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Background: Prediction of radiotherapeutic response before radiotherapy could help

determine individual treatment strategies for patients with acromegaly.

Objective: To develop and validate a machine-learning-based multiparametric MRI

radiomics model to non-invasively predict radiotherapeutic response in patients

with acromegaly.

Methods: This retrospective study included 57 acromegaly patients who underwent

postoperative radiotherapy between January 2008 and January 2016. Manual lesion

segmentation and radiomics analysis were performed on each pituitary adenoma, and

1561 radiomics features were extracted from each sequence. A radiomics signature

was built with a support vector machine using leave-one-out cross-validation for feature

selection. Multivariable logistic regression analysis was used to select appropriate

clinicopathological features to construct a clinical model, which was then combined

with the radiomics signature to construct a radiomics model. The performance of this

radiomic model was assessed using receiver operating characteristics (ROC) analysis

and its calibration, discriminating ability, clinical usefulness.

Results: At 3-years after radiotherapy, 25 patients had achieved remission and 32

patients had not. The clinical model incorporating seven clinical features had an area

under the ROC (AUC) of 0.86 for predicting radiotherapeutic response, and performed

better than any single clinical feature. The radiomics signature constructed with six

radiomics features had a significantly higher AUC of 0.92. The radiomics model showed

good discrimination abilities and calibration, with an AUC of 0.96. Decision curve analysis

confirmed the clinical utility of the radiomics model.

Conclusion: Using pre-radiotherapy clinical and MRI data, we developed a

radiomics model with favorable performance for individualized non-invasive prediction

of radiotherapeutic response, which may help in identifying acromegaly patients who are

likely to benefit from radiotherapy.

Keywords: acromegaly, radiomics, radiotherapeutic response, magnetic resonance imaging, receiver operating

characteristics
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INTRODUCTION

Acromegaly is a rare chronic disease caused by pituitary
somatotroph adenoma that causes high growth hormone
(GH)/insulin-like growth factor 1 (IGF1) levels and reduced
life expectancy (1, 2). The aim of treatment is to normalize
the level of IGF1, which usually reflects appropriate disease
control, reduces the risk of complications, and reduces mortality
(3–5). The consensus and guidelines for acromegaly recommend
transsphenoidal surgery as the first-line treatment, followed
by medicinal treatment, with radiotherapy as the third-line
choice (6, 7).

The initial cure rate of transsphenoidal surgery for acromegaly

patients with macroadenomas is 40–50% when the surgery is
performed by experienced pituitary surgeons (7). In comparison

with surgery, the drugs used for medicinal treatment, such as
somatostatin agonists and pegvisomant have higher costs, require
lifelong injections, may be subject to tolerance problems, and
may also be ineffective in some drug-resistant adenomas (8).
Radiotherapy as a third-line treatment is mainly aimed at patients
whose GH and IGF1 levels are poorly controlled, or whose
tumors continue to grow after surgery or medication (7, 9). Also,
radiotherapy can also be an option for patients who cannot or
unwilling to undergo surgery (10). Previous studies have shown
that radiotherapy can increase the remission rate for patients with
acromegaly who have not been cured through surgery (8, 11, 12).
However, radiotherapy still has some problems that cannot be
ignored. Radiotherapy can lead to long-term hypopituitarism,
visual damage, cranial nerve defects, and increased risk of
developing a second brain tumor, cognitive dysfunction, or
cerebrovascular disease (7, 9, 13, 14). Therefore, we should focus
on the effectiveness of radiotherapy at controlling GH/IGF-1
hypersecretion and identify those patients who would benefit
most from radiotherapy, and find a balance between its merits
and shortfalls (14).

Thus, an effective pre-radiotherapy prediction method
that enables the precise prediction of radiosensitivity and
radiotherapeutic response is important in the selection of
treatment options and the formulation of individual treatment
strategies, and could help avoid the possible side effects
and economic burden of radiotherapy for patients with a
poor radiotherapeutic response. However, to the best of our
knowledge, no previous study has investigated a pre-radiotherapy
prediction model for determining radiotherapeutic response in
patients with acromegaly.

Radiomics is an emerging machine learning method that
can extract numerical data reflecting biologically important
tissue characteristics from medical imaging information (15).
Compared with traditional methods, data mining in radiomics
has two unique advantages. First, the radiomics method allows
the semi-automatic or automatic extraction of radiomics features
and offers abundant data relative to qualitative analyses. Second,
high-dimensional radiomics information can shed light on the
heterogeneity within a region through identifying different sub-
regions and defining the spatial complexity of disease (16).
Various recent studies have demonstrated that radiomics is
a particularly promising approach for assisting in developing

individual treatment strategies in oncology (17, 18).We therefore
hypothesized that radiosensitivity in patients with acromegaly
may be related to high-dimensional information present in MRI
images, and developed anMRI-based radiomics model to predict
radiotherapeutic response in patients with acromegaly.

METHODS

Patients
Acromegaly patients admitted to the Department of
Neurosurgery of Peking Union Medical College Hospital
(PUMCH) between January 2008 and January 2016 were
enrolled in this study. The diagnostic criteria for acromegaly
were: (1) adult patients with clinical features of acromegaly (7);
(2) a pituitary adenoma detected by pituitary magnetic resonance
imaging (MRI); (3) meeting the endocrine diagnostic criteria
for acromegaly (7) (elevated IGF-1 levels (19), random GH level
>1 ng/mL, and nadir GH level > 0.4 ng/mL after OGTT).

The inclusion criteria were: (1) patients with a history
of stereotactic radiosurgery (SRS) or fractionated stereotactic
radiotherapy (FSRT); (2) a pituitary contrast-enhanced MRI
examination before radiotherapy, and pituitary adenomas with
a maximum diameter of not <8mm can be detected; (3)
complete pre-radiotherapy clinical data (as shown in clinical data
collection before radiotherapy); and (4) follow-up of more than
3-years after radiotherapy.

A complete pituitary hormonal evaluation was performed
before radiotherapy. Patients who had undergone operation
or medical treatment after radiotherapy were excluded. After
collection and screening, 57 acromegaly patients were identified
for this retrospective study, which was approved by the ethical
review committee of the Peking UnionMedical College Hospital,
and the patients’ informed consent was obtained.

Clinical Data Collection Before
Radiotherapy
The pre-radiotherapy clinical features collected included gender,
age, random GH value, IGF-1 standard deviation score (SDS),
nadir GH value, and GH inhibition ratio after OGTT, tumor
volume, Knosp grade (20), tumor consistency (21) (soft or firm),
cavernous sinus invasion (collected from the surgical video), Ki-
67 value (<3 or ≥3), and P53 value (negative or positive). A
calculator available online (http://ticemed_sa.upmc.fr/sd_score/)
was used to obtain individual IGF-I SDS after entering the age,
gender, IGF-I value and assay name (22).

Management After Radiotherapy
FSRT combines stereotactic localization with fractionated
therapy, with small doses being administered over several
sessions. The FSRT protocol used in this study involved
administering a total dose of 50Gy in 28 or 25 sessions (5 sessions
per week) (23). All patients who underwent SRS were treated
with gamma knife, which delivers adequate radiation doses (14–
34Gy) to the tumor in one session (23).

Complete hormonal, clinical, and pituitary MRI examinations
were performed at 3 and 6 months after radiotherapy, and
annually thereafter in our out-patient service. The efficacy of
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radiotherapy and the radiotherapeutic response were determined
by hormone levels at 3-years after radiotherapy. According to
the latest guidelines, remission was defined by (1) either basal
GH <1.0 ng/mL or nadir GH <0.4 ng/mL after OGTT; and (2)
a normal age- and gender- adjusted IGF-1 level (6, 7) without
additional drug therapy. Patients who failed to meet the above
criteria were considered as non-remission. The same GH or
IGF1 test was used for an individual patient during the follow-
up period.

Tumor MRI Imaging Segmentation and
Radiomics Feature Extraction
All patients underwent pituitary MR enhanced imaging using
a 3.0-T magnetic resonance device (Discovery MR 750, GE
Healthcare, Chicago, IL, USA). The pre-radiotherapy pituitary
MRI protocol consisted of three sequences: T1-weighted imaging
(T1WI), contrast-enhanced T1WI (CE-T1), and T2-weighted
imaging (T2WI). A neuro-radiologist with 7 years of experience
delineated regions of interest (ROIs) representing the tumor
on all MRI images using ITK-SNAP software (University of
Pennsylvania, www.itksnap.org). Then, all ROIs were manually
checked by a neuro-radiologist with 12 years of experience
without any prior knowledge of the patients. All differences were
settled through negotiation between the two readers.

Then, the open-source PyRadiomics package (24) (https://
github.com/Radiomics/pyradiomics) was used to extract
radiomics features from the ROIs, and all features were
normalized to a value between 0 and 1. Four types of features
were calculated, including (1) first order features (n = 180), (2)
textual features [n = 680, including gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM) and
gray-level size-zone matrix (GLSZM)], (3) wavelet features (n =

688), and (4) shape and size features (n= 13).

Radiomics Feature Selection
The feature selection process can improve the performance of
an algorithm by reducing the over-fitting caused by redundant
and irrelevant information in high-dimensional data. In this
study, the support vector machine (SVM) method was used to
predict whether a patient would achieve remission. A radiomics
score was calculated for each patient using an SVM model
with a linear kernel based on the selected features. Values of C
ǫ [0.01, 1] with a step size of 0.01 were tested. Feature selection
was conducted using a leave-one-out cross-validation (LOOCV)
procedure (25), with the LOOCV being used to determine the
optimal value of the regularization parameter C. In each iteration
of the LOOCV, the patients were divided into two groups, with
56 patients (N – 1, with N was the patient number of our
study) being used for training and only one for testing, with the
process being repeated 57 times. The C value maximizing the
average prediction accuracy (ACC) was selected as the optimal
regularization parameter, and then the most important radiomics
features were identified using the selected C value.

Radiomics Analysis
The radiomics signature was constructed using the selected
radiomics features and an SVM with a radial basis function

(RBF) kernel. The clinical features used to develop the
clinical prediction model were selected using multivariable
logistic regression analysis with selection according to the
Akaike information criterion (AIC) (26). Finally, a nomogram
(radiomics model) (27) combining the radiomics signature
and clinical model was constructed using multivariate
logistic regression.

Receiver operating characteristic (ROC) (28) curve analysis
was performed, and the values of the area under the ROC curve
(AUC), ACC, sensitivity (SN), specificity (SP), positive predictive
value (PPV), and negative predictive value (NPV) were also used
to demonstrate predictive performance. The DeLong test was
used to compare the predictive efficacy of the three models.

Calibration curves and the Hosmer-Lemeshow test were used
to evaluate the similarity between the predicted and observed
radiotherapeutic response probabilities (29). Decision curve
analysis (DCA) was performed to assess the clinical usefulness of
the radiomics model by quantifying the net benefits at different
probability thresholds (30).

Statistical Analysis
A two-sided p-value < 0.05 was considered to be statistically
significant. All statistical analyses were performed by a dedicated
statistician using SPSS software version 22 (SPSS Inc., Chicago,
USA) and R statistical software version 3.4.1 (R Foundation
for Statistical Computing, Vienna, Austria). The tumor volume
was accessed through 3D slicer (31) (version 4.10.2, http://www.
slicer.org). The calibration plot was analyzed using the “hdnom”
package, and DCA was analyzed using the function “dca.R.”

RESULTS

Clinical Characteristics
Since 2008, a total of 209 patients with acromegaly recorded
radiotherapy history at our hospital. The FSRT was performed at
PUMCH, and gamma knife procedures were performed in other
hospitals. After screening, 132 patients were excluded because
of one or more of the following: insufficient follow-up time,
post-radiotherapy history of sellar surgery or chemotherapy,
or insufficient MRI images. Twenty patients were excluded
because of incomplete clinical data. Finally, 57 patients with
acromegaly met the screening criteria and were included in
this study (Figure 1), 34 patients underwent FSRT treatment,
while 23 patients underwent gamma knife treatment. And
the histopathological type of all included patients is GH
secreting adenoma.

The clinical characteristics of these 57 patients are
summarized in Table 1. In the 3-year follow-up after
radiotherapy (according to the latest consensus and remission
criteria for acromegaly patients), 25 patients (FSRT: 14 and
gamma knife: 11) achieved remission and 32 patients did not.
There were no significant difference in radiotherapeutic response
between the FSRT and Gamma Knife groups (P = 0.620).

Five pre-radiotherapy clinical characteristics (the random
GH value, nadir GH value, GH inhibition ratio after OGTT,
tumor volume, and Knosp grade) were significantly associated
with the radiotherapeutic response in patients with acromegaly
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FIGURE 1 | Patient recruitment pathway.

TABLE 1 | Patients’ characteristics.

Characteristic Whole Set

(n = 57)

Remission

(n = 25)

Non-remission

(n = 32)

P-value

Gender

Male 20 (35.1%) 9 (36.0%) 11 (31.4%) 0.898

Female 37 (64.9%) 16 (64.0%) 21 (68.6%)

Age (year) 38.62 ± 12.78 40.89 ± 15.04 36.84 ± 10.60 0.239

GH level (ng/mL) 5.30(3.15-11.60) 3.8(2.7-5.8) 9.1(4.35-17.96) 0.000

Nadir GH level (ng/mL) 3.38(2.06-8.41) 2.11(1.65-3.61) 6.55(2.35-13.83) 0.000

IGF-1 SDS 4.43 ± 1.59 4.24 ± 1.49 4.58 ± 1.70 0.276

GH inhibition ratio (%) 35.05 ± 18.28 41.24 ± 21.56 30.21 ± 13.74 0.022

Tumor volume (mm3) 2.04(0.94–5.65) 1.28(0.407–5.00) 3.00(1.69–6.64) 0.040

Knosp grade

Grade 2 15 (26.3%) 12 (48.0%) 3 (9.4%) 0.004

Grade 3 21 (36.8%) 7 (28.0%) 14 (43.8%)

Grade 4 21 (36.8%) 6 (24.0%) 15 (46.9%)

Tumor consistency

Firm 23 (40.4%) 7 (28%) 16 (50.0%) 0.093

Soft 34 (59.6%) 18 (72.0%) 16(50.0%)

Cavernous sinus invasion

Yes 43 (75.4%) 19 (76.0%) 24 (75.0%) 0.931

No 14 (24.6%) 6 (24.0%) 8 (25.0%)

Ki-67(%)

<3 35 (61.4%) 17 (68.0%) 18 (56.3%) 0.336

≥3 22 (38.6%) 8 (32.0%) 14 (43.7%)

P53

Negative 47 (82.5%) 22 (88.0%) 25 (78.1%) 0.331

Positive 10 (15.5%) 3 (12.0%) 7 (21.9%)

SDS, standard deviation score. Categorical variables were presented as the number. Continuous variables consistent with a normal distribution were presented as mean ± standard

deviation, otherwise the median and quartile are used. Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables, while the

independent sample t-test was used to compare the differences in continuous variables.

(P = 0.000–0.040). Acromegaly patients with low random
GH, nadir GH value, tumor volume, Knosp grade, and
high GH inhibition ratio value had a better response to
radiotherapy and were more likely to achieve remission.

No significant differences were found in age, gender, IGF-
1 SDS, tumor consistency, cavernous sinus invasion, Ki-
67, or P53 value between the different radiotherapeutic
response groups.
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FIGURE 2 | ROC curves showing the performance of different features and models in the prediction of response to radiotherapy. (A) Diagnostic performance of each

independent clinical feature. (B) Diagnostic performance of the radiomics signature, clinical model, and radiomics model. Radiomics features had significantly higher

AUC values than the clinical model (p = 0.011).

TABLE 2 | Performance of single clinical features, clinical model, radiomics signature, and radiomic model.

Model Performance ACC AUC SN SP PPV NPV

Significant clinical

features

GH 0.684 0.78 0.625 0.76 0.770 0.613

Nadir GH 0.719 0.79 0.656 0.80 0.808 0.645

GH inhibition ratio 0.649 0.67 0.750 0.52 0.667 0.619

Tumor volume 0.667 0.66 0.969 0.28 0.633 0.875

Knosp grade 0.719 0.71 0.906 0.48 0.690 0.8

Clinical model Combined clinical features 0.807 0.86 0.844 0.76 0.818 0.792

Radiomics signature Combined radiomics features 0.842 0.92 0.812 0.88 0.897 0.786

Radiomics model Combined clinical features and radiomics signature 0.912 0.96 0.906 0.920 0.935 0.885

ACC, accuracy; AUC, area under curve; SN, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value.

Traditional Assessment of the
Radiotherapeutic Response
The five significant features mentioned above were used to
establish independent logistic regression-based predictivemodels
of the response to radiotherapy (Figure 2A). The AUCs of the
ROC curves for random GH, nadir GH, GH inhibition ratio,
tumor volume, and for Knosp grade, were 0.78, 0.79, 0.67, 0.66,
and 0.71, respectively. The ACC, sensitivity, specificity, PPV, and
NPV of the six independent clinical predictive models are shown
in Table 2.

Random GH, IGF-1 SDS, GH inhibition ratio, tumor
volume, Knosp grade, tumor consistency, and P53 value were
selected (according to their AIC values) as discriminatory
factors to build the clinical model, which resulted in the AUC
value being improved to 0.86 (Figure 2B), with an optimized
ACC of 0.807, sensitivity of 0.844, and specificity of 0.76
(Table 2). The clinical model constructed using multivariate
logistic regression analysis had better prediction performance
than any single clinical feature. And the result indicates
that the machine learning method performs better than the
conventional method.

Radiomics Feature Selection and
Signature Construction
A total of 1561 quantitative radiomics features could be extracted
from each MRI sequence from a single patient. From these, one
shape, two textual, and three wavelet features were finally selected
using a linear kernel SVM model and a LOOCV procedure.
The best regularization parameter (C = 0.14) was determined
by LOOCV. Three of the selected features were extracted from
T1WI images, two from CE-T1, and one from T2WI images.
Further details of the six radiomics features are provided in
Table 3.

After making comparisons, it was found that the six selected
features values were significantly different between the remission
group and non-remission group (P = 0.0005–0.0494, Figure 3).
After constructing the radiomics signature with the SVM model,
a violin plot showed significant signature distribution differences
between the two groups (p < 0.05, Figure 4). Moreover, the
radiomics signature performed well in categorizing the remission
and non-remission acromegaly patients after radiotherapy,
reaching an AUC of 0.92 and an ACC of 0.842 (Figure 2B), and
optimized sensitivity of 0.812 and specificity of 0.88. The results
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TABLE 3 | The selected six key radiomic features detail information.

Class Feature name Feature type Stem from Remission Non-remission P-value

Exponential gldm_DependenceVariance Texture T1WI 0.385 ± 0.045 0.574 ± 0.036 0.0016

Exponential glcm_SumEntropy Texture T1WI 0.425 ± 0.064 0.190 ± 0.033 0.0011

Wavelet HHH_firstorder_Kurtosis Wavelet T1WI 0.285 ± 0.039 0.437 ± 0.045 0.0171

Wavelet HHL_gldm_DependenceVariance Wavelet CET1 0.514 ± 0.044 0.698 ± 0.027 0.0003

Original shape_Maximum3DDiameter Shape and size CET1 0.513 ± 0.050 0.704 ± 0.027 0.0009

Wavelet HHH_glszm_SmallAreaLowGrayLevelEmphasis Wavelet T2WI 0.355 ± 0.051 0.237 ± 0.034 0.0494

FIGURE 3 | The six radiomics features showed significant differences between the different radiotherapeutic response (remission and non-remission) groups.

(A) Exponential_gldm_DependenceVariance. (B) Exponential_glcm_SumEntropy. (C) Wavelet-HHH_firstorder_Kurtosis. (D) Wavelet-HHL_gldm_DependenceVariance.

(E) Original_shape_Maximum3DDiameter. (F) Wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis.

demonstrated that the radiomics signature could successfully
predict response to radiotherapy in patients with acromegaly.

Development, Performance, and Validation
of the Radiomics Model
Multivariable logistic regression was used to combine the above-
mentioned clinical model and radiomics signature to construct
a radiomics model. The model incorporating these independent
clinical and radiomics features is presented as a nomogram in
Figure 5. With this new radiomics model the AUC improved to
0.96 (Figure 2B), with the DeLong test showing that its predictive
efficacy was significantly higher than that of the clinical model
(P= 0.04), although it was not significantly better than that of the
radiomics signature. The optimized ACC of the radiomics model
was 0.912, and its sensitivity and specificity were 0.906 and 0.920,
respectively (Table 2).

The calibration curve demonstrated good agreement between
the ground truth and predicted probabilities (p = 0.39,

Figure 6A), with the Hosmer-Lemeshow test showing no
statistical significance, indicating no significant departure from
a perfect fit. Good discrimination and good calibration were
therefore observed with the radiomics model.

Clinical Usefulness
Decision curve analysis for the radiomics model is shown in
Figure 6B. The radiomics model offered a net benefit in the
prediction of response to radiotherapy at a threshold probability
> 0.56%, thereby indicating that the radiomics model is clinically
useful. The decision curve showed that this radiomics model had
a relatively good performance in terms of clinical application.

DISCUSSION

The management of acromegaly and its complications is
complex and requires a comprehensive approach coordinated by
specialists in the treatment of pituitary tumors (32). For patients
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with acromegaly whose symptoms have not been alleviated by
surgery, radiotherapy provides an alternative treatment option
for controlling the disease (6, 14). Nevertheless, two studies
with average follow-up times of 16.5 and 13 years found that
patients with acromegaly who underwent radiotherapy had
poorer metabolic status and increased mortality than patients
who did not undergo radiotherapy (4, 5). Therefore, it is
necessary to choose the most appropriate radiotherapy-sensitive
patients for radiotherapy. However, to the best of our knowledge,
no previous study has investigated a pre-radiotherapy prediction
model for determining radiotherapeutic response in patients
with acromegaly.

Previous studies have investigated factors associated with
the efficacy of radiotherapy for acromegaly, but their results
are different and contradictory. Some research has shown that

FIGURE 4 | A violin plot comparing the distribution of the radiomics signatures

between the different radiotherapeutic response (remission and non-remission)

groups.

smaller tumors and a higher radiation dose may result in
a better radiotherapeutic response (33, 34), while Lee and
colleagues found that higher radiation dose and IGF-1 levels
could affect the radiotherapeutic response in acromegaly patients,
but that tumor volume did not (35). However, many studies
have shown that radiation dose and tumor volume did not affect
the remission rate of acromegaly patients after radiotherapy
(36–38), but that pre-radiotherapy GH and IGF-1 levels did
show significant correlations with radiotherapeutic response
(36, 37, 39). Moreover, the prognosis and treatment response
should not be determined by only a single feature, with it being
recognized that a combined analysis with multiple factors has
more value, and may be powerful enough to change the clinical
management (40, 41).

Radiomics allows high-throughput mining of quantitative
imaging features from general medical images, followed by
automated analysis to assist clinical decision-making (18,
25). The main steps of radiomics analysis include image
collection and reconstruction, segmentation of the ROI, feature
extraction and quantification, and establishment of the predictive
and/or prognostic models. Typically, the quantitative features
can be automatically collected be extracted from the ROI
through the high-throughput technique, so as to explore the
relationship with the valuable information and establish the
models based on machine learning. Several recent studies
have shown that radiomics has prospects in a broad array
of applications, including early screening, accurate diagnosis,
grading and staging, treatment and prognosis, and determination
of molecular characteristics of brain tumors (42, 43). Radiomics
has been shown to be important in predicting and assessing
radiotherapeutic response in a variety of tumors, and its
performance is significantly better than conventional methods
(44), including lung cancer (45, 46), prostate cancer (47),
rectal cancer (48). Therefore, we aimed to use a radiomics
approach to predict the response of acromegaly to radiotherapy
before treatment.

FIGURE 5 | A nomogram derived from the radiomics model. This nomogram is used based on the value of the patient’s eight risk factors, including radiomics

signature, random GH, IGF-1 standard deviation score (SDS), GH inhibition ratio (IR), tumor volume, Knosp grade, tumor consistency, and P53 value. As shown in our

previous research (49), draw a vertical line from the corresponding axis of each factor until it reaches the first “Points” line. Next, summarize the points of all risk

factors, then draw a vertical line that falls vertically from the “Total Points” axis until it reaches the last axis to determine the radiotherapeutic response.

Frontiers in Endocrinology | www.frontiersin.org 7 August 2019 | Volume 10 | Article 588

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Fan et al. Radiomics Predicts Acromegaly Radiotherapeutic Response

FIGURE 6 | Calibration and decision curve analysis of the radiomics model. (A) The Y-axis represents the actual rate. The X-axis represents the predicted probability.

The diagonal violet line represents a perfect prediction by an ideal model. The pink line represents the performance of the radiomics model, which shows a closer fit to

the diagonal violet line representing a better prediction. (B) The Y-axis measures the net benefit. The pink line represents the radiomics model. The violet line

represents the assumption that all patients showed remission. The black line represents the assumption that no patients showed remission.

Thus, we first constructed a clinical model consisting of the
seven selected important discriminatory factors. The clinical
model had better prediction performance than any single clinical
feature. Second, three wavelet features, two texture features, and
one shape and size feature were selected as significant factors to
build a radiomics signature. This could successfully categorize
different responses to radiotherapy in patients with acromegaly.
Finally, the radiomicsmodel incorporating the clinical model and
radiomics signature was constructed, and this showed favorable
calibration and discrimination. This model was also convenient
and accurate for clinical use in the pre-radiotherapy prediction
of radiotherapeutic response.

To the best of our knowledge, this is the first study to
establish a radiotherapeutic response predictive model. However,
although our study provides significant and promising results,
there are still some limitations. First, this is a single center
study, and the model may behave differently on multicenter
datasets with different parameters. Second, because of the limited
number of patients, we adopted an LOOCV procedure to
select radiomics features, instead of using independent training
and test sets. Future work would benefit from training with
a larger multicenter data set. Third, from clinical point of
view, not only the remission rates but also the efficiency
(the decline of GH and IGF-1 levels) after radiotherapy is
important, patients with a significant decline to the subnormal
levels can be mostly controlled with additional drug therapy,
so research on patients with significantly reduced hormone
levels but not reaching remission criteria is our future direction.
Fourth, different subtypes of GH-producing adenomas may have
different sensitivities to radiotherapy, so the related research of
GH-producing adenoma subtypes is also our future research
direction. Finally, radiotherapy for acromegaly is slow-acting
and takes several years to play its full effect, while our patients
were only followed-up for 3 years in this study, which may not
fully reveal the effectiveness of radiotherapy. Therefore, more

patients with longer follow-up times and complete data need to
be included in future studies.

CONCLUSION

In conclusion, we demonstrated that incorporating an MRI-
based radiomics signature and clinical features into a radiomics
model improved the accuracy of radiotherapeutic response
prediction in patients with acromegaly. The radiomics model
showed higher performance than any single feature, and
provided an effective non-invasive tool for radiotherapeutic
response prediction, which could be of assistance in deciding on
individual treatment strategies for patients with acromegaly.
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