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In the last several years, NAD+ supplementation has
emerged as an innovative and safe therapeutic strategy for a
wide spectrum of disorders, including diabetes and neuropathy.
However, critical questions remain as to how NAD+ and its
precursors are taken up by cells, as well as the effects of long-
lasting intracellular NAD+ (iNAD+) increases. Here, we
investigated the kinetics of iNAD+ levels in different cell types
challenged with prolonged exposure to extracellular NAD+
(eNAD+). Surprisingly, we found that after the initial increase,
iNAD+ contents decreased back to control levels (iNAD+
resetting). Focusing our attention on HeLa cells, we found that
oxygen and ATP consumption occurred with similar temporal
kinetics after eNAD+ exposure. Using [3H]NAD+ and [14C]
NAD+, we determined that NAD+ resetting was not due to
increased dinucleotide extrusion but rather due to reduced
uptake of cleaved NAD+ products. Indeed, eNAD+ exposure
reduced the expression of the ecto-50-nucleotidase CD73, the
nicotinamide adenine mononucleotide transporter solute car-
rier family 12 member 8, and the nicotinamide riboside kinase.
Interestingly, silencing the NAD+-sensor enzyme sirtuin 1
prevented eNAD+-dependent transcriptional repression of
ecto-50-nucleotidase, solute carrier family 12 member 8, and
nicotinamide riboside kinase, as well as iNAD+ resetting. Our
findings provide the first evidence for a sirtuin 1–mediated
homeostatic response aimed at maintaining physiological
iNAD+ levels in conditions of excess eNAD+ availability. These
data may be of relevance for therapies designed to support the
NAD+ metabolome via extracellular supplementation of the
dinucleotide or its precursors.

In the last several years, our understanding of the NAD+
metabolome extended from that of a mere electron-carrying
cofactor for oxidation–reduction reactions to an essential
enzymatic substrate involved in key signaling pathways (1)
such as those brought about by polyADP-ribose polymerases
(PARPs), monoADP-ribosyltransferases, sirtuins (SIRTs), and
the ADP-ribosyl hydrolase/cyclase (CD38). These enzymes
play pivotal roles in DNA repair, gene expression, cell cycle
regulation, and calcium signaling (2). In keeping with the
important roles of these functions in disease pathogenesis, a
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large body of evidence shows that impairment of NAD+
availability, due to either reduced biosynthesis or increased
consumption, promotes aging (3, 4), diabetes (5), obesity (6),
and neurodegeneration (7). On this basis, maintenance of
intracellular NAD+ (iNAD+) homeostasis may have pleio-
tropic therapeutic effects. This is well in keeping with exper-
imental evidence that boosting iNAD+ contents with its
metabolic precursors such as nicotinamide mononucleotide
(NMN) and nicotinamide riboside (NR) is of therapeutic
relevance in a wide number of disparate disease models, such
as diabetes and neuropathy (5, 8–14). The therapeutic po-
tential of NAD+ and its precursors has been also investigated
in several clinical trials (15–20). More recently, small-molecule
activators of nicotinamide phosphoribosyl transferase
(NAMPT), the rate-limiting enzyme of the NAD+ rescue
pathway, have been proposed as an additional NAD+ boosting
strategy for cytoprotection (21, 22). On the contrary, phar-
macological restriction of iNAD+ availability with specific and
potent NAMPT inhibitors may represent an innovative and
promising anticancer strategy by impairing the dinucleotide’s
support to energy metabolism and proliferation (23–28).

Despite the impressive progress made in the field of NAD+
signaling and its involvement in disease pathogenesis,
whether/how NAD+ or its precursors are taken up by the
different cell types and to what extent this contributes to
NAD+ homeostasis is still a matter of debate. Indeed, whereas
bacteria (29), yeast (30), and mitochondria (31) are endowed
with specific membrane NAD+ carriers, the plasma membrane
NAD+ transporter has yet to be identified. This is in spite of
several studies providing evidence that NAD+ crosses the
plasma membrane of mammalian cells uncleaved (32–37).
Additional contributions, however, show that extracellular
NAD+ (eNAD+) can be degraded by the ecto-50-nucleotidase
(CD73) into NMN and NR (38, 39), with the former being
hydrolyzed by CD38 into nicotinamide (NAM) and ribose 5-
phosphate (40) or transported intracellularly by the solute
carrier family 12 member 8 (Slc12a8) carrier (41), and the
latter possibly entering the cell via nucleoside transporters
(42–44).

Regardless of the mechanisms underpinning NAD+ uptake,
various studies report that the increased availability of eNAD+,
both in vitro and in vivo, prompts metabolic and signaling
responses that, as a whole, improve bioenergetics and
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SIRT1 restores physiological iNAD+ content upon eNAD+ exposure
resistance to stress (32, 34–36, 45–50). In this regard, it is
worth noting that the temporal kinetics of these perturbations
are currently unknown. Indeed, whether cells can prompt
compensatory responses aimed at resetting iNAD+ homeo-
stasis once the latter has been altered by increased extracel-
lular availability of the dinucleotide waits to be investigated.
This is an essential point in light of the therapeutic potential
ascribed to various NAD+ boosting strategies in disorders
typically characterized by a chronic pattern of progression that,
by definition, would necessitate continuous exposure to NAD+
or its metabolic precursors.

On this basis, in the present study, we attempted to un-
derstand whether and how iNAD+ homeostasis changes over
time in cells challenged with a prolonged increase of eNAD+
availability.

Results

Effects of prolonged eNAD+ exposure on cellular metabolism

We previously reported that iNAD+ contents increase
upon a brief exposure of HeLa cells to eNAD+ and that this
increase confers significant cytoprotection from apoptosis
triggered by staurosporine, C2 ceramide, or N-methyl-N0-
nitro-N-nitrosoguanidine (32). These findings are in line with
numerous reports also showing cytoprotective properties of
eNAD+ (32, 34–36, 45–50). To our knowledge, however, the
effects of prolonged exposure of resting cells to eNAD+ have
never been investigated. To address this issue, we evaluated
the effects of 1 mM eNAD+ on iNAD+ contents in HeLa cells
during a 24-h incubation. We found that iNAD+ contents
increased from 9.2 ± 1.3 to 19.5 ± 2.4 nmol/mg protein at 8 h
and then, surprisingly, linearly decreased over time to return
to basal levels after 24 h (Fig. 1A). Notably, the same results
were obtained when cells were exposed to lower eNAD+
concentrations (Fig. S1A). Furthermore, to rule out that this
finding was specific for HeLa cells, we also evaluated the ef-
fects of eNAD+ over time in SHSY-5Y (neuroblastoma),
HT29 (colorectal adenocarcinoma), and renal proximal tubule
epithelial cells and found similar kinetics of iNAD+ contents
upon NAD+ exposure (Fig. 1A). Given that eNAD+ exposure
increases both cellular oxygen consumption and ATP content
(32), we next attempted to understand whether these two
bioenergetic parameters also showed a biphasic response
upon a prolonged challenge to eNAD+. Indeed, the
augmented oxygen consumption present in cells exposed to
1 mM NAD+ for 1 h vanished at 24 h, reaching values lower
than those of resting cells (Fig. 1, B and C). In keeping with
this, we found that ATP contents promptly increased in cells
exposed to eNAD+, reaching a maximum at 3 h (from 72 ±
2.3 to 122.4 ± 8.4 nmol/mg protein) and then showed a slow
decrease over time reaching the basal level after 30-h incu-
bation (Fig. 1D). Notably, we found that cells exposed to
lower eNAD+ concentration presented a lower increase of
ATP contents (Fig. S1B) and oxygen consumption (Fig. S1C),
which underlies that the changes of these metabolic param-
eters are linked to changes in NAD contents. We also found a
small increase in the ADP pool probably because of a
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contribution of eNAD+ to the adenylate pool (Fig. S1D). The
unexpected return of iNAD+ contents to control levels dur-
ing eNAD+ exposure hereinafter referred to as “iNAD+
resetting,” prompted us to first hypothesize that it was merely
due to its reduction to NADH. We, therefore, measured the
cellular contents of NADH over time during eNAD+ expo-
sure and found that they increased by 22.59 ± 3% after 24 h
(Fig. 1E). Given that the extent of this increase was not
consistent with that of NAD+ resetting (equaling a reduction
of 112.28 ± 31% of peak values) (Fig. 1A), we reasoned that
mechanisms in addition to NADH formation should be
involved. Given that NAMPT and nicotinamide mono-
nucleotide adenylyl transferases (NMNATs) play a key role in
the maintenance of iNAD+, we hypothesized that changes in
their expression levels could contribute to NAD+ resetting.
We found, however, that transcript levels for NAMPT,
NMNAT1, and NMNAT3 did not change and those for
NMNAT2 almost doubled, whereas those of nicotinamide
riboside kinase (NRK1) decreased by 9-fold in cells exposed
to eNAD+ for 24 h (Fig. 1F).

Prolonged eNAD+ exposure reduces eNAD+ uptake

In an attempt to identify additional mechanisms underlying
iNAD+ resetting, we hypothesized involvement of the NAD+-
consuming enzymes PARPs or/and mono (ADP-ribose) poly-
merases. We found, however, that a high concentration of two
different PARP inhibitors PJ34 (10 μM) (51) and 6(5H)-phe-
nanthridinone (30 μM) (52), as well as the inhibitor of mono
(ADP-ribose) polymerases novobiocin (100 μM) (53), did not
affect the kinetic of NAD+ resetting (data not shown). Next, to
rule out the possibility that iNAD resetting might be due to
eNAD depletion over time, we analyzed the NAD contents
after 24 h in the medium. We found a progressive NAD
depletion over time in the medium; however, eNAD contents
did not reach control levels after 24-h incubation (Fig. 2A).
Moreover, we performed a new experiment adopting 10
instead of 1 mM eNAD+ and found that a similar iNAD
resetting occurred despite a lack of eNAD depletion over time,
ruling out that iNAD+ resetting is related to eNAD depletion
(Fig. 2, A and B). As an alternative hypothesis, we investigated
whether NAD+ resetting might be due to extracellular extru-
sion of the dinucleotide. To this end, we measured the extent
of radioactivity extrusion by cells preloaded for 1 h with
adenine-labeled [3H]NAD+ (Fig. 2C) and then exposed or not
to unlabeled eNAD+ for 24 h (Fig. 2D). Interestingly, we found
increased radioactivity in the medium of eNAD+-exposed cells
(Fig. 2E), thereby suggesting that extrusion indeed contributes
to NAD+ resetting. Still, to make sure that the dinucleotide is
extruded intact, we repeated the experiment with NAM-
labeled [14C]NAD+ (Fig. 2C). Surprisingly, we found exactly
the opposite result, that is, a decreased amount of radioactivity
extruded in the medium of eNAD+-exposed cells (Fig. 2E).
These findings on the one hand indicated that NAD+ resetting
is not due to a mere extrusion of NAD+ and on the other hand
that radioactivity observed in the medium is related to NAD+-
cleaved products.
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We next moved on to check whether reduced eNAD+ uptake
contributes to NAD+ resetting. We, therefore, evaluated
whether the uptake of radioactivity originating from [3H]NAD+
or [14C]NAD+ differed in cells exposed or not to eNAD+.
Interestingly, we found that the uptake of the radioactivity of
Figure 1. Effects of prolonged eNAD+ exposure on cellular metabolism in H
cell types (A). Representative (B) and quantitative (C) analysis of oxygen consum
1 mM eNAD+ on ATP contents over time in HeLa cells (100% equal 72 ± 2.3 nm
contents over time in HeLa cells (E). Effects of 1 mM NAD+ on NAMPT, NMNAT1
point represents the mean ± SD of four experiments in triplicate. *p < 0.05, **p
eNAD+, extracellular NAD+; iNAD+, intracellular NAD+; NAMPT, nicotinamide p
transferases; NRK1, nicotinamide riboside kinase.
both labeled NAD+ moieties was lower in cells exposed to
eNAD+ for 24 h and returned to control levels upon 24 h
eNAD+washing (Fig. 3,A andB). The fact that radioactivity was
measured in cells that already reset NAD+ content rules out that
the reduced uptake might be due to high intracellular
eLa cells. Effects of 1 mM eNAD+ on iNAD+ contents over time in different
ption rate by HeLa cells exposed for 1 h or 24 h to eNAD+ (1 mM). Effects of
ol/mg protein) (D). Effects of 1 mM extracellular NAD+ on intracellular NADH
-3, and NRK1 transcripts in HeLa cells after 24-h incubation (F). Each column/
< 0.01, ***p < 0.001 versus Crl. ANOVA and Tukey’s post hoc test were used.
hosphoribosyl transferase; NMNATs, nicotinamide mononucleotide adenylyl
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Figure 2. Prolonged eNAD+ exposure does not induce NAD extrusion. Effects of 1 or 10 mM eNAD on NAD contents in the medium (A) and the cells (B)
after 0- (T0), 6-, and 24-h eNAD exposure. Chemical drawing of labeled [3H]NAD and [14C]NAD (C). Experimental scheme to evaluate NAD+ extrusion (D).
Effects of unlabeled NAD+ (1 mM, 24 h) on release of radioactivity in the medium by cells preincubated for 1 h with [3H]NAD+ (500 pM) or [14C]NAD+ (500
pM) (E). Each column/point represents the mean ± SD of three experiments in triplicate. **p < 0.01, and *** p < 0.001 versus Crl. ANOVA and Tukey’s post
hoc test were used. eNAD+, extracellular NAD+.
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dinucleotide levels. These findings, therefore, suggested that
mechanisms responsible for NAD+ uptake are altered upon
prolonged eNAD+ exposure. As mentioned above,
4 J. Biol. Chem. (2021) 297(1) 100855
experimental evidence indicates that NAD+ is taken up by the
plasma membrane both intact (32, 33, 35, 36) and upon hy-
drolysis (42–44). In this regard, although a putative plasma



Figure 3. Prolonged eNAD+ exposure reduces NAD+ uptake by HeLa cells. Effects of unlabeled NAD+ (1 mM, 24 h) and its subsequential withdrawal (24
h) on time-dependent uptake of 500 pM [3H]NAD+ (A) or 500 pM [14C]NAD+ (B). Effects of 1 mM extracellular NAD+ on NAD+-degrading enzymes and
transporters transcript levels in cells after 12- and 24-h NAD+ incubation and its subsequential withdrawal (24 h) (C). Effects of unlabeled eNAD+ (1 mM, 24
h) on radioactivity uptake of cells exposed to [14C]AMP (500 pM) (D). Effects of NAD+ and NAD+ derivatives (each one 1 mM) on uptake of 500 pM [3H]NAD+
(E) or [14C]NAD+ (F). Effects of Slc12a8 silencing on its transcript levels after 24 h and 48 h (G). Effects of 48-h Slc12a8 silencing on uptake of 500 pM [14C]
NAD+ (H). Effects of AMPCP (100 μM/30 min) on 500 pM [3H]NAD+, [14C]NAD+, or [14C]AMP (I). Effects of NAM (1 mM) on 500 pM [3H]NAD+ or [14C]NAD+ (J).
Effects of apigenin (100 μM), AMPCP (100 μM), or both on uptake of 500 pM [14C]NAD+ (K). Each column/point represents the mean ± SD of four ex-
periments in triplicate. *p < 0.05, **p < 0.01, and *** p < 0.001 versus Crl. ANOVA and Tukey’s post hoc test were used. eNAD+, extracellular NAD+; Slc12a8,
solute carrier family 12 member 8; AMPCP, adenosine 50-(α,β-methylene)diphosphate.

SIRT1 restores physiological iNAD+ content upon eNAD+ exposure
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membrane NAD+ transporter is yet to be identified, several
membrane carriers and enzymes have been involved in the
uptake of NAD+-cleaved products (42–44). Specifically,
eNAD+ is cleaved into NMN and AMP by CD73 (38, 39) and by
CD203a (also known as PC-1) (54), or converted into ADP
ribose and NAM by CD38 and its paralog CD157 (40, 55, 56).
We, therefore, analyzed the transcript levels of both ectoen-
zymes in cells challenged with a 12- or 24-h exposure to eNAD+
and found a significant reduction of mRNAs of CD73 after 24 h
and no effect on those of CD38 and CD157, whereas CD203a
transcript levels were not detectable (Fig. 3C). To confirm that
reduction of CD73 transcripts was functionally relevant, we
measured intracellular adenosine (ADO) contents upon extra-
cellular [14C]AMP exposure as a prototypical indirect index of
CD73 activity (57). In keeping with the PCR data, we found that
the increase of intracellular radioactivity was lower in eNAD+-
exposed cells than the controls (Fig. 3D). Notably, a complete
restoration of CD73 transcript levels occurred upon eNAD+
washing (Fig. 3C). We also evaluated the effect of eNAD+ on
transcript levels of SARM1, an important NADase that could
play a role in NAD degradation (58). We found that eNAD+
exposure did not alter mRNA levels of SARM1 over time
(Fig. 3C). Conversely, we found that transcript levels of the
NMNtransporter Slc12a8were already reduced in cells after 12-
h eNAD+ exposure and similar to those of CD73 recovered
upon washing (Fig. 3C). In light of the putative role of plasma
membrane equilibrative nucleoside transporters (ENTs) in
eNAD+ uptake (34), we also evaluated whether eNAD+ expo-
sure changed mRNA levels of ENT1 and ENT2. We found that
eNAD+ prompted substantial increases of ENT1 mRNAs,
having no effects on those of ENT2 (Fig. 3C). We also investi-
gated whether gene expression changes observed in eNAD+-
treated cells also occurred in cells exposed to NAD-cleaved
products. Interestingly, we found that among NRK1, CD73,
ENT1, and Slc12a8, only the expression of the latter is reduced
by 24-h NMN or ADO exposure, whereas NR had no effects on
analyzed genes (Fig. S1E).

In light of the role of CD73 and Slc12a8 in the uptake of
NAD+-cleaved products, our findings suggested that the
reduced expression of both proteins could contribute to
iNAD+ resetting. To corroborate this hypothesis, we again
took advantage of [3H]-adenine–labeled and [14C]-NAM–
labeled NAD+ and checked whether radioactivity uptake
changed in the presence of unlabeled eNAD+ or its presumed
cleaved products. We found that NAD+ and ADO reduced the
uptake of radioactivity originating from [3H]NAD+ (Fig. 3E),
whereas NAD+, NMN, and NR reduced the uptake of radio-
activity originating from [14C]NAD+ (Fig. 3F). Notably,
silencing of NMN transporter Slc12a8 reduced the uptake of
radioactivity when NAM-labeled [14C]NAD+ was added
extracellularly (Fig. 3, G and H), indicating a contribution of
this transporter on uptake of NAD+. To evaluate the contri-
bution of serum enzymes involved in eNAD+ hydrolysis (44),
we performed experiments studying the uptake of radioactivity
from labeled NAD+ moieties without serum. As shown in
Figure S2, A and B, we found that radioactivity uptake is not
affected by the absence of serum.
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These findings suggest that, at least in part, eNAD+ is
cleaved extracellularly and the degradation products are taken
up by the plasma membrane through different routes in
keeping with prior work (38, 39). To further corroborate these
results, we evaluated the effects of the CD73 inhibitor aden-
osine 50-(α,β-methylene)diphosphate (AMPCP) (59) on
eNAD+ uptake. We found that AMPCP was able to reduce the
uptake of radioactivity when both [3H]NAD+ and [14C]NAD+
were added extracellularly (Fig. 3I), thereby confirming the key
role of eNAD+ hydrolysis by the ectoenzyme for subsequent
uptake of degradation products. It is worth noting that we used
AMPCP at a concentration capable of reducing the uptake of
radioactivity originating from [14C]AMP by 94 ± 3% (Fig. 3I).
Given that this radioactivity is related to the uptake of [14C]
adenosine formed extracellularly by CD73 (57), the latter
finding suggested that under our experimental setting AMPCP
prompted an almost complete inhibition of the ectoenzyme.
On this basis, we reasoned that the cellular radioactivity
accumulating in cells exposed to labeled NAD+ in the pres-
ence of AMPCP (Fig. 3I) is CD73 independent. Accordingly,
we found that prolonged exposure to AMPCP affected the
increase of iNAD+ in the early time points when cells were
exposed to unlabeled eNAD+ (Fig. S2C). We then evaluated
the CD73-independent metabolism of eNAD+ via the NAM-
forming CD38. We found that the addition of a molar excess
of extracellular NAM, used as a product inhibitor of CD38, did
not alter radioactivity uptake when cells were exposed either to
[3H]NAD+ or to [14C]NAD+ (Fig. 3J). In keeping with this, the
CD38 inhibitor apigenin (60) did not reduce the uptake of
radioactivity originating from [14C]NAD+ (Fig. 3K). Hence, the
CD73-independent uptake of radioactivity in cells exposed to
labeled NAD+ might be ascribed to intact NAD+ trans-
portation. Accordingly, we found that NAMPT or NRK1
silencing did not prevent iNAD+ increase after eNAD+
exposure (Fig. S2, D and E), supporting the hypothesis that, at
least in part, NAD+ was transported intact.

Collectively, these findings indicate that increased iNAD+
content due to prolonged eNAD+ exposure triggers a complex
cascade of transcriptional events involving plasma membrane
eNAD+-metabolizing enzymes and transporters aimed at
reestablishing NAD+ homeostasis.
SIRT1 activity prompts iNAD+ resetting

To further understand the molecular mechanisms under-
lying iNAD+ resetting, we focused our attention on SIRTs.
The latter are NAD+-dependent deacetylases with a key
transcription-regulating function (61). Among them, SIRT1 is
the most extensively studied and is involved in the regulation
of various metabolic processes in response to changes in
iNAD+ availability (62). We hypothesized that changes in
SIRT1 activity due to increased substrate availability concur to
regulate the expression of enzymes/carriers involved in iNAD+
resetting. To verify this hypothesis, we suppressed SIRT1
expression approximately by 90% by means of siRNA (Fig. 4A).
Next, we set up a silencing protocol in which cells were
exposed or not to siRNA for 48 h and to eNAD+ for the last 24



Figure 4. SIRT1 silencing prevents iNAD+ resetting under prolonged eNAD+ exposure in HeLa cells. Effects of SIRT1 silencing on its transcript levels
after 24 h and 48 h (A). Effects of SIRT1 silencing on NAD+ content of cells exposed to extracellular NAD+ (1 mM) (B). Effects of 48-h SIRT1 silencing on
intracellular NAD contents in the resting condition (C). Effects of SIRT1 silencing in presence or not of NAD+ (1 mM, 24 h) on SIRT1, CD73, Slc12a8, NRK1, and
ENT1 transcript levels (D). Effects of SIRT1 silencing on CD38, NAMPT, NMNAT1-3, and ENT 1/2 transcript levels (E). In silico analysis of the transcription
factors binding the promoters of different genes evaluated in cells exposed to eNAD+. Venn diagram of SIRT1-interacting transcription factors binding
promoters of genes whose expression is altered (blue) and unaltered (red) during NAD+ resetting (F). Each column/point represents the mean ± SD of four
experiments in triplicate. *p < 0.05, **p < 0.01, and *** p < 0.001 versus Crl. ANOVA and Tukey’s post hoc test were used. CD38, ADP-ribosyl hydrolase/
cyclase; CD73, ecto-50-nucleotidase; eNAD+, extracellular NAD+; ENT, equilibrative nucleoside transporter; iNAD+, intracellular NAD+; NAMPT, nicotinamide
phosphoribosyl transferase; NMNAT, nicotinamide mononucleotide adenylyl transferase; NRK1, nicotinamide riboside kinase; SIRT1, sirtuin 1; Slc12a8, solute
carrier family 12 member 8.
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h. Remarkably, as shown in Figure 4B, the increase in iNAD+
at 8 h was significantly higher in SIRT1-silenced cells than that
occurring in cells proficient for SIRT1. More importantly,
silencing of SIRT1 abrogated NAD+ resetting (Fig. 4B). To
rule out that silencing SIRT1 could increase basal iNAD+
contents and the latter might be at least in part responsible for
preventing iNAD+ resetting, we measured iNAD+ contents
under basal conditions (i.e., without eNAD+ exposure) in
resting and SIRT1-silenced cells. As shown in Figure 4C,
SIRT1 silencing did not affect iNAD+ content in basal con-
dition. In keeping with a key role of CD73 and Slc12a8 tran-
scriptional suppression in iNAD+ resetting, silencing of
SIRT1 prevented downregulation of both transcripts in
eNAD+-exposed cells (Fig. 4D). SIRT1 silencing also sufficed
to prompt CD73 and Slc12a8 mRNA increases in control cells
(Fig. 4D), consistent with SIRT1-dependent constitutive sup-
pression of CD73 and Slc12a8 transcription. Similarly, also
NRK1 transcriptional suppression induced by prolonged
eNAD+ exposure (Fig. 1F) was reverted by SIRT1 silencing,
and, again, its basal transcript levels increased in SIRT1-
silenced cells (Fig. 4D). Notably, we found that genes that
did not affect during eNAD+ exposure (NAMPT, NMNAT1,
NMNAT3, ENT2, CD38) were not regulated by SIRT1
silencing, contrarily NMNAT2 and ENT1, whose levels were
changed by NAD+ exposure, were affected by SIRT1 silencing
(Fig. 4E). Collectively, these data on the one hand highlight the
role of SIRT1 in regulating the expression of genes involved in
eNAD+ metabolism and uptake and on the other hand to its
transcriptional regulating ability as a central mechanism of
NAD+ resetting. To corroborate this assumption, we con-
ducted an in silico analysis of the transcription factors (TFs)
known to bind the promoters of the various genes we evalu-
ated in cells exposed to eNAD+. Specifically, we divided the
genes into two groups, that is, those whose expression is
affected during NAD+ resetting (CD73, Slc12a8, ENT1, NRK1,
NMNAT2) and those that do not undergo transcriptional
changes (NAMPT, NMNAT1, NMNAT3, ENT2, CD38).
Using the Ciiider software (63) (developed to identify TF
DNA-binding elements) and the database Biological General
Repository for Interaction Datasets (www.thebiogrid.org, a
repository for protein–protein interaction), for each gene, we
then evaluated the number of TFs binding to the
corresponding promoter and known to interact with SIRT1.
Interestingly, as shown in Figure 4F, the number of SIRT1-
regulated TFs was 15 for genes whose expression changed
during NAD+ resetting and seven for those showing no
transcriptional changes. The higher number of SIRT1-
regulated TFs binding to promoters of genes altered during
eNAD+ exposure supports the hypothesis that SIRT1 con-
tributes to the transcriptional changes during iNAD+
resetting.

Discussion

In light of the consolidated role of iNAD+ availability in
counteracting pathogenesis of numerous disorders, extracel-
lular supply of the dinucleotide and its precursors received
great attention as a safe and innovative therapeutic strategy. In
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this scenario, the present study demonstrates that cells bring
about a SIRT1-dependent homeostatic response aimed at
restoring physiological iNAD+ contents. SIRT1 being a key
sensor of iNAD+ content and transcriptional regulator makes
sense that the enzyme is centrally poised to regulate the NAD+
resetting response.

A key finding of our study is that upon eNAD+ exposure,
cells undergo transient iNAD+ increase followed by an exact
resetting to control levels. Of note, this occurs despite the
continuous presence of high extracellular dinucleotide con-
centrations. Intrigued by the underlying molecular mecha-
nism, we set up experiments to understand whether resetting
was due to NAD+ consumption and/or extrusion. As far as
consumption is concerned, according to the literature (64),
PARP-1 is the sole enzyme that can prompt an extent of
NAD+ consumption consistent with the quantitative aspect of
NAD+ resetting (i.e., an amount of NAD+ corresponding to
almost 100% of its basal content, see Fig. 1A). However, two
potent PARP inhibitors proved unable to affect NAD+ reset-
ting, in keeping with the apparent lack of triggers prompting
PARP-1 activation in cells with increased iNAD+ contents.
Our findings also rule out the possibility that NAD+ resetting
is due to dinucleotide extrusion. Indeed, although cells loaded
with [3H]NAD+ increase extrusion of radioactivity upon
eNAD+ exposure, the opposite occurs in those loaded with
[14C]NAD+. This is not consistent with the extrusion hy-
pothesis as the mechanisms are responsible for NAD+ reset-
ting. Rather, these findings, together with evidence of
induction of the ENT1 in eNAD+-exposed cells (Fig. 3C),
indicate that a reduction in intracellular ADO compromises
the adenylate pool for the resynthesis of NAD+. Although this
mechanism may well underlie iNAD+ resetting, the additional
finding that ATP contents are increased rather than reduced
during iNAD+ resetting rules out this hypothesis. Also, the
increased availability of ATP in eNAD+-exposed cells suggests
that iNAD+ resetting cannot be ascribed to a reduced dinu-
cleotide resynthesis through the ATP-dependent NAMPT and
NMNATs.

The reduction in uptake of radioactivity originating both
from [3H]NAD+ and [14C]NAD+ when cells are pre-exposed
to eNAD+ suggests that reduced eNAD+ uptake contributes
to iNAD+ resetting. Specifically, data indicate that, at least in
part, resetting is due to diminished eNAD+ hydrolysis and
ensuing uptake of related products. In this regard, prior works
report the hydrolysis of eNAD+ by CD73 (38, 39). Our data are
in keeping with this claim by showing that while extracellular
ADO affects the uptake of the radioactivity of [3H]-adenine-
labeled NAD+, NR and NMN reduce that of [14C]-NAM–
labeled NAD+. Taken together, these findings suggest that
eNAD+ is cleaved extracellularly into adenine- and NAM-
containing moieties that are taken up by at least two
different routes, such as ENTs and Slc12a8, respectively. Of
note, the inability of NR to reduce the uptake of radioactivity
originating from [3H]NAD+ (that is [3H]adenosine) (Fig. 3D)
also suggests that, at least under our experimental conditions,
NR does not compete with ADO to cross the plasma mem-
brane via ENTs. Conversely, the ability of the CD73 inhibitor
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AMPCP to reduce the uptake of radioactivity originating from
both [3H]NAD+ and [14C]NAD+ indicates the key functional
role of CD73 in eNAD+ hydrolysis and subsequent increase of
iNAD+. In this regard, the reduced CD73 expression levels, as
well as its activity in cells challenged with eNAD+, points to
these transcriptional repressions as a central event in NAD+
resetting. Evidence that, akin to CD73, the expression of both
Slc12a8 (a specific NMN transporter (41, 65)) and NRK1 (the
enzyme feeding NR into the NAD+ resynthesis pathway (66))
diminishes upon eNAD+ exposure provides additional mech-
anisms underpinning iNAD+ resetting. Of note, we report that
Slc12a8 silencing reduced [14C]-NAM–labeled NAD+ uptake,
confirming the role of this transporter in NAD+ uptake and its
contribution to restoring NAD+ contents to control levels.
Admittedly, additional molecular mechanisms might concur to
reestablishing iNAD+ content upon prolonged eNAD+ expo-
sure. We provide here, however, the first evidence that, among
these mechanisms, SIRT1 is a key player of the iNAD+
resetting response. In particular, our data suggest that the
increased availability of iNAD+ in eNAD+-exposed cells pro-
motes SIRT1 activity that, in turn, prompts CD73, Slc12a8,
and NRK1 transcriptional repression. This compromises the
efficiency of the molecular machinery responsible for eNAD+-
induced iNAD+ increase, thereby contributing to iNAD+
resetting. The key role of SIRT1 in iNAD+ resetting is well in
keeping with the ability of the enzyme to adjust its activity
according to the intracellular availability of NAD+, as well as
with its epigenetic functions (62). This interpretation is also in
line with our in silico analysis showing that those genes whose
expression changes during iNAD+ resetting have some SIRT1-
interacting TFs double that of genes not affected by eNAD+
exposure. It is also worth noting that silencing of SIRT1 suf-
fices to prompt a 4-fold increase of CD73 and Slc12a8 tran-
scripts in resting cells, thereby indicating a constitutive role of
the enzyme in repressing transcription of these genes. Of note,
we found that SIRT1 silencing prompts transcriptional
changes only toward genes that are affected by eNAD+
exposure, thereby underlying the correlation between NAD+
contents and transcriptional regulation by SIRT1.

Regardless of the role of CD73 and Slc12a8 in eNAD+uptake,
our data also suggest that eNAD+ can cross the plasma mem-
brane uncleaved. Indeed, in the presence of an extracellular
concentration of AMPCP leading to an almost complete CD73
inhibition (see Fig. 2H), eNAD+ can still prompt significant
iNAD+ increases. Furthermore, silencing of NAMPT or NRK1
did not reduce the iNAD+ increase under eNAD exposure,
suggesting that part of NAD+was not cleaved. This is in keeping
with prior findings on the ability of eNAD+ to trigger iNAD+
increases without evidence for extracellular hydrolysis (32, 33,
35, 36). Admittedly, even if our assumption is supported by prior
and present experimental evidence, it is not consistent with the
ability of SIRT1 silencing to prevent iNAD+ resetting by
reducing CD73 and Slc12a8 NMN transporter. This apparent
inconsistency might be reconciled if even the expression of the
yet to be identified plasma membrane NAD+ transporter was
negatively regulated by SIRT1. However, only NAD+ trans-
porter identification will confirm this hypothesis.
Our study presents some limitations. First, we report total
iNAD+ concentration, without specifying in which compart-
ment NAD+ increase occurred; this limit may be the subject of
future studies. Second, because under physiological conditions,
in mammalian serum, NAD+ circulates in the low micromolar
range (0.1–0.5 μM), NAD+ concentrations used in our study
are doubtless high. However, our findings lay the basis for a
finely tuned signaling pathway able to sense derangements of
NAD+ homeostasis and prompt resetting of physiological
conditions. Third, we emphasize that even if our findings
provide evidence for unprecedented molecular machinery
responsible for resetting cellular NAD+ content upon an initial
increase, they do not clarify how iNAD+ decreases during
NAD+ resetting and reaches exactly the original control
values. Indeed, the SIRT1-activated feedback mechanism
impinging on CD73, Slc12a8, and NRK1 expression, in prin-
ciple, should only counteract further iNAD+ increases,
somehow freezing the cell in a cytoplasmic milieu containing
an increased NAD+ content. In other words, mechanisms
responsible for reducing iNAD+ to the initial basal levels, once
the entrance apparatus has been impaired, are still unknown.

From a theoretical point of view, in light of the pleiotropic
and critical functions of NAD+ signaling (DNA repair, tran-
scription, Ca2+ homeostasis, energetic metabolism, mito-
chondrial dynamics, etc.), it makes sense that evolution
provided eukaryotic cells with feedback molecular machinery
aimed at counteracting derangements of NAD+ availability
that might severely compromise cellular homeostasis. Given
the great interest in the NAD+ boosting approach, evaluating
this regulatory mechanism could prevent saturation phe-
nomena in vivo and help identify the therapeutic dosing
regimen.

In conclusion, the present study furthers our understanding
of the complex network of events that regulate iNAD+ con-
tent. Finally, it suggests that the therapeutic potential of the
different NAD+-boosting strategies (67) might be significantly
reduced in those tissues in which the NAD+-resetting
response is functionally relevant. Of course, NAD+-
supplementation strategies may still be of therapeutic rele-
vance in conditions of iNAD+ deficiency.
Experimental procedures

Cell culture

HeLa, primary renal proximal tubule epithelial, SH-SY5Y,
and HT29 human cells were obtained from American Type
Culture Collection. Cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) containing 25 mM glucose and
supplemented with 2 mM glutamine, 1 mM pyruvate, 10%
fetal bovine serum, and antibiotics. Cultures were brought to
50 to 70% confluence and exposed to different compounds.
NAM dinucleotide (NAD+), NMN, NAM, and ADO were
purchased by Sigma-Aldrich. NR was synthesized as described
by Yang et al. (68). NAD+, NMN, NR, NAM, and ADO were
dissolved in culture media. Apigenin was dissolved in DMSO
(Sigma-Aldrich). PJ34, 6(5H)-phenanthridinone, AMPCP, and
novobiocin were dissolved in water (Sigma-Aldrich). All
J. Biol. Chem. (2021) 297(1) 100855 9
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results are expressed as the percentage of the control (un-
treated cells); each sample was normalized by the protein
content.

NAD+, NADH, ADP, and ATP measurement

NAD+ and NADH contents were quantified through an
enzymatic cycling procedure as reported (32). Briefly, to
measure NAD+ contents, cells grown in a 48-well plate were
killed with 1 M 50 μl of HClO4 and then neutralized with an
equal volume of 1 N KOH. After the addition of 100 μl of
bicine (100 mM), 100 μl of the cell extract was mixed with an
equal volume of the bicine buffer containing ethanol, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium, phenazine
ethosulfate, and alcohol dehydrogenase. The mixture was kept
at room temperature for 10 min, and then, absorbance at
550 nm was measured (VICTOR3, PerkinElmer). To measure
intracellular NADH contents, cells grown in a 24-well plate
were killed with 1 N 80 μl of KOH and then heated to 60 �C for
30 min. After the addiction of 500 μl of bicine (100 mM),
100 μl of the cell extract was mixed with an equal volume of
the bicine buffer containing ethanol, 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium, phenazine ethosulfate, and
alcohol dehydrogenase and measured as described above. ADP
contents were quantified in 0.25 N HCl cell extracts (from 6-
well plate) by HPLC using a Supelco 25-cm column (5 μm),
mobile phase K2HPO4 0.1 M, 1% acetonitrile, 10 mM tetra-
butylammonium bromide, pH 6.9, and UV detection at
260 nm (69). Cellular ATP content was measured using an
ATPlite kit (PerkinElmer, Milan). Briefly, cells grown in a 48-
well plate were killed with 70 μl of luciferase buffer and then
20 μl of D-luciferin was added. The production of light caused
by the reaction of ATP with added luciferase and D-luciferin
was evaluated within 5 min by means of a luminometer.

Oxygen consumption analysis

Quantitation of oxygen consumption was conducted by
means of the Oxygraph system (Hansatech Instruments) as
reported (70). Cells (250,000), exposed or not toNAD+ 1mMor
100 μM, at different times, were gently detached with trypsin
and loaded in the chamber containing 300 μl of DMEM.Oxygen
consumption was monitored for 5 min at 37 �C.

NAD+ and AMP uptake measurement

Cells plated in 12 wells plates were grown to confluence.
When cells were preincubated with 1 mM unlabeled NAD+
for 24 h, the wells were washed three times with 1 ml of PBS
and then incubated in a buffer solution (140 mM NaCl, 10 mM
Hepes/Na, 2.5 mM MgSO4, 2 mM CaCl2, and 5 mM KCl,
5 mM glucose, pH 7.4) containing 500 pM [14C]NAD+
(54 mCi/mmol), [3H]NAD+ (28.6 Ci/mmol), or [14C]AMP
(60 mCi/mmol) (PerkinElmer). Competing compounds and
drugs were added to the wells 15 min before labeled molecules
unless stated in the text. After 10 min, cells were washed three
times with 1 ml of PBS and lysed with 0.5 M NaOH. Incor-
porated radioactivity was assayed by liquid scintillation
counting.
10 J. Biol. Chem. (2021) 297(1) 100855
RNA isolation and qPCR

Total RNA was isolated using TRIzol Reagent (Life Tech-
nologies). One microgram of RNA was retrotranscribed using
iScript (Bio-Rad). Real-time PCR was performed using Rotor-
Gene 3000 (Qiagen) as reported (71). The following primers
were used: NAMPT forward 50-AACAATATCCACCCAA-
CACAA-30, reverse 50-TAGACATCTTTGGCTTCCTGG-30;
NMNAT1 forward 50-TCCCATCACCAACATGCACC-30,
reverse 50-TGATGACCCGGTGATAGGCAG-30; NMNAT2
forward 50-GATTGGATCAGGGTGGACC-30, reverse 50-
TCCGATCACAGGTGTCATGG-30; NMNAT3 forward 50-
ATGGGAAGAAAGACCTCGCAG-30, reverse 50-AGTTT
GCTGTGATGATGCCTC-30; CD38 forward 50-CCCGCA
GGTTTGCAGAAGCTGCC-30, reverse 50-CGATTCCAGC
TCTTTTATGGTGGGATC-30; CD73 forward 50-GATAT-
GAGAACTTCTGCTGGAAAGTG-30, reverse 50-CAAAA
CCTCTAGCTGCCATTTGCACAC-30; CD157 forward 50-
GTTGCAGATTTCTTGAGCTGGTGTCG-30, reverse 50-
CCTTTGATGGGATAGGCTCCTGTTGG-30; CD203a for-
ward 50-CAGATCATGGCATGGAACAAGGCAG-30, reverse
50-TGGTTCCCGGCAAGAAAGATTTCGG-30; SARM1 for-
ward 50-GCAGTAGCGGTGTTGGCGACTAAC-30, reverse
50-TTAGAGTCGAGCAACGGCACGAGG-30; NRK1 forward
50-CAGAAACACCTCCCAAATTGCAGTGTC-30, reverse 50-
GGGAATTTCCTCAGCACTTTCCTGGT-30; Slc12a8 for-
ward 50-CCATGTATATCACCGGCTTTGCTGAATC-30,
reverse 50-GAAAGAACCCACCACAAAGTCCAGTG-30;
SIRT1 forward 50-CCCAGATCTTCCAGATCCTCAAGC-30,
reverse 50-GCAACCTGTTCCAGCGTGTCTATG-30;
SLC29A1 (ENT1) forward 50-TTGCCTGAGCGGAACTC
TCTC-30, reverse 50-GCATCCAGCTGCACCTTCAC-30;
SLC29A2 (ENT2) forward 50-TCCTGCAGTCTGATGA-
GAACG-30, reverse 50-GACGGACAGGGTGACTGTGAA-30;
18S forward 50-CGGCTACCACATCCAAGGAA-30, reverse
50-GCTGGAATTACCGCGGCT-3’ (IDT Tema Ricerca).

SIRT1, NAMPT, NRK1, and Slc12a8 silencing

Nine thousand cells were subcultured in 48-well plates and
then incubated with 50 nM SIRT1, NAMPT, NRK1, or Slc12a8
siRNA. After 24 h, cells were exposed or not at 1 mM NAD+,
and after 24 h, the NAD+ content was measured or RNA was
extracted. The following primers were used: SIRT1 50-
CAAAGGAUAAUUCAGUGUCAUGGTT and 50-AGGUUU
CCUAUUAAGUCACAGUACAA; NRK1 50-GCAGUCA-
CAAUGAAUAAA and 50-UUGUUGAUUUAUUCAUUG;
Slc12a8 50-CUUCUCAUCAUGUUUGUG and 50-ACU-
GUAUCACAAACAUGA (IDT, Tema Ricerca). siRNA for
NAMPT was purchased from Qiagen.

Bioinformatic analyses

Analysis of TF-binding sites in the promoter region of
selected genes was conducted by using CiiiDER software (cit.
CiiiDER: a tool for predicting and analyzing TF-binding sites).
The analysis was performed using the human motifs from the
Jaspar 2020 core redundant vertebrate TF-binding site data-
base (http://jaspar.genereg.net/tools). Subsequently, TFs were
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selected based on their interaction with SIRT1, identified by
means of Biological General Repository for Interaction Data-
sets database.

Statistical analysis

Data are presented as the mean values ± SD. All differences
among groups were performed using ANOVA followed by
Tukey’s W-test. Levels of significance were p < 0.05 (*), p <
0.01 (**), and p < 0.001 (***). Statistical analyses were carried
out using GraphPad Prism (version 7).
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