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Intrinsic processes drive variability in basal melting
of the Totten Glacier Ice Shelf
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Over the period 2003-2008, the Totten Ice Shelf (TIS) was shown to be rapidly thinning,
likely due to basal melting. However, a recent study using a longer time series found high
interannual variability present in TIS surface elevation without any apparent trend. Here we
show that low-frequency intrinsic ocean variability potentially accounts for a large fraction of
the variability in the basal melting of TIS. Specifically, numerical ocean model simulations
show that up to 44% of the modelled variability in basal melting in the 1-5 year timescale
(and up to 21% in the 5-10 year timescale) is intrinsic, with a similar response to the full
climate forcing. We identify the important role of intrinsic ocean variability in setting the
observed interannual variation in TIS surface thickness and velocity. Our results further
demonstrate the need to account for intrinsic ocean processes in the detection and attri-
bution of change.
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nderstanding the rate of change of ice shelf thinning and

the processes governing change is critical for under-

standing mass balance and hence the Antarctic ice sheet
contribution to sea level rise. Over the period 2003-2008
(~5 years), the Totten Glacier Ice Shelf (TIS) was observed! to be
lowering at ~0.41 m yr~!. However, extending the observational
satellite record to encompass the period 1994-2012 (~18 years)?
showed that the thickness of the TIS was subject to large periodic
3-4 year fluctuations of approximately +40 m with almost no net
thickness change (within the error bars) over the 18 year period.
Further, interannual variation has been detected in surface
velocity>=> and the grounding line location is showing change®.
It is not clear how much of the observed temporal change in TIS
is as a result of internal glacier-ice shelf dynamics or is in
response to variability in ocean-driven basal melting. We have
chosen to characterise the part of melt rate variability that arises
in response to variability intrinsic to the ocean. This study serves
as a necessary basis for understanding and quantifying what
fraction of the observed variations in melt rate are independent
of natural fluctuations in the climate modes and trends arising
from anthropogenic forcing.

Basal melting thermodynamically couples the ocean to the ice
shelf system. As a result, ice shelf thickness responds to variability
in the nearby ocean system. This variability could be externally
forced, for example, by climate change, interannual and multi-
decadal climate modes, the annual cycle, or tides. In addition,
variability could also be generated by the non-linear intrinsic
ocean response to forcing, as opposed to the deterministic
response from interannual atmospheric forcing. Low-frequency
intrinsic ocean variability results from non-linear interactions
within the ocean and in response to stochastic-to-seasonal
timescale changes in atmospheric forcing’~!%, in line with the
paradigm of Stochastic Climate Models'®!7. As a result, the ice
sheet will exhibit a combined response to both intrinsic and
externally forced climate variability.

Observations of basal melting and ice shelf change generally
consist of short records which limit the ability to distinguish
intrinsic from forced variability. Advances have been made
in identifying the ice shelf response to observed low-frequency
internal variations in the Southern Hemisphere climate. For
example, El Nifio-Southern Oscillation (ENSO) has been
suggested to drive stronger cross-shelf transport of oceanic
heat leading to a lowering of Amundsen Sea ice shelves!®.
Conversely, atmospheric hindcast models for 1979-2015 have
suggested that ENSO has a statistically non-significant impact
on the westerly winds which drive stronger cross-shelf
transport!®. This highlights the complex impact that low-
frequency climate variations have on ice shelf mass loss. It also
emphasises the importance of ensuring that correlations and
trends are statistically significant, particularly given the short

satellite record relative to the timescale of climate variations
like ENSO.

Ocean models can be used to simulate and quantify variability
beneath ice shelves. Idealised coupled ice sheet-ocean models
subject to periodic variability in oceanic heat content have
indicated the ice sheet response is dependent on the forcing
periodicity in relation to the ice shelf residence time??. However,
the origin of this periodic forcing and the response of a realistic
ice shelf is uncertain.

In this work, we present simulations of the response of basal
melting beneath TIS to intrinsic ocean variability (model domain
shown in Fig. la). We use lateral boundary conditions that
contain only intrinsic ocean variability and repeated normal-year
atmospheric forcing (Coordinated Ocean ice Reference Experi-
ment version 1; COREv1)?! to quantify the interannual intrinsic
variability that impacts basal melting. Non-linear ocean processes
and the response to rapid wind changes produces a significant
degree of intrinsic variability in water properties on the con-
tinental shelf and thus basal melting beneath TIS. Further
simulations compare the basal melt response from only intrinsic
variability to the full climate response from 1949 to 2007
(Coordinated Ocean ice Reference Experiment version 2;
COREv2)?? and show that intrinsic ocean variability can produce
a similar magnitude response to the interannual climate forcing.
These results demonstrate the need to account for the contribu-
tion of intrinsic ocean processes in order to correctly detect and
attribute ice shelf change.

Results

Melt rate interannual variability. As the COREvl run is not
forced with any interannual climate modes, any resulting low-
frequency variability must be internally generated by the model
or enters as intrinsic variability through the ocean boundaries.
In contrast, the COREv2 run represents the response of the
ice shelf to externally forced interannual variability. The
COREv1 and COREV2 simulations produce a mean basal melting
of 5.0+ 0.5myr~! (for years 30-150) and 5.2+0.5myr~! (for
years 1949-2007), respectively (Fig. 1b). This is half the glacio-
logical inferred value?3, however the mean spatial distributions
(see Results section ‘Intrinsic variability in melt rate’) are similar
to previous studies»?42>. The mean lower melt rate results mainly
from the cooler CORE ocean boundary conditions that introduce
a constant cold bias as compared to previous modelling studies
which utilised different forcing conditions (see Methods).

Both the intrinsic ocean variability model (COREv1 run) and
the interannual variability model (COREv2 run) exhibit basal
melting variability on a range of timescales. As the COREv1 run
is forced with a repeated normal-year atmosphere and the
intrinsically varying ocean resulting from the application of that
atmosphere forcing, it represents the intrinsic melt rate response.
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Fig. 1 Modelled TIS basal melting. a Domain and model bathymetry with TIS outlined orange. b Area average melt rate for COREV1 repeated normal-year
forcing and COREV2 interannual forcing for 1949-2007. Raw data (light coloured lines) is smoothed with a 1.5-yr filter
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In contrast, the COREv2 run contains the ice shelf response to the
interannually varying ocean and atmosphere over the period
1949-2007. The ratio of COREv2 (with all natural, intrinsic,
internal and anthropogenic forcings) to COREv1 (intrinsic-only)
melt rate anomaly variances is 1.7. This is equivalent to a signal-
to-noise ratio, where the ‘signal is the combined deterministic and
intrinsic response from COREv2 and the ‘noise is the intrinsic
response from COREvl (see Methods). This highlights the
potential for intrinsic processes to drive significant low-frequency
variability in mean melt rates.

Quantifying changes in basal melting of TIS due to anthro-
pogenic climate change and known climate modes (e.g. ENSO),
requires a knowledge of the response due to intrinsic ocean
dynamics. This study hereafter focusses on the low-frequency
response of basal melting to intrinsic ocean variability. Here we
are only concerned with this type of variability, noting that
additional questions about the thermodynamic response of the ice
shelf to the longer term climate (COREv2) are the subject of
follow-up studies.

Ocean drivers of TIS variability. Ocean conditions at the ice
shelf cavity entrance drive melt rate changes (Fig. 2a, location A).
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Depth-time plots of the temperature (Fig. 2b) profile show winter
water (WW), the product of the seasonal sea ice formation cycle,
overlaying modified circumpolar deep water (MCDW). There is
also occasional formation of Antarctic surface water (not shown).
These water mass properties are very similar to previous obser-
vations in this region?-2°. The thickness of the MCDW layer,
here shown by fluctuations in the —1.5 °C contour (white line in
Fig. 2b), displays low-frequency variability. The interannual
variability in melt rate (Fig. 2c) correlates very well with MCDW
thickness (r-value =0.87, with lag=0 months) and responds
linearly. This MCDW thickness variability is an intrinsic ocean
response to normal-year surface forcing (wind and fluxes) and
directly drives interannual variability in melt rate. Near to the
continental shelf break (Fig. 2a, location B), the flow character-
istics show interannual variability. This location, chosen to
coincide with high variability in bottom temperature anomaly
from an Empirical Orthogonal Function analysis (see Results
section ‘Bottom temperature interannual variability’), shows sig-
nificant interannual variability in southward depth-integrated
volume flux across the grid cell, with an approximately 5-7-year
period. This shows the intrinsic ocean variability associated with
exchange onto the continental shelf, but the low correlation with
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Fig. 2 Intrinsic variability in MCDW thickness and cross-shelf exchange. a Intrinsic variability in ocean properties are shown at the ice front (A; 116.7° E,
66.7° S) and near the shelf break (B; 120° E, 66.0° S). b Potential temperature at the ice front, location marked as A, with the smoothed —1.5°C
temperature anomaly contour, representing the thickness of the bottom MCDW layer, shown in white. ¢ Area-averaged melt rate for the TIS shown raw
(grey line) and smoothed (blue line), and correlates well with MCDW thickness. d Meridional volume flux integrated over depth, with raw monthly
averages (grey line) and smoothed (orange line) values. Negative values represent southward integrated transport, and hence transport onto the

continental shelf
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melt rate (r-value = 0.02) suggests that local processes have the
biggest impact on melting.

Intrinsic variability in melt rate. The area-averaged melt rate of
the TIS (Fig. 3a) contains significant low-frequency variability,
with a range of 4.5-6 myr~! (Fig. 3b) and power in the ~3-7 yr
time band (Fig. 3c).

To identify and characterise modes of variation, we applied two
different methodologies commonly used for analysing climate data

(see Methods). Empirical orthogonal function (EOF) analysis
identifies spatially invariant patterns in the data and accompanying
time series that maximise variance. This was used to reduce the
dimensionality and to decompose spatial and temporal variation
into the EOF spatial modes, temporal principal components (PCs)
and the variance explained by each mode. We restrict our analysis
to modes explaining >5% of the variance (see Supplementary Fig. 1
for first 6 modes). The data has been linearly detrended and the
climatological mean removed prior to analysis.
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Fig. 3 Intrinsic variability in basal melting. a Average melt rate (5.0 myr~! with standard deviation of 0.5 myr~1) and b area-averaged melt rate for the
Totten Ice Shelf. The first 30 years is considered model spin-up and is excluded from analysis. € Spectral variance (power spectrum times frequency) for
the melt rate anomaly, constructed by removing the climatology. d Melt rate EOF mode 1 and e PC 1. f Spectral variance for melt EOF mode 1. g Melt EOF
mode 2 and h PC 2. i Spectral variance for melt EOF mode 2. j-m SSA in-band % explained variance in melt rate, with band duration (years) and min-max
variance shown. Inset in a shows location. Orange line in b, e, h is smoothed with a 1.5-yr filter, while grey line is raw data. Colour bars in j-m are scaled to
the min/max variance range, as given as percentages on the left side of each panel
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The EOF analysis of melt rate anomaly suggests that most
variability (57% of variance) is explained by mode 1 (EOF1; Fig. 3d)
which shows wide-scale coherent fluctuations in basal melting,
similar to the time-mean spatial pattern in Fig. 3a. EOF mode 2
(EOF2; 8% of variance) captures enhanced shallow or deep
melting, and results from water flowing either along the ice shelf
front or below the ice shelf (Fig. 3g). Interannual fluctuations in
average melt rate are represented strongly in the first PC of the
EOF analysis (compare Fig. 3e to Fig. 3b), which contains ~3-, 5-,
~7-year and multidecadal modes (Fig. 3f). The second PC (Fig. 3h)
contains mostly intra-annual variability (Fig. 3i).

While the EOF analysis captures spatial patterns of covaria-
bility it does not necessarily separate physical modes over
different timescales. To achieve this, we apply singular spectrum
analysis (SSA)!230, which identifies spatially coherent regions of
variance for a chosen time band, to analyse the leading PCs of
melt rate and extract secular behaviour present at intra-annual
(<1 year), interannual (1-5 and 5-10 years) and multidecadal
(10-30 year) time bands (see Methods).

The in-band SSA variance shows the percentage of total
variance at each location within defined time bands (Fig. 3j-m).

Intra-annual modes explain ~40-50% of total variance, and closer
to 90% of total variance near to the ice front (Fig. 3j). These intra-
annual modes result from the seasonal cycle in sea ice production
and winds. As this study focusses on interannual variability, these
<1-year modes will not be further discussed. Modes with a period
of 1-5 years explain on average ~23% (maximum of 44% in
certain locations) of the total variance in basal melting (Fig. 3k),
while ~7% (maximum of 21%) of the total variance is explained
by modes that occur over 5-10 years (Fig. 31). Multidecadal
modes in basal melting are present but explain on average ~6%
(maximum of 24%) of the total variance (Fig. 3m). Histograms of
in-band SSA variance for the chosen time bands are shown in
Supplementary Fig. 2.

Bottom temperature interannual variability. Low-frequency
variation in melt rate is being driven by intrinsic ocean variability.
EOF analysis of bottom temperature anomaly shows that 32% of
variability is explained in the shallower, coastal region (Fig. 4a, b),
and has a multimodal spectrum with power in the interannual
time band (Fig. 4c). Shelf break exchange (Fig. 4d, e) explains 15%
of variability and temperature anomaly EOF1 has multimodal
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power in the interannual band (Fig. 4f). The intra-annual in-band
variance in bottom temperature anomaly peaks along the ice
front, explaining up to 71% of total variability (Fig. 4g), while 1-5
year modes (Fig. 4h) produce 40-60% of total variability over the
continental shelf. The 5-10 year mode (Fig. 4i) explains 20-30%
of total variability on the continental shelf, while the multidecadal
mode (Fig. 4j) explains 20% of total variance deeper than ~500 m.
Bottom temperature variability is generally aligned along bathy-
metric features, indicating that ocean-bathymetry interactions are
a significant source of variability.

Discussion

We show melting responds rapidly and linearly to the thickness
of the relatively warm MCDW layer (Fig. 2b) present at the ice
front. Cross-shelf exchange displays intrinsic variability but low
correlation with melting, suggesting that intrinsic variability in
melting results from local processes like wind-driven changes to
the MCDW layer thermocline depth, rather than cross-shelf
exchange. Comparison of the COREvl (intrinsic ocean varia-
bility) run to a sensitivity study where the interannual intrinsic
ocean variability is removed from the lateral boundary condi-
tions, shows that indeed the variability that impacts the supply of
ocean heat to the ice shelf cavity is generated within our model
(see Supplementary Fig. 3). We can speculate that the non-linear
ocean processes that generate such intrinsic ocean variability
could include long-period baroclinic instabilities, which when
subject to essentially stochastic winds, give rise to variability in
ocean properties across a wide band of frequencies. This includes
low-frequency modulation of the thickness of the MCDW layer
on the continental shelf.

The chosen surface and lateral boundary conditions mean that
any model variability with a period of greater than one year must
be intrinsic ocean variability that is generated within the model,
or imported through the Northern, Eastern and Western lateral
boundaries (see Supplementary Figs. 4-6). Intrinsic variability in
melting occurs underneath the entire ice shelf with a maximum
range of ~1 myr—! (Fig. 3b). The period of variation is multi-
modal but has dominant periods of ~3 and ~7 years (Fig. 3f, i).
The presence of intrinsic variability is weakest at the shallow ice
front, which is most susceptible to seasonal sea ice and wind
processes, and is stronger at depth (Fig. 3k-m). Up to 44% of 1-5
year variability and up to 21% of 5-10 year variability in melt rate
results from intrinsic processes.

The in-phase response and high degree of variability that is
explained by melt EOF1 suggests that cavity waters rapidly adjust
to ocean heat entering this relatively small volume (Fig. 3d).
Furthermore, the coherent response suggests that a reasonably
representative assessment of basal melting can be obtained with
few observations. The in-phase response also makes basal melting
beneath TIS a good candidate for data assimilation and for
parameterisation into an ice sheet model.

The high degree of variability in basal melting that results from
intrinsic modes present in the 1-5 year time band (up to 44%)
could contribute to the ~3-4 year period variations observed in
TIS thickness?. Futhermore, the 5-10 year modes (explaining up
to 21% of variation) likely contribute to the measured decadal
period variations in flux? and surface velocity*.

In general, we find that variability in bottom temperature
occurs mainly on the shallower regions of the continental shelf
(Fig. 4a), likely resulting from changes in thermocline depth in
response to surface wind forcing with a peak 5-10 year periodi-
city (Fig. 4c). The second EOF (Fig. 4d) captures cross-shelf
exchange and associated warm water pathways. Both MCDW
layer thickness and cross-shelf exchange are shown to contain
large low-frequency variations (Fig. 2b, c). The similar periodicity

to EOF mode 1 results from a common mechanism as upwelling
responds to wind forcing. The relationship between basal melting
and wind stress is elsewhere demonstrated to be caused by Ekman
pumping and upwelling of oceanic heat, which in turn correlates
well with observed TIS surface velocity anomalies®. As melting
underneath the Totten Ice Shelf has been identified to be driven
by the relatively dense, warm and salty MCDW in models?> and
observations?32%, it follows that intrinsic variability in ocean
water properties near the seabed produces a response in basal
melting.

Intrinsic variability has been previously identified in Antarctic
sea ice patterns!®31:32) in the Southern Ocean®1?, as well as
hypothesised in the ice sheet response to accumulation varia-
bility? and in palaeoclimate dynamics*4. Our results demonstrate
that basal melting can vary on interannual timescales purely as a
result of internally generated ocean variability, with broad
implications for the identification of variability in an ice shelf/
ocean system.

Interannual variability is present in ice shelf elevation change?,
surface velocity>=> and grounding line location®. However, it is
difficult to extract the impact of intrinsic interannual variability in
melt rate from these broad-scale products due to the disparate
temporal and spatial scales, and relatively short observation
periods. Nevertheless, the presence of interannual variability in
multiple sources, with similar modes, suggests that some degree
of the observed variability results from intrinsic processes.

This study has implications for observing and understanding
ice shelf-ocean interaction. Basal melting can vary periodically
with low-frequency variability, even in the absence of interannual
atmospheric forcing. This implies that at least part of the varia-
bility associated with ice shelf thickness and consequently mass
balance could arise purely through intrinsic ocean processes. This
intrinsic variability is subsequently modified by external climate
drivers to produce the observed record. However, to fully
understand the temporal and spatial impact on ice shelf flow and
thickness dynamics, a coupled ocean-ice sheet model is required.

We have highlighted the emergence of low-frequency intrinsic
variability in cross-shelf flow and MCDW layer thickness, which
arises through non-linear ocean processes and in response to
daily-to-seasonal changes in wind stress. Basal melting beneath
TIS responds linearly to MCDW thickness, but has a low
correlation with cross-shelf flow, suggesting locally generated
intrinsic variability influences the heat available to drive melting.
This complex variability in basal melting limits the ability of
short-term observational missions to draw conclusions about
the long-term response to anthropogenic factors. In this sense,
short oceanographic voyages and mooring deployments should
be employed together with modelling studies to explore longer
term trends. In regions which display significant interannual
intrinsic ocean variability, long-term observational time series
are critically important. Furthermore, many other ice shelves
around Antarctica display some form of interannual variability
(e.g. Filchner-Ronne, Amery, Shackleton and Ross?). The con-
tribution of intrinsic ocean processes to the observed interannual
variability ice shelves around Antarctica is yet unknown.
Understanding and distinguishing this component of the signal
through modelling studies is important for predicting and
detecting climate change, planning observational missions that
target regions of low intrinsic variability, and interpreting satellite
and in situ observations.

Methods

Model details. To investigate the response of basal melting to intrinsic ocean
variability, we ran numerical ocean model simulations of the TIS over a period of
150 years. The ocean model is based on the Regional Ocean Modelling System
(ROMS)35 framework, with modifications to allow thermodynamic interaction
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between the ocean and a steady-state ice shelf**37. The model domain extends
25.5° in longitude (104.5° E-130° E) and 8° in latitude (60° S-68° S), with a
longitudinal resolution 1/15° and latitudinal resolution of 1/30° (Fig. 1a). Ice/ocean
thermodynamics are parameterised using the three-equation formulation3$. More
details of the model setup are given in Gwyther et al.?> The model bathymetry is
based on RTopo®’, which provides the deep ocean and continental shelf bathy-
metry. RTopo does not included realistic bathymetry for TIS so we blended it with
a TIS cavity bathymetry inverted from airborne gravity measurements that also
includes a hypothesised trough connecting the continental shelf to an eastward
extension of the TIS cavity?’. This modelling study includes direct ocean access to
the eastern extension of the TIS cavity, which satellite altimetry missions indicate
hosts a surface lowering signal distinct from the deeper TIS grounding zone*!. Ice
draft was determined with airborne radar sounding measurements acquired by the
ICECAP (International Collaborative Exploration of the Cryosphere through
Aerogeophysical Profiling) consortium.

The first simulation has surface wind forcing from COREv1 which corresponds
to repeating normal-year (1995) momentum fluxes?!. Surface heat and salt fluxes
are taken from the 1995 record of sea ice formation from Special Sensor Microwave
Imager (SSM/I) satellite observations?2. This year is chosen as it represents a
normal climate year, and unlike CORE forcing, SSM/I observations better capture
the timing, magnitude and spatial extent of sea ice and polynya formation*2.
Lateral forcing consisted of downscaled results from a general circulation model
which itself was forced with repeated normal-year COREv1?! forcing. The lateral
boundary conditions are applied interannually, so as to capture intrinsic oceanic
variability in Southern Ocean properties (Supplementary Figs. 4 and 5), in
particular, the 20-year South Pacific Intrinsic Mode!?, but no other modes of
variability (e.g. coupled land-ice—ocean-atmosphere processes such as climate
modes). If a repeated normal-year forcing were applied to the lateral boundary
conditions, then slow oceanic modes would not be excited and in effect, the ocean
variability spectrum would be truncated. Here we are concerned with variability in
melt rate rather than the mean value, and so the choice of lateral boundary
conditions is valid, despite the reduced mean melt rates. The mean value is low due
to cooler conditions in the Southern Ocean, a common model bias in ocean GCMs
forced with COREv1 conditions.

The second run (COREV2) of 120 years was forced with two periods of
1949-2007 interannual climate forcing. Surface wind forcing is from the COREv2
1949-2007 air-sea flux data set?, while surface heat and salt fluxes are composed of
the climatology of surface heat and salt fluxes from SSM/I observations for 19954
but scaled by the E — P (evaporation minus precipitation) fields for 1949-2007 from
COREV2. These data sets are combined in this way to provide long-term estimates
of polynya activity and sea ice formation, which are not obtainable from a data set of
comparable length. The lateral boundary forcing is analogous to that in the first
simulation, but now the global ocean circulation model!? is itself forced with the
COREV2 1949-2007 interannually varying air-sea fluxes?2. As a result, the lateral
boundary forcing is representative of the oceanic response to the large-scale
atmospheric climate variability including the complete forcing spectrum with all
natural, intrinsic, internal (e.g. climate modes) and anthropogenic forcing
components. The first period of 60 years is considered spin-up.

A sensitivity study investigating whether intrinsic variability in melt rate
originates locally or is imported through the boundary conditions was conducted
(see Supplementary Fig. 3). In this run, we force with the same normal-year
atmospheric conditions as previously. However, we have changed the lateral
boundary conditions to remove the interannual intrinsic variability, replacing them
with a repeated seasonal cycle calculated as the climatology of the previously-used
interannual COREV1 intrinsic variability forcing!?. These new boundary
conditions, where we removed any interannual variability, enable an estimate of the
variability intrinsic to the ROMS domain.
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Analysis techniques. For all analyses, the first 30 years of time series of melt and
bottom temperature, which contain the model spin-up signal, are excluded. The
resulting time series are detrended with a linear fit.

Signal-to-noise ratio is calculated as the ratio of variances 02, calculated as

TEorex2

V.

SNR = —SOREYZ (1)
OCOREv1

where 6%y, is the square of the standard deviation of the melt rate anomaly for
the interannually varying run with COREv2 forcing, while 0%y, is the square of
the standard deviation of the melt rate anomaly for the intrinsic variability-only
run with COREv1 forcing.

Cross correlations of MCDW depth and volume flux with melt rate were
calculated and a lag of 0 months is found to be optimal. As analysis is computed
on monthly averages, a short lag or lead of less than 1 month is possible.

Empirical orthogonal function (EOF) analysis is used to decompose a time
series into orthogonal spatial patterns (EOFs) along with the associated time series
or principal components (PCs) and the variance explained by each mode*>. While
EOF analysis can provide useful decomposition of data, it has limitations such as
domain dependence. While the leading mode(s) may often be physical, successively
higher order modes, which explain less of the remaining variance, are unphysical as
a consequence of the mode orthonormalisation.

Consequently, we employ singular spectral analysis (SSA) to express the original
time series as a linear combination of components derived from singular value
decomposition of the (time) lagged covariance matrix with maximum lag M. The
resulting modes together sum to the original time series, while the slowest varying
mode represents the non-linear trend with (time) variability of the order of the
chosen embedding dimension M or longer. The decomposition is data driven
(based on smaller, lagged portions of the original time series) and does not require
projection on predefined basis functions, as required for example with Fourier
transform methods. SSA readily provides non-linear smoothing of the original time
series with the degree of smoothing controlled by M'>30, The SSA in-band variance
shows the percentage of total variance present in the chosen time band bounded by
predefined embedding dimension values, i.e. 0-1, 1-5, 5-10 and 10-30 years as in
Figs. 3j-m and 4g-j.

Plots made with assistance from the Antarctic Mapping Tools for MATLAB
toolbox#* and cmocean®® colourmaps.

Data availability. Model output that supports the findings of this study are
available from the corresponding author on request.
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