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Background.MicroRNAs (miRNAs)may serve as potentialmolecularmarkers to predict liver injury resulting fromchronic hepatitis
B (CHB). In the present study, we want to study the expression profile and clinical significance of miRNAs at different stages
of CHB virus infection. Methods. Using miRNA microarray, we investigated the global expression profiles of cellular miRNA in
asymptomatic hepatitis B antigen carriers (ASCs) and CHB patients, compared with healthy controls (HCs). Results.We identified
79 and 203 differentially expressedmiRNAs in the peripheral bloodmononuclear cells of ASCs andCHBpatients compared toHCs,
respectively. Some of these miRNAs were common to ASCs and CHB patients, but another set of miRNAs that showed differential
expression between ASCs and CHB patients was also identified. Gene ontology and pathway enrichment analysis showed that the
target genes of the identifiedmiRNAs played a role in important biological functions, such as learning ormemory, cell-cell adherens
junction, ion channel inhibitor activity, TGF-beta signaling pathway, and p53 signaling pathway. Conclusion. We identified some
significant differentially expressed miRNA in different phases of HBV infection, which might serve as biomarkers or therapeutic
targets in the future.

1. Introduction

Hepatitis B virus (HBV) is a hepatotropic noncytopathic
DNA virus that is a major cause of liver diseases [1]. Eradica-
tion ofHBV infection remains a global health challenge.More
than 350 million people worldwide are persistent carriers of
HBV, and many may progress to chronic liver disease. One
to two million people die annually worldwide from HBV-
related disease [2], which results in an increase in healthcare
cost and other socioeconomic burdens. In most adults,
HBV infection is self-limiting and characterized by quick
viral clearance; however, in some cases, the patients become
carriers or develop chronic persistent infection. According to
their serological profile [3], patients can be divided into two
well-distinguished subsets of subjects: (1) asymptomaticHBV
carriers (ASCs) and (2) chronic hepatitis B (CHB) patients.
ASCs show long-lasting inhibition of viral replication with
viral load levels that are usually below 2,000 IU/mL and no
biochemical, ultrasonographic, or histological evidence of

liver injury. On the contrary, anti-HBe-positive CHB patients
have active liver diseasewith a high risk of progression toward
cirrhosis [4].Thedifference in the responses toHBV infection
is probably related to the exclusive dependence of HBV on
host cellular machinery for its propagation and survival.
Therefore, investigation of the interactions betweenHBV and
host cells is crucial for understanding viral pathogenesis and
the development of new antiviral therapies.

MicroRNAs (miRNAs) are small noncoding RNA
molecules that are about 22 nucleotides long and regulate
gene expression by base pairing with the 3-untranslated
region of target mRNAs, which usually leads to mRNA
degradation or translational silencing. miRNAs have been
identified in most types of cells and tissues and are involved
in a variety of biological processes, such as inflammation,
cell proliferation, development, differentiation, apoptosis,
and tumorigenesis. Further, miRNAs play vital roles in the
pathogenesis of various diseases, such as cancers and viral
infections, through posttranscriptional regulation of more
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than 30% of human genes [5]. Cellular miRNAs also affect
virus replication and pathogenesis, as demonstrated in the
case of the liver-specific miRNA miR-122, which is essential
for the replication of hepatitis C virus [6]. In addition, Zhang
et al. found that the plasma miRNA profiles can indeed be
used as a predictor of early virological response to interferon
treatment in CHB patients [7]. In line with these findings,
some reports suggest that circulating miRNAs may serve as
potential molecular markers of liver injury resulting from
CHB [8–10]. As the viral titer in the body, the degree of liver
damage, and the immune characteristics vary between ASCs
and CHBs, the expression profiles of miRNAs may also differ
between these two groups of patients. However, there is not
much information available about the relationships between
cellular miRNAs and the different phases of chronic HBV
infection. Therefore, the present study was conducted with
the aim of filling in this gap in information.

Using miRNA microarray and PCR analysis, we inves-
tigated the global expression profiles of cellular miRNAs in
peripheral bloodmononuclear cells (PBMCs) fromASCs and
CHB patients and identified a few novel miRNAs that were
closely involved with the pathogenesis of HBV infection. Fur-
ther, network analyses were used to determine the biological
roles played by the target genes of thesemiRNAs in bothASCs
and CHB patients.

2. Material and Methods

2.1. Clinical Samples. Human blood samples were obtained
from healthy donors and patients with their informed con-
sent. The study group included sixteen ASC patients, sixteen
CHB patients, and sixteen healthy controls (HCs), who
were recruited from the First Affiliated Hospital, College
of Medicine, Zhejiang University, between 2014 and 2015.
The study protocol conforms to the ethical guidelines of the
1975 Declaration of Helsinki, and all the patients provided
their written informed consent for participation. The symp-
toms of all the patients were diagnosed according to the
previously described criteria [11]. The level of HBs antigen
was measured quantitatively using the Abbott chemilumi-
nescence immunoassay kit (Abbott Japan, Tokyo, Japan).
Quantitative detection of HBVDNAwas performed using an
ABI7300-type quantitative PCR instrument (Applied Biosys-
tems, USA). The results are expressed as the number of log10
international units per milliliter.

2.2. Separation of PBMCs, RNA Extraction, and miRNA
Microarray. Samples containing 5ml of blood were col-
lected. PBMCs were isolated using standard density-gradient
centrifugation on Ficoll-Paque (Amersham Biosciences,
Freiburg, Germany). Total cellular RNA from the PBMCswas
extracted using the TRIzol RNA reagent (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s instructions.
Low-molecular-weight RNA was isolated using the mirVana
miRNA isolation kit (Ambion, Austin, TX, USA) [12]. We
performed miRNA microarray analysis to identify HBV-
associated differences in cellular miRNA profiles between
three ASC patients and three CHB patients and three healthy
controls. miRNA microarray analysis was performed using

Table 1: Primer sequence of quantitative RT-PCR.

Gene name Primer sequence

U6
F:
5-GCTTCGGCAGCACATATACTAAAAT-3
R: 5-CGCTTCACGAATTTGCGTGTCAT-3

hsa-miR-195-3p F: 5-CCAATATTGGCTGTGCTGCTC-3

hsa-miR-144-5p F:
5-CGCGGATATCATCATATACTGTAAG-3

hsa-miR-451a F: 5-CGAAACCGTTACCATTACTGAGTT-3

hsa-miR-920 F: 5-GGGGAGCTGTGGAAGCAGT-3

the miRMAX microarray at KangChen Bio-Tech Corpora-
tion (Shanghai, China) [13]. The arrays were scanned using
an Axon GenePix 4000B microarray scanner, and GenePix
pro V6.0 was used to read the raw intensity of the image. We
used themedian normalizationmethod to obtain normalized
data (normalized data = [foreground value – background
value]/median, where the median is the 50 percent quantile
of microRNA intensity, which was greater than 30 in all
the samples after background correction). An miRNA was
considered to be differentially expressed if the difference in
its expression was more than 2.0-fold.

2.3. Quantitative Real-Time PCR for miRNA Verification.
The quantitative PCR validation group consisted of 16 CHB
patients, 16 ASC patients, and 16 healthy controls. Four
differentially expressed miRNA were randomly selected for
verification. Expression of these maturemiRNAs was assayed
using the Mir-X miRNA First-Strand Synthesis Kit (number
638313, Clontech Laboratories, Inc.) and SYBR Premix Ex
Taq II (Tli RNase H Plus) kit (number RR820A, Takara Bio,
Inc.). Briefly, in the Mir-X cDNA synthesis reaction, RNAs
are poly(A)-tailed using poly(A) polymerase and then copied
using a modified oligo(dT) primer and SMART MMLV
Reverse Transcriptase.The reactionmixture contained 5𝜇l of
2× mRQ Buffer, 3.75 ul RNA sample (0.25–8 ug), and 1.25 ul
mRQ Enzyme.The reaction was performed as follows: 1 hour
at 37∘C and then terminate at 85∘C for 5min to inactivate
the enzymes. These synthetic cDNA were then specifically
and quantitatively amplified using a miRNA-specific primer
and SYBR advantage qPCR chemistry. All the primers for
quantitative PCR (shown in Table 1) were synthesized by
Sangon Biotech (Shanghai) Co., Ltd. The reaction mixture
contained 5 𝜇l of 2× SYBR Premix Ex Taq II (Tli RNase
H Plus), 0.2 ul miRNA-specific primer (20 uM), 0.2 ul mRQ
3 primer, 0.2 ul ROX Reference Dye (50X), and nuclease-
free water, which made a total volume of 8𝜇l. Each 8 𝜇l
mixture was added to a well in a 384-well PCR plate, and
this was followed by addition of 2 𝜇l cDNA in each hole.
The reaction conditions were as follows: 95∘C for 2min
followed by 40 cycles of 95∘C for 15 s and 60∘C for 45 s
[14]. The relative amount of miRNA was normalized against
an internal control, U6 snRNA, and the fold change in the
amount of each miRNA was calculated using the 2−ΔΔCT
method.
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Table 2: Clinical data of patients used for cellular miRNA analysis.

Clinical characteristics HC ASC CHB 𝑃 value
Number of patients 16 16 16 𝑃 = NS
Sex number (%)
Female 6 5 6
Male 10 11 10 𝑃 = NS
Age (years)
Median 45 43 42
Range 34–65 27–64 25–62 𝑃 = NS
ALT 𝑃 = NS (ASC versus HC )
Median 27.43 34.38 95.36 𝑃 < 0.001 (CHB versus HC)
Range 9–69 17–89 16–253 𝑃 < 0.001 (CHB versus ASC)
AST 𝑃 = NS (ASC versus HC)
Median 24 35.29 75.50 𝑃 = 0.028 (CHB versus HC )
Range 14–34 21–84 9–327 𝑃 = NS (CHB versus ASC )
HBV DNA
Median NA 1.51 × 106 2.70 × 108

Range NA 2.12 × 103–5.99 × 106 2.37 × 104–2.51 × 109 𝑃 = NS (CHB versus ASC)
HBsAg
HBsAg (+) NA 4 (25%) 10 (62.5%)
HBsAg (−) NA 12 (75%) 6 (37.5%) 𝑃 = 0.033 (CHB versus ASC)

2.4. Gene Ontology Analysis and Signaling Pathway Analysis.
Target genes of the differentially expressed miRNAs were
predicted based on agreement between the two databases
to predict miRNAs’ target genes: targetscan7.1 and mirdbV5.
Signaling pathway analysis and gene ontology (GO) analysis
were performed to determine the biological functions of the
target genes of differentially expressed miRNAs. The genes
were mapped to each node in the GO database, and the
number of genes in each node was calculated. Signaling
pathway analysis is a functional analysis for mapping genes
to KEGG pathways. GenMAPP v2.1 was used to map the
genes to the KEGG database through the signaling pathway,
and then statistical analysis was performed to determine the
degree of enrichment of the genes in each pathway [15].

2.5. Statistical Analysis. Data analysis was performed using
SPSS 19. Data were expressed as the mean ± standard
deviation values. The statistical significance of differences
between two groups was analyzed by the 𝑡-test.

3. Results

3.1. Patient Characteristics. The clinical characteristics of the
patients according to group are shown in Table 2. The mean
age and male : female ratio were similar between the three
groups. The distribution of ALT and AST was not found to
be different between ASC group and HC group, but it is
significantly increased in CHB group compared with ASC
group and HC group. The average amounts of HBV DNA
were higher in CHB than in ASC, but there was no significant
difference. The prevalence of hepatitis B surface antigen

(HBsAg) was 62.5% in CHB and 25% in ASC. There was
significant difference between them (𝑃 = 0.033).

3.2. miRNA Expression by Microarray Analysis. Among the
2077 human mature miRNAs investigated by the arrays, 79
miRNAs were found to be differentially expressed (>2-fold)
between the ASC group and HC group, which accounted
for 3.80% of all the miRNAs investigated. Of these, 11 were
upregulated and 68 were downregulated in the ASC group. In
addition, 203 miRNAs (9.77%) were differentially expressed
(>2-fold) between the CHB group and HC group, including
118 upregulated miRNAs and 85 downregulated miRNAs
in the CHB group. Further, 144 (6.93%) miRNAs exhibited
more than a 2-fold difference in expression between the
CHB group and the ASC group, of which 115 miRNAs
were upregulated and 29 were downregulated. Among the
differentially expressed miRNAs, 38 miRNAs were common
to both the ASC group and CHB group, 5 of which were
upregulated and 33 of which were downregulated in both
groups (Table 3).

3.3. Validation of the Microarray Results by Quantitative
Real-Time PCR. Four miRNAs with abnormal expression,
namely, hsa-miR-195-3p, hsa-miR-144-5p, hsa-miR-451a, and
hsa-miR-920, were selected and analyzed by real-time quan-
titative PCR in order to validate the microarray results.
Consistent with the array data, the expression of these
miRNAswas either upregulated or downregulated in theASC
group and CHB group in comparison with the HC group
(Figure 1). The expression levels of hsa-miR-920 and hsa-
miR-195-3p still exhibited more than a 1.5-fold increase in
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Table 3: Common miRNAs differentially expressed between ASC group and CHB group.

CHB group
Up Down

ASC group

Up

miR-181a-2-3p,
miR-876-5p,
miR-3184-3p,
miR-4711-3p,
miR-181b-5p

Down

miR-151a-5p, miR-330-5p, miR-130a-3p, miR-718, miRPlus-B1114,
miR-326, miR-151a-3p, miR-139-5p, miR-369-3p, miR-33a-5p,

miR-33b-5p, miR-3679-3p, miR-708-5p, miR-199a-3p, miR-190a-5p,
miR-335-5p, miR-122-3p, miR-376a-5p, miR-495-3p, miR-498,
miR-K12-8-5p, miR-22-3p, miR-126-3p, miR-1915-3p, miR-4328,
miR-106b-5p, miR-331-3p, miR-151a-5p, miR-199a-5p, miR-339-5p,

miR-143-3p, miR-652-3p, miR-4723-3p
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Figure 1: Validation of the microarray data by qRT-PCR analysis. Changes in the expression of the four randomly selected miRNAs showed
good agreement between the RT-PCR and microarray results.

the CHB group when compared to the HC or ASC group
(𝑃 < 0.05). Furthermore, the expression of hsa-miR-144-5p
was still significantly downregulated in the CHB group, with
around 2-fold difference (𝑃 < 0.05). The expression of hsa-
miR-451a was similar between the HC and ASC groups, but

it was significantly higher in the CHB group (𝑃 < 0.001 and
𝑃 = 0.008, resp.).

3.4. Correlation of Four miRNAs with Clinical Indicators
of ASC or CHB Patients. To investigate whether cellular



BioMed Research International 5
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Figure 2: Hierarchical cluster analysis of the differentially expressed miRNAs. The red boxes represent upregulation of the corresponding
miRNA, and the green boxes represent downregulation of the corresponding miRNA.

miR-195-3p, miR-144-5p, miR-451a, and miR-920 were
related to HBV infection, we correlated these four miR-
NAs’ expression level with clinical indicators of HBV infec-
tion including serum ALT level, HBsAg level, and HBV
DNA level. However, no significant correlation was found.
Although the levels of miR-144-5p and miR-451a were slight
negatively correlated with ALT (𝑟 = −0.329, −0.270; 𝑃 =
0.135, 0.135), the difference was statistically insignificant.

3.5. GO Analysis of the Target Genes of the Differentially
Expressed miRNAs. The sample size was rather small, and
there were individual differences within each group. There-
fore, some false positive results were obtained, as some
miRNAs showed abnormally high or low expression only
in certain samples. Therefore, we screened more valuable
miRNAs for target gene prediction, GO analysis, or signaling
pathway analysis (Table 4). Hierarchical cluster analysis was
performed to analyze the remaining data (Figure 2). The
target sites were predicted using targetscan7.1 and mirdbV5.

The final target genes were those that were predicted by all
the three miRNA prediction tools. miRNA-gene networks
(Figure 3) based on the regulatory relationships between the
miRNAs and their target genes were built. A total of 150
target genes were predicted for the differentially expressed
miRNAs between the ASC and HC group; 119 genes, for
the differentially expressed miRNAs between the CHB and
HC group; and 36 genes, for the differentially expressed
miRNAs between the CHB and ASC group. GO analysis
consists of three components, namely, biological processes,
cellular components, and molecular functions. The ten most
commonly observed terms in each component were plotted
to compare their differences between each group (Figure 4).
The predicted target genes of the miRNAs that were differ-
entially expressed in the ASC and CHB groups compared
to the HC group were primarily involved with response
to nutrient, regulation of primary metabolic process, cell
part, kinase activity, and binding. Moreover, the predicted
target genes of the miRNAs that were differentially expressed
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Figure 3: Continued.
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Figure 3: miRNA-gene networks built using the target genes of the differentially expressed miRNAs between the ASC group and HC group
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genes. The lines represent the interactions between miRNAs and genes.

Table 4: Significant differentially expressed miRNA in each group.

ASC versus HC CHB versus HC CHB versus ASC

Upregulation
hsa-miR-181a-2-3p,
hsa-miR-142-3p
hsa-miR-181b-5p

hsa-miR-181a-2-3p
hsa-miR-920
hsa-let-7b-3p

hsa-miR-181b-5p

hsa-miR-490-3p
hsa-miR-212-3p
hsa-miR-635

ebv-miR-BART7-5p
hsa-miR-195-3p
hsa-miR-378b

Downregulation

hsa-miR-376c-3p
hsa-miR-199a-3p
hsa-miR-130b-3p
hsa-miR-193a-3p
hsa-miR-195-3p
hsa-miR-500a-3p
hsa-miR-34a-5p
hsa-miR-301a-3p

hsa-miR-130a-3p
hsa-miR-382-3p
hsa-miR-559

hsa-miR-377-3p
hsa-miR-654-3p
hsa-miR-451a
hsa-miR-600

hsa-miR-144-5p
hsa-miR-324-5p

hsa-miR-335-3p
hsa-miR-433-5p
hsa-miR-377-3p
hsa-miR-654-3p
hsa-miR-451a

hsa-miR-196b-3p

between the CHB group and ASC group were involved
with learning or memory, cell-cell adherens junction, and
ion channel inhibitor activity. Pathway enrichment analysis
was performed to further understand the functions and
signal pathways of these predicted gene targets (Figure 5).
The results indicated that the target genes of differentially
expressed miRNAs between the ASC group and HC group
were related to 26 signaling pathways, particularly the path-
ways associated with endocytosis, thyroid cancer, and p53
signaling pathway. Further, the target genes of the differ-
entially expressed miRNAs between the CHB group and
HC group played a role in 12 signaling pathways, primarily
the TGF-beta signaling pathway, p53 signaling pathway, and
RNAdegradation. Finally, the target genes of the differentially
expressed miRNAs between the ASC group and CHB group
were related to 4 signaling pathways that were primarily
involved with TGF-beta, ubiquitin mediated proteolysis, and
cell adhesion molecules (CAMs).

3.6. miRNA-GO/Pathway Network Analysis. To better under-
stand the associations between the differentially expressed
miRNAs and the results of GO and signaling pathway anal-
yses, miRNA-GO networks (Figure 6) and miRNA-pathway
networks (Figure 7) were built. Differentially expressed miR-
NAs, the GO terms that their target genes were linked to,
and the pathways they were involved in according to the
pathway enrichment analysis are represented as nodes in the
graph, and the biological relationship between two nodes is
represented as a line. All lines were supported by at least one
study from the published literature, a textbook, or functional
information in the GO or KEGGdatabase. Based on the lines,
we could then infer the key roles of the relationships depicted
in the networks. The degree of complexity of each node
was of primary concern, because the weight (importance)
of the regulator (in this case, the miRNA) increases as the
degree of complexity increases, according to the theory of
network biology [24]. The visualized networks indicated that
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Figure 4: Functional classification of the target genes of differentially expressed miRNAs between the ASC group and HC group (a), CHB
group and HC group (b), and CHB group and ASC group (c).
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Figure 5: Pathway enrichment analysis of the target genes of differentially expressed miRNAs between the ASC group and HC group (a),
CHB group and HC group (b), and CHB group and ASC group (c).

miR-142-3p, miR-181b-5p, miR-199a-3p, miR-130b-3p, miR-
34a-5p, miR-301a-3p, and miR-376c-3p played regulatory
roles inmodulating themolecular networks inASCs. Further,
the networks demonstrated that miR-181b-5p, miR-130a-
3p, miR-559, miR-920, miR-377-3p, miR-654-3p, miR-451a,
miR-600, and miR-324-5p might be crucial regulators of
pathogenesis in CHB patients. Finally, it was shown that
miR-212-3p, miR-490-3p, miR-635, miR-377-3p, miR-654-
3p, and miR-451a played a prominent role in the global
signaling networks and pathways involved in the progression
of chronic liver disease, as thesemiRNAs carried considerable
weight in both the ASC and CHB groups.

4. Discussion

In this report, utilizing miRNA array, we analyzed the
global miRNA expression profiles in the PBMCs of healthy
control individuals and HBV-infected patients who were
asymptomatic carriers or had chronic hepatitis B infection.
Bioinformatics analysis of the microarray results revealed
a set of miRNAs that were differentially expressed in the
PBMCs of ASCs and CHB patients compared to the HCs. In
addition, a significant number of the differentially expressed
miRNAs were found in both ASCs and CHB patients.
Moreover, we found that 144 mRNAs exhibited more than a
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Figure 6: Continued.
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Figure 6: miRNA-GO networks based on the identified GO terms of the target genes of the differentially expressed miRNAs between the
ASC group and HC group (a), CHB group and HC group (b), and CHB group and ASC group (c). The red boxes represent differentially
expressed miRNAs; the blue circles represent the significant GO terms; and the straight lines represent interactions between the miRNA and
the GO term. GO, gene ontology; miRNA, microRNA.

2-fold difference in their expression between the CHB group
and ASC group. These observations indicated that common
and phase-specific mechanismsmay exist at the miRNA level
in ASCs andCHB patients.Thus, investigating thesemiRNAs
and their mechanisms might be of great importance for
further research into the pathogenesis of hepatitis B infection.

miRNAs are likely to play a prominent role in altering
the global signaling networks and pathways involved in the
progression of liver disease. Therefore, in this study, we
identified the target genes of the differentially expressed
miRNAs and built miRNA-gene networks to study their
interactions; further, we used GO and signaling pathway
analysis to determine the functions and biological pathways
of the target genes. GO analysis demonstrated that the target
genes were primarily involved with response to nutrient,
regulation of primary metabolic process, cell part, kinase
activity, and binding, and pathway enrichment showed that
the target genes were involved in several important pathways,
such as those related to endocytosis, ubiquitin mediated pro-
teolysis, TGF-beta signaling pathway, and p53 signaling path-
way. Finally, the significance of the identified miRNAs was
determined by building miRNA-GO and miRNA-pathway
networks and calculating the degree of complexity of the
nodes [57]. Using this analytical approach, we identified the

key miRNAs at the centre of the signal transduction network
in patients with HBV infection (both carriers and those with
chronic infection). Since the remaining miRNAs also had a
considerable degree of complexity, they will be the subject of
our future studies. Meanwhile, our current results indicate
that miR-142-3p, miR-181b-5p, miR-199a-3p, miR-130b-3p,
miR-34a-5p, miR-301a-3p, and miR-376c-3p may be closely
related to disease pathogenesis inASCs and thatmiR-181b-5p,
miR-130a-3p, miR-559, miR-920, miR-377-3p, miR-654-3p,
miR-451a, miR-600, and miR-324-5p may play an important
role in the pathogenesis of chronic hepatitis B. Further, miR-
212-3p, miR-490-3p, and miR-635, and especially miR-377-
3p, miR-654-3p, and miR-451a, may be associated with the
progression of hepatitis B-related diseases, as theywere found
to be significant in both ASCs and CHB patients. Several of
thesemiRNAshave already been reported in previous studies,
namely, miR-181b-5p, miR-199a-3p, miR-130b-3p, miR-34a-
5p, miR-301a-3p, miR-130a-3p, miR-654-3p, miR-451a, miR-
377-3p, and miR-600. However, miR-142-3p, miR-376c-3p,
miR-559, miR-920, miR-324-5p, miR-212-3p, miR-490-3p,
and miR-635 have not been previously reported in studies
on HBV-related diseases, which makes this finding novel.
No significant correlation was found between the levels of
miR-195-3p, miR-144-5p, miR-451a, andmiR-920 and clinical
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Table 5: Correlation of miRNAs and clinical indicators of HBV infection.

MicroRNA Relevance Clinical indicators Citation

miR-122
Positive correlation HBV DNA [16]
Positive correlation ALT levels [17]
Positive correlation HBsAg levels, ALT levels, and HBV DNA titers [18]

miR-22 Positive correlation HBsAg levels, ALT levels [18]

miR-29 Positive correlation HBV DNA [16]
Negatively correlated Liver fibrotic stages and necroinflammation grades [19]

miR-210 Positive correlation HBV DNA, HBs antigen, alanine aminotransferase (ALT), and HAI score [20]
miR-33a Positive correlation Hepatic fibrosis [21]
miR-125b Negatively correlated HBV DNA intermediates and secretion of HBsAg and HBeAg [22]

miR-146a Positive correlation HBsAg levels [23]
Positive correlation ALT [14]

miR-548ah-5p Negative correlation HBV DNA [14]

indicators of HBV infection. It is likely due to the small
sample size of this study and clinical information missed in
some patients. Taking the correlated between miR-144-5p,
miR-451a, and ALT as an example, it was possible that the
association was real; with a larger sample, we might find
that the association did become statistically significant. In

attempts to answer these questions, we summarized miRNAs
that was reported as a strong correlation with clinical indica-
tors of HBV infection (Table 5).

The functions of the previously reported miRNAs are
described here. Previous studies have demonstrated that
miRNA-181a is a critical player in the modulation of both
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Table 6: Deregulated miRNA in HBV infection or HBV-related disease.

MicroRNA Alteration Target Citation
miR-1 Up HDAC4, FXRA [25]
miR-15a Down HBp and HBx [26]

miR-15b
Down (early

stage)
Up (late stage)

HNF1𝛼 [27]

miR-15a/16 Down Bcl-2 [28]
miR-17 Up ULK1, ATG7, p62 [29]
miR-17-92 cluster Up HBV transcripts, E2F1 [30, 31]
miR-18a Up ESR1, ERa [29, 32]
miR-19b Up P53 [30]
miR-20a Up Egln3/PHD3 [30]
miR-21 Up PDCD4, PTEN [33]
miR-22 Down CDKN1A, AKT3, p21 [34, 35]
miR-26b Down CHORDC1 [36]
miR-27a Up MAP2K4, TR𝛽1 [30]
miR-29a Up PTEN [37]
miR-29c Down TNFAIP3 [38]
miR-33a Up Smad7 [21]
miR-34c Down TGIF2 [39]
miR-93 Down MICA [40]
miR-99a Down AGO2 [41]
miR-101 Down FOXO1, EZH2, DNMT3A [42–44]
miR-103 Up PER3, CDK5R1 [29]
miR-106a Up P130, FAS [29]
miR-107 Up CDK8, let-7 [29]
miR-122 Down HBV DNA polymerase, Cyclin G1, HO-1, NDRG3, PPAR𝛾, PBF [45–47]
miR-125a-5p Up HBsAg [46, 48]
miR-125b Down SCNN1A [22]
miR-125b-5p Up HBsAg, LIN28B/let-7 axis [49, 50]
miR-126 Down PI3KR2, Crk, PLK2 [30]
miR-130a Down PPARG, Era, PGC1𝛼, PPAR𝛾 [30, 45, 51]
miR-141 — PPAR𝛼 [46]
miR-143 Up FNDC3B [47]
miR-145 Down CUL5 [52]
miR-146a Up STAT1, CFH, RIG-I, RIG-G [23, 46, 53]
miR-148a Up c-Met, Wnt [30]
miR-152 Down DNMT1 [46]
miR-155 Up C/EBP, SOCS1 [46]
miR-181a Up HLA-A, E2F5 [46, 47]
miR-199a Up HBsAg [46]
miR-205 Down HBx [46]
miR-210 Up HBV pre-S1 [46]
miR-221 Up PI3-K/Akt [29]
miR-224 Up HOXD10, CDC42, Smad4 [29, 47]
miR-331-3p Up ING5 [54]
miR-370 Down NFIA [45]
miR-372/373 Up NFIB [46]
miR-429 Down NOTCH1 [55]
miR-449a Up CREBFXRA [45]
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Table 6: Continued.

MicroRNA Alteration Target Citation
miR-501 Up HBXIP [46]
miR-545/374a Up ESRRG [29]
miR-548ah Up INF𝛾R1 [46]
miR-581 Down Dicer, EDEM1 [46]
miR-602 Down RASSF1A [29]
miR-939 Down CEBPA [45]
miR-1231 Up HBcAg [46]
miR-4717 Down PD-1 [56]
Let-7a Down CCR7 [29]

innate [58] and adaptive [59] immunity and is involved
in distinct pathological processes. miR-199a-3p has been
reported to bind to and directly suppress HBV RNA [60].
miR-130a and miR-130b share the same seed sequences,
and miRNA-130a can inhibit hepatitis B virus replication by
targeting PGC1𝛼 and PPAR𝛾 [51]. Moreover, downregulation
of miR-377 contributes to IRX3 deregulation in hepatocel-
lular carcinoma [61]. miRNA-34is associated with hepatic
fat metabolism [62]. A recent study has shown that the
expression of miR-301 in the serum was significantly higher
in HCC patients than in healthy subjects [63]. Finally, has-
miR-600 was found to be associated with inflammatory and
cell cycle pathways [12]. In general, miRNAs could act as
a cellular anti-viral defense, as siRNAs do in plants and
lower eukaryotes, or cellular miRNAs could be exploited by
the virus to help establish a favorable environment for its
replication and survival. As shown in Table 6, we summarized
miRNAs that was reported as a dysregulated miRNA byHBV
infection.

In summary, we have comprehensively analyzed the
cellularmiRNAprofiles ofHBV-infected carriers and chronic
disease patients. We have identified certain important miR-
NAs that were differentially expressed in the patients and
were also differentially expressed between the carriers and
chronic disease patients. Further, network biology analysis of
the target genes of these miRNAs demonstrated the global
regulation of signaling network pathways by these miRNAs.
Further studies on the molecular regulating mechanisms of
miRNAs in HBV-related diseases need to be conducted to
further elucidate the pathogenesis of chronic hepatitis B and
identify therapeutic targets for treatment.
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