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Abstract

Leishmania infantum is one of the species responsible for visceral leishmaniasis. This spe-
cies is distributed basically in the Mediterranean basin. A recent outbreak in humans has
been reported in Spain. Axenic cultures are performed for most procedures with Leishmania
spp. promastigotes. This model is stable and reproducible and mimics the conditions of the
gut of the sand fly host, which is the natural environment of promastigote development. Cul-
ture media are undefined because they contain mammalian serum, which is a rich source of
complex lipids and proteins. Serum deprivation slows down the growth kinetics and there-
fore, yield in biomass. In fact, we have confirmed that the growth rate decreases, as well as
infectivity. Ploidy is also affected. Regarding the transcriptome, a high-throughput approach
has revealed a low differential expression rate but important differentially regulated genes.
The most remarkable profiles are: up-regulation of the GINS Psf3, the fatty acyl-CoA
synthase (FAS1), the glyoxylase | (GLO1), the hydrophilic surface protein B (HASPB), the
methylmalonyl-CoA epimerase (MMCE) and an amastin gene; and down-regulation of the
gPEPCK and the arginase. Implications for metabolic adaptations, differentiation and infec-
tivity are discussed herein.

Introduction

Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediter-
ranean basin, where dogs are the main reservoirs. A recent outbreak in humans has been
described in Spain [1-3], where the main vector is Phletobomus perniciosus (Psychodidae:
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Phlebotominae) [4]. Sand flies are the blood-feeding vector hosts in the life cycle of the para-
site. Promastigote development takes place within the gut of the sand fly simultaneously to
migration towards the anterior gut, whereas blood components are progressively digested,
leading to nutrient depletion [5-7]. Chemotaxis and osmotaxis promote directed migration
[8]. After development, promastigotes are released into the dermis of the mammalian host dur-
ing blood feedings. Then, they differentiate to the amastigote stage within host phagocytic cells.
Eventually, a sand fly feeds from the infected mammalian host and amastigotes are released to
the mid gut, where they become motile promastigotes.

The promastigote stage is generally cultured in complex undefined liquid media at 26-27°C,
which mimics to some extent the conditions of the sand fly gut microenvironment [9-14].
Mammalian serum provides complex nutrients in cultures, thus improving growth kinetics.
Inactivation of serum is performed by heating at 56°C for 1 h. This procedure avoids lysis of
promastigotes by proteins of the complement system. The parasite is metabolically versatile
because it is able to use amino acids, fatty acids or glucose as the major carbon source [15] and
consequently, adapt to different environments. However, culture may affect differentiation in
some aspects [16]. The aim of this study is the evaluation of general and specific consequences
of serum deprivation for cultured promastigotes, including growth rate, ploidy, infectivity and
differential gene expression.

Materials and Methods

Promastigote cultures

The L. infantum MCAN/ES/98/10445 (zymodeme MON-1) isolate was used in this study.
Promastigotes were cultured in triplicate at 27°C in complete medium (CM) or in heat inacti-
vated fetal bovine serum (HIFBS)-depleted medium for 4 days. CM consists of RPMI 1640
supplemented with 2 mM glutamine (Lonza, Karlskoga, Sweden), 10% HIFBS (Lonza) and
100 UT/ml penicillin-100 pg/ml streptomycin (Life Technologies, Carlsbad, CA). Cell recov-
ery from cultures was performed by centrifugation at 2,000g for 10 min. Morphology was
routinely evaluated at the light microscope (40X). For this purpose, 10’ promastigotes were
harvested, washed in PBS and resuspended in 1 ml PBS. A 10 pl aliquot was deposited
between a slide and a coverslip. Cell counting was performed at the light microscope in a
Neubauer chamber (40 X) after diluting 20 times an aliquot of promastigote culture in 0.5 M
EDTA. Differences in growth of HIFBS-depleted and CM promastigote cultures were com-
pared by the Student's t-test.

Cell cycle analysis by flow cytometry

Samples of 50 x 10° promastigotes were harvested for cell cycle analysis. Three biological rep-
licates of the experiment were performed. G1 arrest was achieved by 6h treatment with 0.8
mg/ml hydroxyurea in fresh CM or HIFBS-depleted medium (Sigma-Aldrich, Basel, Switzer-
land). Thereafter, the cells were centrifuged, washed three times with PBS and fixed with 1 ml
cold 70% ethanol at -20°C for 30 min. Next, promastigotes were harvested, washed twice
with PBS and incubated for 30 min in 0.5 ml of a solution containing 50 ug/ml propidium
iodide (PI) and 100 ug/ml RNase A (Sigma-Aldrich) in PBS. PI uptake was analyzed in a
FACSCalibur™ flow cytometer using CELLQuest™ software (Becton Dickinson, Franklin
Lakes, NJ) by gating promastigotes at forward-angle versus side-angle light scatter and regis-
tering fluorescent emission collected in the FL2-A detector through a 585 nm band pass
filter.
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Evaluation of in vitro infection of stimulated U937 cells with
promastigotes.

The non-adherent human myeloid cell line U937 (ATCC™ CRL1593.2), originally obtained
from pleural effusions of a patient with histiocytic leukemia [17], was cultured at 37°C in
complete medium in the presence of 5% CO,. After 72 h, 2 x 10° cells/cm” were harvested at
250g for 10 min and stimulated with 20 ng/ml phorbol 12-myristate 13-acetate (Sigma-
Aldrich) [18] in CM over 8-well cell chamber slides (LabTek, New York, NY). This treatment
allows differentiation to macrophage-like cells. Then, the wells were mildly rinsed with CM
and the infection step performed by incubating cells at 37°C for 2 h in 400 pl of CM contain-
ing L. infantum promastigotes. The promastigote:cell ratio was 5:1. Next, cells were washed
three times with CM to remove remaining promastigotes. Infected cells were then incubated
in CM at 37°C, 5% CO, for 72 h. Three final washes were performed before treatment with
hypotonic solution (180 ul CM diluted with 220 pl water per well) for 5 min. Four washes
were carried out with 150 ul ethanol-acetic acid 3:1 after removing the hypotonic solution.
Fixation was carried out with the same solution for 10 min and this step was repeated three
times. Finally, cells were allowed to air dry and the wells removed from the slide. Staining
was performed with Diff-Quick™ Stain Solution I and II (Dade Behring, Marburg, Germany).
The preparations were washed with distilled water, air dried and mounted with Entellan®™
Neu (Merck, Darmstadt, Germany). The average infection rate and the number of amasti-
gotes per infected cell were assessed at the light microscope (40X) and contrasted by the Stu-
dent’s t-test.

Isolation of total RNA and protein

Total RNA extractions were immediately performed with TRizol®™ reagent (Life Technologies)
following the manufacturer s instructions.

Whole protein was obtained from 10® cells by mild agitation at 4°C during 30 min in 50
mM Tris-HCI pH 7.4, 2 mM EDTA and 0.2% TritonX-100 in the presence of a cocktail of pro-
tease inhibitors (Roche, Mannheim, Germany). Then, samples were centrifuged at 8,000g at
4°C for 10 min. Protein concentration was estimated by the Bradford method.

Western blot

SDS-PAGE of protein extracts was performed at 12 mA for 30 min, then at 30 mA for 90 min,
in 8% slab gels casted in a MiniProtean II Cell system (BioRad, Hercules, CA). Twenty pg pro-
tein extract was loaded per well including 1 pl Benzonase Nuclease HC (Novagen, Madison,
WI). Proteins were then transferred to 0.45 pum nitrocellulose membranes (BioRad) at 100 V
for 1 h in a Mini Trans-Blot Cell wet transfer system (BioRad). Then, the membranes were
blocked with 5% skimmed milk in PBS-0.1% Tween 20 (Sigma) for 1 h and washed three times
with PBS-0.1% Tween 20 for 15, 5 and 5 min respectively. After that, membranes were incu-
bated with 1:500 of rabbit anti-LACK polyclonal serum diluted 1:500 in blocking solution for
2h [19]. A monoclonal mouse anti-L. mexicana gGAPDH antibody kindly provided by Paul
Michels (University of Edinburg) was also included in the mixture at 1:10,000 dilution [20].
The washing steps were repeated. Next, 90 min incubation was carried out with 1:2,000 HRP-
conjugated goat anti-rabbit IgG (DAKO, Ely, UK) and the membrane was washed again.
Finally, ECL-based detection (GE Healthcare, Pittsburg, PA) and development was performed
in X-ray film according to the manufacturer's instructions. Densitometry was performed with
Gel Doc XR System and Quantity One version 4.6. software (BioRad) and the intensity data of
both groups were compared by the Student's t-test including three biological replicates.
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Microarray hybridization analysis

Differential gene expression was analyzed by shotgun DNA microarray hybridization experi-
ments as described [21]. Briefly, mnRNA was amplified from three replicate samples using Mes-
sageAmp™ Il aRNA Amplification Kit (Life Technologies) and cyanine-labelled cDNA was
synthesized (Life Technologies). Then, combined Cy5/Cy3 cDNA microarray hybridizations
were carried out in triplicate (HIFBS-depletion/CM). The slides were scanned with a GenePix
4100A instrument (Axon, Foster City, CA) and raw medians of fluorescence intensity values
obtained were normalized by the LOWESS per pin method. Differential transcript abundance
was inferred by the paired Student’s t test. The spot selection criteria were: fold-change (F) >
1.7 (Cy5/Cy3; Cy5 > Cy3) or < -1.7 (-Cy3/Cy5; Cy5 < Cy3); fluorescence intensity value
10-fold higher than the substracted background; p < 0.05 [21]. Clones that fulfilled these cutoft
values were recovered from the genomic library that was used for microarray construction.
The clone ends sequenced with the M 13 universal primers and they were assembled by align-
ment with the whole-genome L. infantum sequence as detailed in [21]. Depending on mapping
and assembling outcomes, clones were classified in type a (congruent alignments, unique pair
of alignments), b (congruent alignments, more than one pair of alignments) and ¢ (uncongru-
ent alignments or lack of one insert end read) [21].

Real time quantitative RT-PCR analyses (QRT-PCR)

Unlabelled single-stranded cDNA was synthesized following the same procedure as for labelled
cDNA but using a mixture of unlabelled dNTPs (10 mM each). Custom TagMan®™ FAM-MGB
Assay-by-Design primers and probes (Life Technologies) are provided in the S1 Table and
amplification with TagMan™ Universal Master Mix 2x (Life Technologies) was run in a
7900HT Fast Real Time PCR system using SDS 3.1 software (Life Technologies) following the
manufacturer’s instructions. The gGAPDH was the reference gene and the fold-change values
were calculated with efficiency-corrected normalized quantities [22].

BCAT activity assay

The assay was performed with the substrate 3-methyl-2-oxopentanoate and L-glutamate was
added as the co-substrate. All reagents and enzymes were purchased from Sigma-Aldrich.
Incubations were carried out in quadruplicate at 25°C for 30 min in 1ml buffered (0.1M Tris-
HCI, pH8.3) reaction mixture containing 2.1 mM 3-methyl-2-oxopentanoate, 300 mM L-gluta-
mate, 0.2 mM NADH, 0.1 mM pyridoxalphosphate (PLP), 200 mM L-aspartate, 200 umol/
min/] L-aspartate aminotransferase (ASAT), 1 mmol/min/l L-malate dehydrogenase (MDH)
(both enzymes from porcine heart) [23] and 150 pg protein extract. Negative controls without
NADH were also set. The time course consumption of NADH was monitored by measuring
the decay of absorbance at 334 nm continuously with a Cary 4000 spectrophotometer (Agilent
Technologies, Santa Clara, CA). The results were contrasted by the paired Student's t test.

Results
Serum depletion considerably affects growth rate and ploidy

As expected, pronounced decrease of proliferation is observed when the promastigote culture
does not contain HIFBS (Fig 1A). Changes in promastigote morphology were not detected,
except for more frequent lack of elongation of the fusiform cell body in most HIFBS-depleted
promastigotes. Tetraploidy was observed also in this case (Fig 1B, S2 Table).
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Fig 1. Growth monitoring and cell cycle analysis of L. infantum HIFBS-depleted promastigotes and CM promastigotes. (A) Average growth curves of
three replicate cultures of HIFBS-depleted and CM L. infantum promastigotes. Cell density was registered daily in a Neubauer chamber at the light
microscope (40 X). The differences between the HIFBS-depletion and CM groups are statistically significant (Student's t-test, p* < 0.01) at all time points. (B)
Cell cycle analysis of HU-treated L. infantum HIFBS-depleted and CM promastigotes by Pl-based flow cytometry. One out of three biological replicates is
represented for both conditions. Propidium iodide fluorescence intensity was registered by flow cytometry through the FL2-A detector (585 nm). As expected,
the G1 (markers M1-M2) and G2 (M2-M3) peaks of CM promastigotes are centered at 200 and 400 fluorescence intensity units, respectively. In the case of
HIFBS-depleted promastigotes, these peaks are displaced to higher values in the FL2-A axis as they do not fit between M1, M2 and M3. In fact, the values
are approximately twice the CM values, which indicates that the population is tetraploid.

doi:10.1371/journal.pone.0150172.g001

In vitro infection ability of HIFBS-depleted and CM L. infantum
promastigotes

The average infection rate and the number of amastigotes per infected U937 cell were evaluated
at 24 and 48 h after infection with CM and HIFBS-depleted promastigotes. The average infection
rate is 54% with CM and 43% with HIFBS-depleted promastigotes after 24 and 48 h (Fig 2A).
Cells infected with CM promastigotes contained 3.3 + 0.3 amastigotes at 24 h and 5.0 + 0.0 at

48 h, whereas the results were 2.1 + 0.1 at 24 h and 4.2 £ 0.1 at 48 h in the case of cells infected
with HIFBS-depleted promastigotes (Fig 2B). These differences are statistically significant accord-
ing to the paired Student's t-test outcome. Therefore, serum depletion decreases the infection abil-
ity of promastigotes in terms of infection rate and number of amastigotes per infected cell.

Serum depletion slightly affects gene expression at the transcript level in
L. infantum promastigotes

Total RNA isolated from HIFBS-depleted and CM promastigotes was not degraded (Fig 3A).
mRNA from all samples was successfully amplified (Fig 3B). Differential expression of the con-
trol genes included in the microarrays [21] was not detected (S3 Table). The A2 gene is not dif-
ferentially regulated and the flagellum remains emergent from the cell body. These facts
indicate that HIFBS-depleted promastigotes do not undergo the developmental process to the
amastigote stage, as well as CM control promastigotes. Also, expression of the LACK antigen
remains constant in promastigotes at the transcript (S3 Table) and protein (Fig 4) levels when
they are depleted from serum.

The differential gene expression rate is 0.4% (33 genes out of 8154 coding genes [24]) in
HIFBS-depleted promastigotes with respect to CM (Fig 3C, Table 1). Genes involved in DNA
repair, gene expression regulation, protein folding, proteolysis, metabolism, detoxification, sig-
nalling, the flagellum and the surface coat are up-regulated in HIFBS-depleted promastigotes
(Fig 5, Table 1). Differential regulation of five genes was validated by qRT-PCR, which also
solved two clones that represent more than one gene sequence (Table 1). By contrast, two
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Fig 2. Evaluation of in vitro infectivity of L. infantum promastigotes in stimulated U937 cell cultures.
The U937 cell line was differentiated with phorbol esters and in vitro infected with L. infantum CM and HIFBS-
depleted promastigotes at a phagocyte:promastigote ratio 1:20. The null hypothesis contrasted with the
paired t-test was equal infectivity of HIFBS-depleted and CM promastigotes measured in triplicate as
percentage of infected cells or number of amastigotes per infected cell. It was contrasted by the paired
Student’s t-test (p-values provided in the graph). (A) Infection rate measured in terms of percentage of
infected cells 24 and 48 h post-infection. Mean + SD: 54 + 1 (CM, 24 h); 54 + 4 (CM, 48 h); 46 + 3 (HIFBS-
depletion, 48 h); 43 + 1 (HIFBS-depletion, 48 h). (B) Average number of amastigotes per infected cell
measured 24 and 48 h post-infection. Mean + SD: 3.3+ 0.3 (CM, 24 h); 5.0+ 0.0 (CM, 48 h); 2.1 £0.1
(HIFBS-depletion, 48 h); 4.2 + 0.1 (HIFBS-depletion, 48 h).

doi:10.1371/journal.pone.0150172.g002
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Fig 3. Genome microarray hybridization analysis for comparative expression profiling of HIFBS-depleted versus CM L. infantum promastigotes.
(A) Electropherograms (FU, fluorescence units vs. time in seconds) of HIFBS-depleted and CM promastigote total RNA triplicate samples obtained by
capillary electrophoresis with the Agilent 2100 Bioanalyzer. (B) 1% agarose gel electrophoresis of amplified mRNA (aRNA) from total RNA samples of L.
infantum HIFBS-depleted and CM promastigotes. (C) Average M/A scatter plots of the HIFBS-depletion/CM three-replicate microarray hybridization analysis.
M = (log2Ri_logoGi) and A = [(logzRi + logoGi)/2], where R and G are, respectively, red (Cy5-cDNA from HIFBS-depleted promastigotes) and green
(Cy3-cDNA from CM) intensity values. Red spots correspond to selected DNA fragments containing a gene up-regulated at least 1.7 times and green spots
represent those down-regulated at least 1.7 times. Further criteria for spot selection are detailed in the text. The SD values are displayed in the scatter plot.
Differential expression was contrasted by the Student's t-test for each individual clone with the AimaZen software. The statistically significant differences are

highlighted in red and green as mentioned above.

doi:10.1371/journal.pone.0150172.9003

genes tested by qRT-PCR are negative for differential expression (clones Lin138C1 and
Lin309D1). Consequently, at least one of the remaining genes represented in these clones are
differentially regulated.

The differentially regulated metabolic genes up-regulated under serum
depletion code for enzymes catalyzing rate-limiting reactions

The glycosomal phosphoenolpyruvate carboxykinase (gPEPCK) and the arginase are down-regu-
lated under HIFBS-depletion, whereas the genes coding for the 4-coumarate-CoA ligase (4CCL),

the fatty acyl-CoA synthetase 1 (FAS1), the methionine synthase reductase (MTRR), the p-nitro-

phenylphosphatase (PNPP) and the methylmalonyl-CoA epimerase (MMCE) are up-regulated.
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Fig 4. LACK expression is maintained under serum depletion. (A) Evaluation of relative abundance of the LACK antigen by Western blot performed with
the anti-LACK polyclonal antibody (diluted 1:500) over total protein extracts of L. infantum promastigotes grown under HIFBS-depletion or in CM. The anti-
gGAPDH polyclonal antibody (diluted 1:10,000) was used as the loading control antibody. The secondary antibody was HRP-conjugated goat anti-rabbit IgG
(diluted 1:2,000). Chemoluminescence detection was performed with the ECL reagents (GE Healthcare) and the membrane was developed in an X-ray film.
Upper bands are likely aggregates of the LACK protein [19]. (B) Bar graph of the relative expression ratio of the LACK antigen with respect to the gGAPDH.
Mean and SD of three biological replicates are represented. Densitometry was performed with Gel Doc XR System and Quantity One version 4.6. software
(BioRad). Both groups were compared by the Student's t-test including three biological replicates.

doi:10.1371/journal.pone.0150172.9g004

Branched-chain amino acid aminotransferase (BCAT) activity slightly
but significantly decreases in HIFBS-depleted promastigotes

BCAT activity was measured using 3-methyl-oxopentanoate as the substrate and glutamate as
the co-substrate (Fig 6A) in direct relation to NADH (A334,m) decay (S2 Table). Background
activity was not observed in negative control reactions set in the absence of NADH. The
enzyme activity (EA) measured as nmol/min/mg soluble protein is about 1.6-fold higher in
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Table 1. Differentially regulated genes of known function in HIFBS-depleted promastigotes. The features described are: number of clone; fold change
(F > 1.7, up-regulation; F < -1.7, down-regulation); logoF and standard deviation (SD); Student's t-test, p; multiple sequence alignment expect value (e-

value); annotation; annotated gene sequence; and gRT-PCR outcome (Student's t-test, p* < 0.05). N.D.: not determined. Genes in italics (clones that overlap
with more than one annotated gene): they are not differentially regulated (confirmed by gRT-PCR) or there is no evidence to support that they are differentially
regulated in other cases (not determined by gRT-PCR).

Clone F Log.F+ p e-value Def. Annotation Anotated gene function qRT-PCR
s Fw Rv F*SD
Lin7C3 1.80 0.9+0.1 0.023 0 0 c Lind.06.0460 Hypothetical protein, conserved N.D.
Lin8D4 198 1.0+0.1 0.009 0 0 c NA N.A. N.A.
Lin12H3 2.5 -1.4+0.2 0.006 0 0 b Lind.35.1490 Arginase, putative + -3.3£0.4*
Lin17G12 273 14101 0.025 0 0 a Lind.26.0030 Methylmalonyl-CoA epimerase + 10.0 £ 0.5%
Lin19B1 187 0.9+0.1 0.021 0 0 b Lind.22.0580 Hypothetical protein, conserved N.D.
Lin24C4 186 09+0.3 0.026 0 0 a LinJ.36.4950 Methionine synthase reductase N.D.
Lin32A12 170 0.8+0.2 0.013 0 0 b Lind.30.1640 Hypothetical protein, conserved N.D.
Lind.30.1650 Hypothetical protein, conserved N.D.
Lind.30.1660 Hypothetical protein, conserved N.D.
Lin32H7 241 -1.3+£0.0 0.011 0 0 a LinJ.27.2500 Glycosomal phosphoenolpyruvate + -3.4 £ 0.2*
carboxykinase, putative.
Lin33C5 1.75 0.8+0.1 0.029 0 0 a LinJ.35.3060 Glyoxylase | N.D.
Lin43B1 -3.04 -1.6+0.2 0.005 6e-78  5e- b LinJ.27.2480 60S acidic ribosomal protein N.D.
178
Lin54G3 1.73 0.8+0.1 0.029 0 0 b Lind24.1230 Hypothetical protein, conserved N.D
Lind.24.1240 Translation factor SUI1, putative + 2.0+04*
Lin68A9 191 09+02 0.035 0 4e-85 b  Lind.23.0140 Cyclophilin, putative 5.3+0.3*
Lind.23.0150 Vacuolar type proton translocating - 1.4+0.1*
pyrophosphatase
Lin95A10 -259 -1.4+0.3 0.027 1e- 2e- a Lind.27.2510 DEAD box helicase-like protein N.D.
152 148
Lin101B5 197 1.0+£0.6 0.049 0 0 b  LinJ.09.0960 Serine peptidase E, family S51 + 3.8+0.1%
Lin101D5 -2.15 -1.1+£0.1 0.005 0 9e-37 b  Lind.31.1680 GINS complex subunit Psf3 N.D.
Lin123D6 1.77 0.8+0.1 0.001 0 0 b Lind.34.2660 Amastin-like protein N.D.
Lin138C1 -1.76 -0.8+0.1 0.028 0 0 b  Lind.24.1360 Hypothetical protein, conserved N.D.
Lind.24.1370 Hypothetical protein, conserved N.D.
Lind.24.1380 Translation initiation factor 2 - -1.1£04
Lin150A5 -3.10 -1.6+0.4 0.033 9e- 0 b  Lind.30.2310 Hypothetical protein, conserved N.D.
177
Lind.30.2320 Hypothetical protein, conserved N.D.
Lind.30.2330 Hyptothetical protein, conserved N.D.
Lin169D1 269 14+01 0.031 0 0 a LinJ.26.0030 Methylmalonyl-CoA epierase + 10.0 £ 0.5*
Lin186B7 -1.9 -1.0+0.1 0.003 0 0 a Lind.23.1220 Hydrophilic acylated surface protein B + 2.7+£0.2%
Lin212F11 266 1.4+0.2 0.006 0 0 b  Lind.19.0940 4-coumarate-CoA ligase + 7.3+0.4*
Lin243E5 1.70 0.8+0.1 0.003 0 0 a LinJ.32.0400 Proteasome non-ATPase regulatory subunit8  N.D.
Lin247D7 236 12+04 0.048 0 0 a Lind.28.0110 Proteasome beta subunit 3 N.D.
Lin247G6 170 0.8+0.1 0.00700 0 0 b  Lind.29.2560 Heat shock protein 20 + 29+0.2*
Lin250C3 174 0.8+0.1 0.018 0 0 a Lind.32.2420 p-nitrophenylphosphatase N.D.
Lin252F9 201 1.0+£0.2 0.003 0 0 b LinJ.30.2040 Calpain-like cysteine peptidase, Clan CA, N.D.
family C2
Lin253D4 224 12+05 0.001 0 0 b LinJ.34.2660 Amastin-like protein N.D.
Lin268C9 224 12106 0.045 0 0 b  LinJ.01.0490 Fatty acyl-CoA synthetase 1 N.D.
Lin297H12 3.67 1.9+0.1 0.031 0 0 b Lind.35.4270 Hypothetical protein, conserved N.D.
Lin299F5 172 0.8+0.1 0.027 0 2e-16 a Lind.23.0570 Hypothetical protein, conserved N.D.
(Continued)
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Table 1. (Continued)

Clone F

Lin302C8 1.89
Lin305D10  1.89
Lin307A8 1.70
Lin309D1 1.89

doi:10.1371/journal.pone.0150172.t001

Log.F+
S

0.9+0.0
0.9+0.3
0.8+0.1
0.9+0.2

0.001
0.025
0.022
0.015

e-value Def. Annotation Anotated gene function qRT-PCR
Fw Rv F*SD

Lind.23.0580 Hypothetical protein, conserved N.D.

0 0 b Lind.29.0930 Hypothetical protein, conserved N.D.

0 0 b Lind.23.0390 Hypothetical protein, conserved N.D.

- 0 ¢ Lind.09.0220 Hypothetical protein, conserved N.D.

0 0 a Lind.05.0060 Major vault protein - -1.0+0.1
Lind.05.0070 Dynein light chain, putative N.D.

HIFBS-depleted promastigotes that in reference CM promastigotes (Fig 6B). The differences
observed are statistically significant (paired Student's t test, p = 0.022).

Discussion

The presence of complement proteins contained in serum drastically decreases viability of pro-
mastigotes. In fact, only about 3% of stationary phase promastigotes survive when they are
transferred to normal human serum [25]. Therefore, heat inactivation of serum is essential for
appropriate culturing of Leishmania promastigotes.

Serum provides complex nutrients for appropriate growth, despite heat inactivation affects
thermolabile nutrients such certain vitamins and amino acids. However, complete medium for
promastigote culturing includes the defined medium RPMI 1640, which contains all protein
amino acids and required vitamins. Some proteins are probably denatured at 56°C, whereas
some others are not (e.g. albumin, which coagulates at higher temperatures). Lipids are dena-
tured at higher temperatures than proteins. In fact, the major effect observed below the dena-
turation temperature range is not conformational transition of a single molecule but a change
in the conformation of the supramolecular structure [26, 27]. For example, lipid monolayers of
bilayers may be disintegrated without a conformational change in each single molecule, i.e. the
gel-to-liquid transition due to temperature increase. Anyway, both native and denatured pro-
teins and lipids are also source of their backbone residues as nutrients. Color does not change
either, which indicates that the Fe-hemin complex is mantained intact after heating at 56°C.
This is very important, as Fe is essential for proper growth of promastigotes.

HIFBS-depleted promastigotes are not differentiated to an amastigote-like stage, as revealed
by morphology and constant abundance of the LACK protein (Fig 4 and S3 Table) and the A2
transcript (S3 Table). The reduced growth rate of HIFBS-depleted promastigotes (Fig 1A) may
be related with the down-regulation of the GINS Psf3 gene (Fig 5, Table 1). The relationship
between this expression profile and tetraploidy (Fig 1B) might be explained by hypothetical
impairment of mitosis with cytokinesis. The G1 and G2 peaks are slightly displaced respec-
tively from the 200 and 400 values in the FL2 axis in the case of CM and from the 400 and 800
values in the HIFBS-depletion plot (Fig 1B). This is consistent with constitutive aneuploidy
observed in the genus Leishmania [28-30].

An unusually low differential expression rate has been reported in all the stages of different
Leishmania species compared to other organisms [31-33]. In this context, the differential gene
expression rate of HIFBS-depleted promastigotes is even more reduced than usual compared
to CM control promastigotes. However, HIFBS-depletion affects important metabolic genes
involved in limiting or crucial steps. One of them is the gPEPCK, which is down-regulated not
only by HIFBS depletion, but also in metacyclic promastigotes isolated from the stomodeal
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detoxification system.

doi:10.1371/journal.pone.0150172.9005

valve of the sand fly (unpublished result), in amastigotes with respect to cultured promastigotes
[31] and by the specific effect of temperature increase plus acidification towards differentiation
[34]. These stages and experimental conditions involve nutrient depletion. The glycolytic genes
remain constantly expressed at the transcript level in HIFBS-depleted promastigotes and gluco-
neogenesis is probably less active due to gPEPCK down-regulation. One of the most important
energy and carbon sources for amastigotes is glucose obtained from the host, although glucoly-
sis is more active in promastigotes in the absence of starvation and B-oxidation of fatty acids in
amastigotes [35]. RPMI is a rich medium containing plenty of glucose (11 mM), which is in
agreement with the gPEPCK expression profile found because apparently, gluconeogenesis is
not required under these conditions. In contrast, the FASI gene is up-regulated in HIFBS-
depleted promastigotes, probably because of the absence of the complex lipoid substances pro-
vided by serum. MMCE up-regulation suggests that the rate of branched chain amino acid
and/or odd-chain fatty acid degradation is higher in HIFBS-depleted promastigotes than in
CM. In fact, promastigotes and amastigotes are able to use amino acids as their major carbon
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sources [15]. No gene directly involved in branched-chain amino acid catabolism is differen-
tially regulated in HIFBS-depleted promastigotes, whereas the MMCE gene is involved in both
branched-chain amino acid and odd-chain fatty acid lipid catabolism [36]. For this reason, we
aimed to evaluate the BCAT activity as an indication of relative activity of branched-chain
amino acid degradation in culture (HIFBS-depletion versus CM promastigotes). The BCAT
activity decreases under serum depletion in promastigotes (Fig 6B and S1 Fig). This finding
suggests that MMCE up-regulation is not related to an increase of activity of branched chain
amino acid catabolism but to degradation of odd-chain fatty acids. This activity may be linked
to the 4CCL. These findings suggest that odd-chain fatty acids may be degraded to allow the
biosynthesis of common fatty acids that may be required under depletion of complex lipids
contained in serum. Methionine biosynthesis would be also required in HIFBS-depleted pro-
mastigotes, as the MTRR is up-regulated in these conditions. The cofactor S-adenosylcobala-
mine is oxidized over time when it is coupled to the methionine synthase, thus inactivating its
activity. The role of the MTRR is keeping the methionine synthase (MTR) active by reverting
oxidation of the cofactor. In addition to the amino acids provided in the HIFBS-depleted
medium (i.e. RPMI), a possible source would be protein turn-over via the ubiquitin protea-
some, which is suggested on the basis of the up-regulation of PSMD8 and PSMB3. To summa-
rize, according to the gene expression profiles, catabolism of sugar, fatty acids and amino acids
may remain constant under serum depletion, whereas fatty acid and methionine biosynthesis
may be favored and gluconeogenesis may decrease.

The PNPP-encoding gene is up-regulated in HIFBS-depleted promastigotes, as well as in
axenic amastigotes with respect to promastigotes [37, 38]. The PNPP participates in this cycle
and bears the phosphoglycolate phosphatase activity (E.C.3.1.3.18). The glyoxylate cycle is
present in Leishmania spp. and is probably related with glucolysis, gluconeogenesis and glycine
biosynthesis [39]. In this case, PNPP up-regulation may be linked to glucolysis rather than glu-
coneogenesis because the gPEPCK is down-regulated in HIFBS-depleted promastigotes. Addi-
tionally, it may favor survival under nutrient depletion, as the glyoxylate pathway may be
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present in Leishmania to accelerate oxidative catabolism, given the low efficiency of the Krebs
cycle in these organisms.

As a consequence of the unusual gene expression mechanisms in Leishmania spp. [40-45],
post-transcriptional, translational and post-translational regulation are specially important
processes in these organisms. The translation factor SUI1 is one of the up-regulated genes in
HIFBS-depleted promastigotes. This gene was also found to be up-regulated in amastigote-like
forms obtained by increasing temperature and lowering pH [34] but probably not by the pres-
ence of heavy metals (e.g. cadmium [46]) Therefore, this translation factor may influence trans-
lation control under specific stress situations like nutrient stress, temperature decrease and
acidification. The hsp20 and the cyclophilin might participate in post-translational regulation
processes provided their up-regulation in HIFBS-depleted promastigotes. The GLO1 is located
in the kinetoplast and it is essential for survival. This gene is involved in the ketoaldehyde
detoxification pathway. The up-regulation of the GLO1 gene under serum depletion may be
one of the mechanisms the parasite displays to maintain certain growth rate, which is actually
much slower than in the CM control (Fig 1A).

It has been described that nutrient depletion is associated to metacyclogenesis (reviewed in
[5, 6]). Therefore, up-regulation of the HASPB and the amastin Lin]J.34.2600 under serum
depletion suggests that the differentiation state of HIFBS-depleted promastigotes is more
advanced. In fact, the HASPB is associated to differentiation of promastigotes [47] and amas-
tins constitute a superfamily of proteins of unknown function basically expressed in the amasti-
gote stage (reviewed by [48]). However, the following considerations are in disagreement with
a more advanced differentiation stage of promastigotes under serum depletion: i) morphology
(i.e. higher frequency of stumpy instead of slender promastigotes); ii) the differentiation pro-
cess encompasses proper growth in culture as well as within the sand fly gut it mimics, which is
not observed in HIFBS-depleted promastigotes (Fig 1A); iii) ploidy alteration (Fig 1B); iv)
down-regulation of the arginase in HIFBS-depleted promastigotes (Table 1); and v) decreased
infectivity in vitro (Fig 2). High expression levels of the arginase increases the chance of sur-
vival of amastigotes within the host phagocytes [49]. The pre-adaptation hypothesis is essential
to understand amastin and arginase expression in promastigotes. This hypothesis consists of a
phenotype prepared in advance for differentiation of promastigotes to amastigotes, i.e. invasion
of the mammalian host phagocyte [5, 6, 31, 50]. Therefore, an unsuccessful differentiation pro-
cess takes place in HIFBS-depleted promastigotes, which are less infective than CM promasti-
gotes. A possible explanation is the down-regulation of the arginase gene.

Conclusions

In general, the axenic culture model is used to perform biological and biomedical studies con-
cerning Leishmania promastigotes. As an insight into the role of inactivated serum in the cul-
ture medium, this study has revealed that serum depletion considerably decreases the growth
rate of promastigote cultures and leads to reduced infectivity and ploidy alteration. Conse-
quently, only mediums containing the complex nutrients of serum are appropriate in axenic
cultures in order to mimic to some extent the natural developmental processes of promasti-
gotes. The effect on the transcriptome is slight in terms of differentially regulation rate but
important when gene function is considered (i.e. GINS Psf3, gPEPCK, FAS1, PNPP, MTTR,
MMCE, HASPB, arginase and amastin). Down-regulation of the arginase in HIFBS-depleted
promastigotes contributes to explain their reduced infectivity. The results discussed herein
have provided clues to understand processes and to establish new hypotheses and observa-
tions that may be studied in the future. For example, the role of the glyoxylate cycle in these
organisms or the elucidation of signal transduction pathways and their connection with
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stimuli and effector gene expression regulation mechanisms that are completely unknown in
these organisms so far.

Supporting Information

S1 Fig. Decay of NADH concentration in the BCAT activity assay. One out of three biologi-
cal replicates of the experiment is shown. (A) CM. (B) HIFBS-depletion.
(PPTX)

S1 Table. QRT-PCR primers and probes.
(XLS)

S2 Table. Flow cytometry data. Data from one out of three biological replicates displayed in
Fig 1B are shown for CM and HIFBS-depletion.
(PPT)

S3 Table. Microarray control spots. HIFBS-depletion/CM hybridization results for positive
and negative controls included in the genome microarrays.
(DOC)
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