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The molecular machinery controlling immune development has been extensively

investigated. Studies in animal models and adult individuals have revealed fundamental

mechanisms of disease and have been essential to understanding how humans sense

and respond to cellular stress, tissue damage, pathogens and their environment.

Nonetheless, our understanding of how immune responses originate during human

development is just starting to emerge. In particular, studies to unveil how environmental

and other non-heritable factors shape the immune system at the beginning of life

offer great promise to yield important knowledge about determinants of normal

inter-individual immune variation and to prevent and treat many human diseases. In

this review, we summarize our current understanding of some of the mechanisms

determining early life antibody production as a model of an immune process with

sequential molecular checkpoints susceptible to influence by non-heritable factors.

We discuss the potential of epigenomics as a valuable approach that may reveal

not only relevant gene-environment interactions but important clues about immune

developmental processes and homeostasis in early life. We then highlight the novel

paradigm of human immunology as a complex field that nowadays requires a longitudinal

systems-biology approach to understand normal variation and developmental changes

during the first few years of life.
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INTRODUCTION

Mechanistic studies conducted over the past three decades have defined the basic molecular
machinery that controls the development of protective immune responses in different cell
populations (1–3). The use of animal models has been essential to understand the basic principles
governing the development of the immune system because most of these mechanisms are
conserved in evolution (4–8). However, it is still unclear how these processes are regulated during
human development and, in particular, how environmental exposures primarily relevant to the
human condition shape individual immune programs in early life. In this review, we summarize
our current understanding of mechanisms controlling early life immune development with a
focus on antibody production as a key process with sequential molecular checkpoints regulated
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epigenetically. We then discuss the novel paradigm of human
immunology as a complex field that nowadays requires a
longitudinal systems-level biology focus, including the study of
epigenetic variation and changes during the first few years of life.

EARLY LIFE ANTIBODY PRODUCTION AS
A MODEL TO UNDERSTAND THE BASIC
PRINCIPLES GOVERNING THE
DEVELOPMENT OF THE IMMUNE SYSTEM

Throughout pregnancy, a diverse range of molecules with
immune-stimulatory potential such as cells, alloantigens,
immune factors, and substances in the amniotic fluid are
transferred to the fetus and exposure to trace microbes and
microbial antigens can occur in utero (9, 10). Nonetheless,
antibody responses greatly differ from those during extrauterine
life (11, 12). The ability to class-switch from IgM to IgG, IgA,
or IgE begins early in fetal life (13). For instance, the fetus
contains B-cells primed to IgE as early as 8 weeks and can
generate endogenous IgE by 20 weeks of gestation (11). However,
only IgM and small amounts of class-switched antibodies are
produced in utero (11, 13, 14). As a result, newborns rely heavily
on protection from maternally transferred antibodies for their
transition from the womb to the external world (11–13).

Human babies face the challenge of being born producing
only small amounts of class-switched antibodies and must
rapidly assemble their own antibody-producing machinery
and develop humoral immunocompetence before maternal
antibodies disappear, which usually occurs within the first 3–6
months of life (12, 15). This process must have a robust
stereotypical program to ensure immunocompetence in infancy
to protect against life-threatening infections (15, 16). At the
same time, early life antibody production in humans must have
plasticity to allow adaptability. The latter is essential to maintain
the ability to generate antibody repertoire diversity to face new
environments and emergent pathogens. As a result, antibody
production represents an ideal evolutionary conserved model
to understand the balance between a pre-defined molecular
program encoding the stereotypical development of the immune
system and the dynamic epigenetic fine-tuning occurring in
response to the postnatal environment. This notion has been
demonstrated in a recent longitudinal study in which age,
geographic location and anemia influenced the composition
and dynamics of peripheral immune cells in infants and young
children (17).

Antibody production is linked to the generation and
maintenance of antibody secreting cells (ASC) arising from their
B cell precursors and has well-known cellular and molecular
checkpoints (18, 19). To secrete antibodies, B-cells must mature
into ASC, which may be short-lived effectors in early antibody
responses (e.g., plasmablasts) or prolonged lifespan plasma cells
that produce long-lasting, highly-specific antibodies (Figure 1).
Short-lived plasmablasts are produced during T-cell independent
or early T-cell-dependent responses. In contrast, long-lived ASC
are generated in a complex process triggered by T-helper cells
cross-talk with B-cells in the context of CD40L-CD40 molecular

interactions. These interactions occur in the follicles of lymphoid
organs and trigger immunoglobulin class-switching to produce
antibody isotypes (e.g., IgA, IgG, IgE) (20), antibody somatic
hypermutation and clonal selection. These processes result in the
terminal differentiation of activated B-cells into memory B-cells
and high-affinity ASC (21). Thus, early life antibody production
requires sequential steps and molecular signals to maintain
B-cell survival and drive the progression to ASC. The lack of
these developmental signals results in B-cell death, preventing
antibody production and the generation of effective long-term
immune memory.

STEREOTYPICAL MOLECULAR PROGRAM
AND EPIGENETIC FINE-TUNING OF EARLY
LIFE ANTIBODY PRODUCTION

Several studies have contributed to elucidate the molecular
program that controls early life antibody production (3, 22–26).
This immune developmental program includes cardinal
molecules that orchestrate cell-to-cell interactions and
transcription factors that integrate these signals and modify
cellular phenotypes according to stereotypical maturational
stages (16, 27). It is remarkable that most of these critical cell-
to-cell interactions are regulated by a handful of related proteins
that belong to a single molecular family, the tumor necrosis
factor superfamily of cytokines (TNFSF) (Figure 1). The TNFSF
is an evolutionarily conserved superfamily of 19 cytokines that
bind one or a restricted number of tumor necrosis factor (TNF)
receptors (25, 28, 29). The TNF receptor superfamily (TNFRSF)
is a group of 29 related members characterized by the ability
to bind tumor necrosis factors (TNFs) via an extracellular
cysteine-rich domain (28, 29). TNFRSF members are proteins
with powerful effects in apoptosis, proliferation, survival, and
differentiation, particularly in all major immune cell types
(25, 28–30). In the B-cell compartment, it is noteworthy that
B-cells and ASC undergo apoptosis as default program unless
specific survival signals are delivered by twomembers of the TNF
cytokine superfamily, BAFF (B-cell activating factor, TNFSF13B)
and APRIL (a proliferation inducing ligand, TNFSF13) through
binding of their receptors TACI (transmembrane activator
and calcium modulator and cyclophilin ligand interactor,
TNFRSF13B) and BAFF-R (BAFF receptor, TNFRSF13C) on
the surface of B-cells during their late maturational stages
(29, 31, 32). Another BAFF/APRIL receptor, BCMA (B-cell
maturation antigen, TNFRSF17), located almost exclusively
on the surface of ASC, is essential for their survival and,
consequently, for the production of long-lived antibodies
(Figure 1) (33, 34). Notably, developmental differences are
described in the cell expression of B-cell and ASC survival
receptors. Specifically, the cell surface expression of TACI,
BAFF-R, and BCMA is lower in cord blood B-cells compared
with B-cell from adults (35). TNF superfamily receptors and
ligands involved in a broader range of cellular responses also
signal critical steps during immune development and antibody
production. For instance, cell-to-cell interactions mediated by
CD40/TNFRSF5 trigger for B-cell class-switch recombination
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FIGURE 1 | TNF superfamily signaling and transcriptional changes regulate terminal B-cell maturation and antibody production. Activated B-cells undergo apoptosis

as default fate unless survival signals are delivered by the TNF superfamily cytokines BAFF (B-cell activation factor, TNFSF13B) and APRIL (a proliferation inducing

ligand, TNFSF13) through their receptors TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor, TNFRSF13B) and BAFF-R (B-cell

activating receptor, TNFRSF13C) on the surface of B-cells and BCMA (B-cell maturation antigen, TNFRSF17) on the surface of antibody secreting cells and some

memory B-cells. Antibodies are exclusively secreted by ASC that arise from B-cells after profound changes in their transcriptional program (colored boxes). The

generation of ASC requires that PAX5 and the transcriptional program that maintains B-cell identity (e.g., IRF8, PU.1, BACH2) are silenced and BLIMP-1, the master

regulator of ASC differentiation and associated factors (e.g., XBP1, IRF4) are expressed.

and GC reactions. Differences in gene expression of CD40
and CD40L in B- and T-cells, respectively, have been noted
between newborns and adults and lower production of IgA
and IgG in response to CD40L stimulation is described in
neonatal B-cells, particularly in preterm infants. Other receptors
such as CD27/TNFRSF7 participate in T-cell activation, T- and
B- cell crosstalk and generation of memory and OX40/TNFRSF4
regulates T-cell survival (25, 30). Monogenic defects in the
gene encoding TWEAK (TNF-like weak inductor of apoptosis,

TNFSF12) may impair IgA/IgM production and anti-vaccine
responses. Pro-apoptotic signals delivered by ligands such
as Fas ligand/TNFSF6 or TRAIL/TNFSF10 are critical for
lymphocyte selection and development of lymphoid tissues
(24, 36). Others, like lymphotoxin β/TNFSF3, a membrane-
bound LTα and β complex, regulate GC formation and during
early life, may imprint mucosal IgA responses and ASC
generation (22). The generation of ASC also involves specific
intracellular changes encoded in a transcriptional program
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driven by master transcription factors of ASC differentiation
(18, 19, 37). Specifically, the generation of ASC phenotypes
requires the activation of BLIMP1, XBP1, and IRF4, which
are repressed during early B-cell development. Conversely,
PAX5 and associated transcription factors (e.g., PU.1, IRF8, and
BACH2), which are required to maintain B-cell identity, have to
be silenced to have cellular differentiation into ASC and allow
antibody production (Figure 1) (18, 19, 21, 37, 38).

In summary, antibody production is controlled by a
stereotypical developmental program that includes cardinal
molecules that drive cell-specific proliferation, survival,
and differentiation (e.g., TNFSF and TNFRSF) and specific
transcription factors. Changes in these critical checkpoints can
potentially shape the development of the immune system and
allow dynamic epigenetic fine-tuning occurring in response
to the environmental influence during early life. In support of
this notion, changes in DNA methylation and histone post-
translational modifications have been identified to accompany
the formation of GC and ASC generation during immune
responses (39–41), and DNA methyltransferases and histone-
modifying complexes mediate epigenome changes implicated
in ASC differentiation (39–41). Several microRNAs, another
group of post-transcriptional regulators of gene expression,
converge to modulate class-switch recombination and somatic
hypermutation, to upregulate BLIMP1 and IRF4 and to repress
BACH2 and PAX5 (42–47), critical steps in ASC differentiation.
In different contexts, there is also evidence that TNF superfamily
cytokines actions in the immune system are regulated by
epigenetic modifications (48–51). Thus, there is compelling
evidence demonstrating that epigenetic modifications are
crucial for ensuring the generation of ASC and effective
antibody production.

NEW INSIGHTS INTO THE
STEREOTYPICAL EARLY LIFE
DEVELOPMENT OF THE HUMAN IMMUNE
SYSTEM: VALUES OF BIRTH COHORTS
AND LONGITUDINAL SYSTEMS-LEVEL
ANALYSES

Despite the fact that early life antibody production has distinct
features in humans (12, 15, 23), and that early exposures and
consequent shaping of B-cells and ASC identity and function
are unique to human infants (22, 52), most research in this
field has focused on animal models or human adults and many
aspects of how antibody generation is established and occurs
during the first a few years of life are not fully understood.
However, in recent years several new technological approaches
have shown great potential to move forward the emerging field
of human systems immunology (53, 54). Indeed, comprehensive
immunological analyses are now possible using only small
blood samples in human babies and robust computational tools
can process and integrate multi-dimensional immunological
parameters (12, 16, 52–54). As a result, we are beginning to see
how multi-disciplinary scientific collaborations (obstetricians,
pediatricians, basic science researchers, and computational

biologists) are resulting in the development of new human-based
studies that include comprehensive longitudinal systems-level
analyses to uncover the “master plan” of the early human
development of the immune system (Figure 2).

One of the major milestones of this novel integrative approach
is the discovery that the immune system has a stereotypic pattern
of development in humans (16). This notion was established by
Olin et al. in a study that encompassed longitudinal analyses
in 100 newborn children, sampled up to 4 times during their
first 3 months of life, including the quantification of 58 immune
cell populations by mass cytometry and 267 plasma proteins by
immunoassays (16). The result of this study showed that children
of different levels of maturity and postnatal environmental
conditions converge on a shared developmental trajectory early
in life. Interestingly, cord blood immune phenotypes were highly
diverse but converged onto a shared developmental path during
the first weeks of life, suggesting that there is a “developmental
window” during early life for the establishment of critical and
long-lasting postnatal immune signatures in human babies.

The notion that there is an early-life developmental window
for the environmental imprinting of the human immune system
has also been supported by other birth cohort studies. The
Canadian Healthy Infant Longitudinal Development (CHILD)
cohort included 319 newborns and showed that infants at risk
of asthma exhibited transient gut microbial dysbiosis during
the first 100 days of life. Specifically, the investigators identified
a protective role played by four specific bacterial genera:
Faecalibacterium, Lachnospira, Veillonella, and Rothia (55).
These data are in agreement with seminal work derived from the
Copenhagen Prospective Study on Asthma in Childhood birth
cohort (COPSAC) in Denmark (56, 57). The COPSAC cohort
demonstrated for the first time that in newborns (n = 321),
the nasal bacterial colonization with S. pneumoniae, M.
catarrhalis, H. influenzae, or a combination of these organisms,
is significantly associated with an increased risk for recurrent
wheeze and asthma early in life (58). Similar findings have
been reported by three additional birth cohorts that have used
microbiome and/or host transcriptomic approaches to establish
a longitudinal link between the early-life nasal microbiome and
the subsequent risk of respiratory diseases (56, 59–61). It is
important to note that the latter human-based data are consistent
with the substantial collection of accumulated evidence in animal
models showing that specific microbial populations during early
development can lead to immune-related abnormalities later in
life (17, 22, 62–66). Taken together, all these longitudinal systems-
level analyses from diverse birth cohorts provide strong support
to the concept that environmental exposures taking place during
the first weeks of life have a critical influence on the stereotypical
development of the immune system in humans.

INDIVIDUAL EPIGENOME IN EARLY LIFE
SHAPES THE DEVELOPMENT OF THE
IMMUNE SYSTEM

The importance of individual epigenetic influences in the
development of the human immune system has been established
using longitudinal systems-level analyses in twin studies.
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FIGURE 2 | Complex gene, environment and epigenetic interactions shape the human immune system during early life. Systems immunology in longitudinal

human-based studies is needed to uncover the “master plan” of human immune development and their relationship with immune diseases. DNAm = DNA

methylation, ncRNA = non-coding RNAs, TCR = T-cell receptor, BCR = B-cell receptor.

Brodin et al. conducted a study that included comprehensive
measurements of immune cell populations, cytokine responses,
and serum proteins in 210 healthy twins between 8 and 82
years of age recruited from the Twin Research Registry at
SRI International (67). This seminal work demonstrated that
almost all variation in the measured parameters (>80% of
variance) is determined by non-heritable influences, which
became more pronounced with age, suggesting a cumulative
influence of individual epigenetic modifications induced
by diverse environmental exposures across the life span. In
further considering the implication of these observations, it
is worth mentioning that while longitudinal systems-level
analyses have established temporal patterns that imply early
epigenetic influences in the development of the immune system,
the specific epigenetic modifications mediating these effects
are still unclear. In this regard, it is noteworthy that DNA
methylation is an important mechanism mediating gene-
environmental interactions and epigenetic modifications in
humans (68, 69) and at the cellular level, DNA methylation is
highly sensitive to the cell microenvironment. For example,
nutrient availability alters DNA methylation via chromatin-
modifying enzymes whose activity is dependent on metabolites
such as acetyl-coenzyme A, S-adenosylmethionine, and
NAD+ (70, 71). The interplay between metabolites and the
microbiota also participates in the DNA methylation process.
For instance, Lactobacillus produce methyl donors (e.g.,
folate) required for DNA methylation (70, 72), whereas other
bacteria (e.g., Clostridium) may induce gene demethylation

through metabolites (e.g., butyrate) that downregulate DNA
methyltransferases (73).

The DNA methylome undergoes widespread changes during
prenatal development and cell differentiation. Indeed, DNA
methylation plays a pivotal role in X-chromosome inactivation,
genomic imprinting, and long-term gene silencing (74–78).
Importantly, in the immune system, DNAmethylations critically
regulate the early development of hemopoietic progenitors as
well as the maturation and lineage commitment of immune cells
(79–84). These changes are likely to be influenced by internal
and environmental signals that govern B-cell maturation (39).
Nevertheless, the interplay between DNA methylations,
environmental cues and immune system development
during early human life remains largely understudied and
poorly understood.

The interaction between early exposures and epigenetic
signatures in humans has mostly been studied in birth cohorts
using epigenome-wide association analyses (EWAS) (85–91).
EWAS data derived from a subset of children in the Boston
Birth Cohort (BBC), one of the largest and longest birth cohorts
in the U.S. (92), identified that individual epigenetic variations
are largely established in utero, and that DNA methylation
levels in blood cells are very stable within the first 2 years of
life (93). Notably, data from the BBC also revealed that the
small subset of CpG sites demonstrating significant epigenetic
variations during early post-natal life (<1%) were associated
with genes involved in the development and function of the
immune system (93). Similarly, a recent EWAS study from a large
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Asian birth cohort of 1,019 infants (68 preterm, 951 full-term)
found that the topmost statistically significant epigenetic changes
from cord blood in premature babies were immune-related
genes (94). Another birth cohort in Finland that examined the
early-life dynamics of DNA methylation in serial blood samples
demonstrated that epigenetic changes in leukocytes during early
childhood include several susceptibility loci for immune-related
diseases and genes encoding histone modifiers and chromatin
remodeling factors that may regulate immune functions (95).
Collectively, these studies provide overall support to the concept
that the intrauterine and early life environments shape the
postnatal program of the human immune system development
via epigenetic regulatory mechanisms that include DNA
methylation. Currently, although DNA methylation studies have
limitations (e.g., reliance upon accessible tissues, confounding
by cell heterogeneity), they have been a useful approach to
study epigenetic signatures of childhood immune diseases,
including allergies and autoimmunity (96–100). Indeed, novel
DNA methylation computational analysis can now be employed
to trace normal and aberrant hematopoietic cell differentiation
(39, 80, 82, 83, 101–103). Because of the correlation of DNA
methylationmarks with immune cell development, they also have
been proposed as an alternative for the diagnosis of immune
disorders (104). We believe that in the future, EWAS data may
also be used to elucidate relevant epigenomic marks regulating
immune system development in humans. The latter will require
the multi-disciplinary integration of prospective birth cohorts
with scientific teams with expertise in epigenomics systems-level
data analyses and the basic mechanisms controlling the cellular
and molecular machinery of the different components of the
immune system.

FUTURE DIRECTIONS

Systems immunology and epigenomics are emerging fields that
may greatly advance our current understanding of human
immunology during health and disease (12, 54, 105, 106).
Longitudinal birth cohort studies that combine cutting-edge
multidimensional approaches in epigenetics and immunology
are needed to establish the timing, critical checkpoints and early
exposures determining non-heritable variability in specific bone
marrow-derived and peripheral immune cell populations and
functions as well as immune responses in epithelial cells and
other key components of the mucosal barriers in humans. In
addition, longitudinal systems-level analysis of existing EWAS
data from birth cohorts, with a dedicated focus on developmental
immunology, may provide novel insights into the epigenetic and

molecular control of the stereotypic development of the human
immune system. For instance, the epidemiological correlation
and functional validation of epigenetic modifications mapped
to critical molecular checkpoints for ASC generation (e.g., TNF
superfamily signaling genes, BLIMP1, XBP1, and IRF4) can
provide new clues on how the intrauterine and early post-
natal human environment modulates antibody production and
elucidate new mechanisms and pathways associated with the

development and maintenance of long-term protective responses
to immunizations and against pathogens.

In summary, we believe that the challenge for the next
generation of scientists in the field of human immunology will
be to integrate the basic principles governing the development of
the immune system with the increasingly large multidimensional
data (including epigenetic) and clinical evidence, derived from
prospective human birth cohorts during health and disease. More
sophisticated tools for immune phenotyping using small-volume
samples and increasingly complex systems biology analytical
approaches offer exciting opportunities to simultaneously
interrogate clinical, genetic, epigenetic and functional signatures
of immune cell populations in newborns and young children.
We anticipate that the progress in epigenomics during the next
few years may lead to the discovery of fundamental early-
life gene-environmental factors determining the development of
protective immune responses in humans, and its relation with
the risk and resilience to develop a myriad of immune-related
disorders during infancy and across the life span.
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