another problem that can
be alleviated by amalgamation is under-sampling: the merging of parts is a way of reducing dimensions without discarding
data and can reduce the number of variables such that an inversion of their covariance matrix becomes possible. This enables,
for example, an evaluation of partial correlations (50) on the new variables without having to resort to regularization.

SUMMARY

In this report, we present data-driven amalgamation as a new method and conceptual framework for reducing the dimen-
sionality of compositional data. Although amalgamation is criticized for distorting inter-sample distances, we show that
data-driven amalgamation can preserve inter-sample distances as well as PCA when guided by an objective function. We
also show that data-driven amalgamation can outperform both PCA and principal balances as a feature reduction method
for classification, and performs as well as a supervised balance selection method called selbal.

Amalgamation not only allows the analyst to visualize the data in a lower-dimensional simplex (resembling the one in which
the data naturally exist), but can also reveal interesting patterns about the relative abundances of the compositions. We
demonstrate this through the discovery of a ‘sick gut community’ bacterial signature that occupies more than one half of
the sick gut, but is rarely found in healthy samples. We encourage principled research into data-driven amalgamation as a
tool for understanding high-dimensional compositional data, especially zero-laden count data for which standard log-ratio
transforms fail.
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