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Abstract: Ligands selected from phage-displayed random peptide libraries tend to be 
directed to biologically relevant sites on the surface of the target protein. Consequently, 
peptides derived from library screenings often modulate the target protein’s activity in 
vitro and in vivo and can be used as lead compounds in drug design and as alternatives to 
antibodies for target validation in both genomics and drug discovery. This review discusses 
the use of phage display to identify membrane receptor modulators with agonistic or 
antagonistic activities. Because isolating or producing recombinant membrane proteins for 
use as target molecules in library screening is often impossible, innovative selection 
strategies such as panning against whole cells or tissues, recombinant receptor 
ectodomains, or neutralizing antibodies to endogenous binding partners were devised. 
Prominent examples from a two-decade history of peptide phage display will be presented, 
focusing on the design of affinity selection experiments, methods for improving the initial 
hits, and applications of the identified peptides.  
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1. Introduction 

Phage display technology is based on the ability to express foreign (poly)peptides as fusions to 
capsid proteins on the surface of bacteriophage and was first described in 1985 by George P. Smith [1]. 
Surface display is achieved by inserting a peptide-encoding gene into the gene for a capsid structural 
protein. Billions of pooled peptides presented on phage particles form a phage-displayed peptide 
library, and in contrast to regular synthetic small molecule libraries, as many as 1010 different peptides 
can be screened simultaneously for the desired activity [2,3]. Importantly, peptides selected from 
phage libraries generally target biologically relevant sites on the surface of target proteins  
(e.g., enzyme active or allosteric sites) and therefore often interfere with the activity of the target 
protein [4,5]. Over the past two decades, phage display has influenced many scientific fields including 
(i) drug discovery/design (screening for receptor agonists and antagonists [6-12], drug target validation 
[13,14], development of vaccines [15], in vitro selection of new antibodies, antibody fragments and 
antibody surrogates as randomized fragments on diverse scaffold proteins [16,17], discovery of agents 
for targeted delivery of drugs and gene therapy [18,19]), (ii) proteomics (analysis of protein-protein 
interactions [20], epitope mapping [21], identification of (novel) enzyme substrates and inhibitors 
[22,23], improvement of the proteolytic and folding stability of muteins [24]) and (iii) enzymology 
(designing catalytic antibodies (abzymes) and enzymes with novel specificities [25]).  

Various phage-displayed peptide libraries have been designed using either lytic or filamentous 
phage or phagemid vectors (thoroughly discussed elsewhere [2,3,26-28]). The most common display 
systems are based on filamentous phages in which peptides are fused to either major (p8) or minor coat 
proteins (p3). The choice of the coat protein that carries library peptides determines display valency, 
which can be anywhere between less than one and several thousand copies per virion on average. 
High-copy display is associated with avidity effects, typically resulting in selection of low-affinity 
peptide ligands, but can be preferred in specific situations [29,30]. According to Smith’s classification 
[2], type 8 system stands for p8 phage display where all ~2,700 copies of p8 are transcribed from a 
single fusion gene on a phage vector. If a single phage vector carries both recombinant and wild-type 
g8 genes, this is referred to as a type 88 system. Finally, the p8 phagemid display is denoted as an 8 + 
8 type system (implying there are two different forms of p8; peptide-p8 fusion-encoding genes are 
harbored by phagemids, whereas wild-type p8 is contributed by a helper phage). Analogously, p3-
display systems are referred to as 3, 33 and 3 + 3, respectively, and typically have significantly lower 
valencies with a maximum of five copies per virion for the type 3 display. Novagen’s system T7Select 
for display of peptides and proteins on the capsid of lytic phage T7 also offers the option of adjusting 
display valency to one’s needs by choosing among phage vectors T7Select-1, -10, and -415 (low, 
intermediate, and high copy display vectors, respectively) in which major coat protein-peptide fusion 
genes are transcriptionally controlled by diverse regulatory elements [26]. 

Expression of short peptides on the phage body is generally well tolerated and can be tailored to 
encompass a wide range of display valencies. In contrast, proteins, especially large ones, typically 
disrupt the integrity of the capsid at high copies. Nevertheless, the use of protein scaffolds (e.g. 
antibody fragments, minibodies, affybodies, knottins, or protease inhibitors; reviewed in [2,17,31-33]), 
in which a part of the sequence dispensable for attaining the correct fold is exchanged for a random 
stretch of amino acids, is a popular approach for constructing phage display libraries. Locking library 
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peptides to a certain conformation provides the advantage of obtaining high affinity ligands due to 
lowering of entropic cost upon target binding. However, the scaffold protein needs to be efficiently 
expressed in the bacterial host and the fusion to capsid structural protein compatible with extrusion 
across the plasma membrane. Alternatively, peptides can be constrained by cyclization (incorporation 
of pairs of cysteine residues forming intramolecular disulfide bonds [2]). In this paper we focus 
entirely on the peptide phage libraries as short peptides offer numerous advantages over protein 
therapeutics (discussed in Section 4). 

The majority of pharmaceutical drugs exert their effects by interacting with membrane receptors. 
Combined with rational drug design, the screening of combinatorial peptide libraries against 
membrane receptors is a powerful tool for discovering novel pharmacologically active receptor 
agonists and antagonists or small peptide ligands for the targeted delivery of drugs, genes and 
diagnostics. Phage display library screening also enables the investigation of ligand-receptor 
interactions [6-12,34] because a map of ligand or receptor binding sites can be constructed on the basis 
of selected peptide sequences [35]. Conveniently, the small size of the selected peptide lends itself to 
the design of non-peptide mimetics with improved characteristics [36,37]. Here, we review selection 
strategies for screening phage-displayed random peptide libraries, focusing on the different approaches 
that have been implemented to make the technology applicable to the selection of membrane receptor 
ligands. We also discuss how primary screening hits can be optimized for downstream applications. 

2. General Considerations on Phage Display for Targeting Membrane Receptors 

Biopanning is a method for obtaining small numbers of phage clones (each representing an 
individual peptide) with desired properties (affinity or activity) from an initial bacteriophage pool. The 
general affinity selection procedure consists of three main steps: (i) introduction of phages to an 
immobilized target, (ii) removal of unbound phages by washing and (iii) elution of bound phages. 
Ideally, one cycle of selection should suffice, but in practice, several rounds of selection are necessary 
(typically two to four) to isolate target-specific binders. Therefore, eluted phages are amplified in host 
bacteria and subjected to additional rounds of selection, usually under conditions of increased 
stringency [2]. A negative selection step (i.e., subtractive panning on an otherwise equivalent system 
that lacks the target) can be introduced before the positive one (panning against the actual target) to 
further minimize the retention of off-target binders. Following the last selection round, individual 
clones from an un-amplified eluate are isolated and characterized for target binding and/or biological 
activity. The primary structure of the displayed peptide is easily identified by determining the 
nucleotide sequence of the corresponding insert [2,38].  

Plasma membrane-embedded receptors are indispensable for normal cell-to-cell biochemical and 
electrical signaling and are involved in all essential physiological functions. Not surprisingly, they 
comprise the largest group (more than 60%) of drug targets [39,40]. There are numerous types of 
receptors that vary in their intracellular functions, in the nature of their native binding partners and in 
the mechanism of ligand-receptor interaction. In general, membrane receptors are composed of three 
basic parts, the extracellular, transmembrane, and intracellular regions, each of which represent a 
functionally unique and spatially distinct part of the molecule. For drug development, the most 
important part of a membrane receptor is its extracellular domain (ectodomain), which contains one or 
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more ligand binding sites. Ectodomains are typically the preferred drug target sites for pragmatic 
reasons (i.e., accessibility). However, rare compounds, like Tyr-kinase inhibitors, modulate receptor 
function via an interaction with its intracellular signal-transducing region [41,42]. Peptides are 
generally too hydrophilic to diffuse across plasma membranes and need to be modified for improved 
cell penetration. For example, Gubaeva et al. [43] identified a receptor-independent peptide modulator 
of G protein-coupled receptors that interacted with the intracellular Gβγ-subunit, but the peptide was 
only active in vivo after myristoylation. Nevertheless, forced intracellular expression of bioactive 
peptides represents an alternative to RNAi-based gene silencing for target validation [13,44]. 

In contrast to soluble proteins, relatively few high-resolution structures of membrane proteins have 
been determined (i.e., using X-ray crystallography or NMR spectroscopy); in the majority of cases, the 
three-dimensional folds have been inferred from homology modeling and low-resolution images 
generated by atomic force microscopy. This hinders rational structure-based design of membrane 
receptor-targeting drugs [39]. On the other hand, screening phage-displayed libraries for bioactive 
ligands requires no previous knowledge of the target structure. Usually, the main objective of 
screening phage peptide libraries against membrane receptors is the identification of novel antagonists, 
agonists or allosteric modulators (hereafter collectively referred to as receptor modulators). In addition 
to serving as leads for the further development of clinically applicable therapeutics, bioactive peptides 
can also be useful in studying the mechanism of a natural ligand-receptor interaction or elucidating the 
biological role of a particular receptor at the molecular, cellular or in vivo level [2,35,38]. Moreover, 
peptides targeting membrane receptors (especially endothelial ones) can be exploited for the targeted 
delivery of drugs or diagnostic substances to specific organs or tissues and to mediate cell 
internalization [2,38,45-48]. Additionally, high affinity ligands for receptors, through which viruses 
recognize and enter host cells, have been designed to prevent viral infections [40,49]. 

Unfortunately, the binding affinities of the isolated peptides are, in general, too low to support their 
therapeutic use [50]. This is especially true for antagonistic peptides which need to occupy at least half 
of the receptors to induce an inhibitory effect. On the other hand, these peptides or their further 
improved versions can be very effective in targeting specific cells or tissues when conjugated with 
therapeutic or diagnostic agents [51-54]. Like antibodies, targeting peptides can be attached to the 
surfaces of different carrier systems such as nanoparticles, liposomes or phage virions [50,54-59]. In 
this context, small peptides have many advantages over antibodies: lower immunogenicity, easier and 
less expensive production, higher attainable surface density (larger number of peptides per surface unit 
and consequently higher avidity of such a conjugate), and minor contribution to the increase in particle 
size and consequently better tissue penetration [36]. One of the most prominent examples of a phage 
display-derived targeting peptide is the three-amino-acid motif RGD, which targets tumor vascular 
endothelial cells by binding the αVβ3 integrin, which is exclusively expressed in angiogenic 
endothelial cells [60,61]. 

Recent research has illuminated the structure and function of a number of cytokines and growth 
factors and their idiosyncratic receptors [40]. Cytokines are heterogeneous intercellular signaling 
proteins that play important roles in the regulation of the immune system, numerous regenerative 
processes and cancer progression. Cytokines as a group continues to expand and includes interleukins 
(IL), interferons (IFN), chemokines, and hematopoietic growth factors. Structurally related cytokines 
or cytokine receptors can be classified into distinct families or classes. Members of the major classes 
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of cytokine receptors (type I and II cytokine receptor families) are all single-membrane spanning 
membrane proteins that form homo- or heterodi(oligo)meric receptor complexes to activate 
intracellular signaling. However, it is unclear whether cytokine binding promotes receptor 
oligomerization or whether pre-formed receptor complexes already exist on the cell surface and 
subsequent ligand binding solely induces a conformational change, although both events may occur 
depending on the ligand concentration in the cellular environment [10,62-64]. With respect to phage 
library screening, the nature of cytokine-receptor interactions likely influences affinity selections, and 
it may be advantageous to immobilize the target receptor for panning at high density to allow the 
potential ligands to contact two or more receptor molecules simultaneously. Such ligands may 
consequently trigger appropriate conformational alterations of the receptor complexes, giving rise to 
intracellular signal transduction in vivo. Although the binding of a cytokine to its receptor occurs over 
a large surface, usually only a few amino acid residues on the ligand and receptor contribute the 
majority of the binding energy. Alternative small molecule ligands (mimicking the critical binding 
residues) can potentially be found for any cytokine receptor [6]. Indeed, numerous biologically active 
peptides identified from phage libraries that act on complex cytokine receptors have been reported 
[7,8,34,65-68]. Importantly, even if a peptide does not interact with the ligand binding site on the 
receptor, it can still possess biological activity. For example, the peptide may modulate receptor 
activity allosterically and influence either native ligand binding or subsequent signal transduction. 
Also, peptides that bind selectively to a monomeric receptor molecule might prevent receptor 
oligomerization and act as antagonists in vivo without interfering with ligand binding [10,62]. In some 
cases, an antagonistic effect can be achieved by merely altering the orientation of the individual 
receptor monomers even though they are still associated in a complex [69]. These alternative 
antagonizing mechanisms highlight the importance of thoroughly examining all ligands because the 
inability of a peptide to block the ligand-receptor interaction in vitro does not necessarily indicate a 
lack of biological activity in vivo. However, the opposite may also be true: many peptides that are 
active in vitro will not retain activity when applied in vivo as a result of low bioavailability 
(inaccessibility to the site of action) and high clearance rate (fast elimination from the body; see 
Section 4.2).  

Compared to cytokine and growth factor receptors, far less success has been achieved in screening 
phage-displayed peptide libraries against G protein-coupled receptors (GPCRs) (reviewed in [5]), 
which constitute the largest class of drug targets [70]. The main restriction limiting the use of GPCRs 
as targets in biopannings is the complex structure of their extracellular ligand binding region. This 
region is comprised of several distinct parts, including the N-terminal chain, parts of the seven 
transmembrane helices, and three connecting loops. Its structure thus strongly depends on maintaining 
the integrity of the whole molecule, which is buried in the cell membrane. 

3. Biopanning Strategies on Membrane Receptors: From Single Molecules to Organisms 

One method frequently used to identify peptide receptor modulators is to screen a library consisting 
of continuous fragments of the natural receptor ligand. Any part of the ligand that binds but does not 
activate a particular receptor would be a suitable candidate for antagonist design. However, the 
chances of successful selection increase when using a library of random peptides because peptide 
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ligands that are non-homologous to the primary structure of the natural ligand can be identified [71]. 
Such peptides are called mimotopes because they mimic assembled, discontinuous “epitopes” of the 
natural ligand (composed of amino acids at distal positions within a primary sequence that become 
proximal in the properly folded protein) [72]. Although the identification of receptor agonists using the 
same approach seems intuitively unlikely, some peptides have been shown to possess intrinsic activity 
and trigger receptor activation [6,7,65,73,74].  

The use of isolated whole membrane receptors as targets in the in vitro setting of library screening 
is problematic because membrane receptors are extremely hydrophobic and/or maintain their native 
fold only in a lipid bilayer environment [39,75,76]. Interestingly, a recent report [77] demonstrated that 
at least some membrane proteins can be expressed in a correctly folded full-length form when tethered 
to filamentous phage. The large phage body reportedly improves solubility so that the high 
hydrophobicity of the protein is no longer an issue. Theoretically, filamentous phage-presented whole 
receptors could serve as targets for affinity selection of peptides from libraries displayed on a different 
type of phage, e.g., T7, or vice versa (analogous to the screening of an antibody fragment library 
against a phage-displayed peptide target reported by Castillo et al. [78]). However, alternative targets 
to full-length receptors are typically used for biopanning (Figure 1). These include smaller 
recombinant fragments (e.g., soluble ectodomains) or their chimeric fusions with other proteins 
[8,9,74,79] and neutralizing antibodies to endogenous binding partners [65,68,80,81]. In addition, 
panning against an endogenous receptor ligand can be another strategy for obtaining peptides that 
block the ligand-receptor interaction [82-85]. For example, Fairbrother et al. [85] identified indirect 
peptide antagonists of the vascular endothelial growth factor receptor (VEGFR) by targeting the 
receptor-binding domain of VEGF. If panning against full-length membrane-embedded targets is 
desired, whole cells can also be used to display (recombinant) receptors [46,49,86,87]. Finally, in vivo 
selection can be performed to obtain peptide ligands of membrane-embedded receptors, especially if 
they are over-expressed in a tissue-dependent manner [19,66,73]. The in vivo selection approach is 
especially attractive when searching for new moieties for targeting specific cells. In this context, 
identification of the exact target structure on the cell surface is of secondary importance. Nevertheless, 
the identity of the targeted receptor can sometimes be subsequently inferred from the peptide binders if 
they mimic receptor binding fragments of the endogenous ligand [47,73,86,88]. A selection of 
membrane receptor-targeting peptides that have been identified by screening phage-displayed libraries 
is given in Table 1. 
 
3.1. Recombinant Receptor Mimetics 

Several different soluble receptor mimetics (variants of ectodomains) have been successfully used 
to select peptide modulators of membrane receptors. These mimetics were either covalently bound or 
adsorbed to a solid support or immobilized to an appropriate matrix indirectly (e.g., via chemically 
attached groups (biotin) or a fusion affinity tag) [2,37,95,96]. A popular strategy for large extracellular 
receptor regions (especially homodimeric) is fusion to the Fc-region of immunoglobulins (IgG) 
[37,97,98] and subsequent capture on a protein G- or A-covered matrix. 
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Figure 1. Schematic representation of some well-established biopanning approaches to 
identify membrane receptor-binding peptides from phage-displayed libraries. (a) Due to the 
difficulties accompanying isolation and recombinant expression of whole membrane 
receptors, only the extracellular regions (shown in red) or their individual domains can be 
used as target molecules. These can be immobilized to an appropriate matrix (oblique 
striped grounding) by direct adsorption (1) or by a suitable affinity tag that is recognized by 
its respective binding partner (e.g., biotin-avidin interaction, 2) or a specific antibody (3). 
A linker connecting the affinity tag to the receptor fragment that contains a specific 
protease cleavage site (3) can be introduced to facilitate the specific elution of target-bound 
phages by protease treatment. Alternatively, receptors may be imitated by recombinant 
antibody chimeras (receptor ectodomains fused to the Fc-region of an antibody; 4), in 
which case the target molecule is specifically captured to protein A- or G-coated matrix 
(shown in orange). (b) Targeting neutralizing antibodies against the endogenous ligand can 
result in selection of peptides binding to cognate receptor. (c) The ligand-receptor 
interaction can be inhibited by targeting the endogenous ligand instead of the receptor. 
Again, direct (5) or indirect immobilization (6) of the ligand is possible. (d) A more 
advanced strategy is to screen against whole cells over-expressing the full-length 
membrane-embedded receptor; this is usually achieved by transforming cells with a gene 
encoding the receptor. (e) In the in vivo approach, library phages are injected intravenously 
into an animal, and specific binders are recovered from tissue biopsies. The identities of the 
targeted receptors are determined afterwards. 

 



Molecules 2011, 16                                                    
 

 

864 

Table 1. Selected reports of peptides identified from phage-displayed libraries that home to membrane-embedded proteins. If the exact 
nature of targeted protein on primary cell cultures or tissue xenografts was not determined, it is listed as “unknown” followed by cell culture 
or tissue type in square brackets. N/A, not available. 

Targeted 
protein a 

Selection 
strategy b 

Library 
type c 

Selected 
peptide(s) d 

Biological 
activity Affinity Potential applications 

(Biological effects) Ref. 

IL-1R type I a3 3 and 8 
peptides with C-
terminal motif 
YWQPYALPL 

antagonists IC50 
2-500 nM 

therapy of autoimmune and inflammatory 
disorders 

(anti-inflammatory effects) 
[34] 

IL-6Rα a1 3 LSLITRL antagonist IC50 
>30 μM 

cancer therapy 
(preventing the anti-apoptotic and angiogenic 

effects of IL-6) 
[8] 

IL-11Rα e 3 CGRRAGGSC agonist N/A 

cancer therapy 
(targeted delivery of therapeutic or diagnostic 

agents to prostate tumors; prevention of 
chemotherapy-induced thrombocytopenia) 

[19,66, 
73] 

FGFR b 3 KRTGQYKL antagonist IC50 
~5 nM 

cancer therapy 
(inhibition of angiogenesis and tumor 

progression) 
[68] 

EGFR2 
(ErbB-2) a2 3 KCCYSL N/A Kd 

~30 μM 

cancer therapy 
(targeted delivery of therapeutic or diagnostic 

agents to tumors) 
[79,89] 

EGFR c5 3 N/A 
indirect 

antagonist 
(decoy receptor) 

N/A cancer therapy 
(inhibition of tumor cell proliferation) [82] 

VEGFR 
(KDR) a1 3 HTMYYHHYQHHL antagonist IC50 

>30 μM 

cancer therapy, treatment of diabetic 
retinopathy 

(inhibition of angiogenesis and cellular 
proliferation) 

[9] 
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Table 1. Cont. 

Targeted 
protein a 

Selection 
strategy b 

Library 
type c 

Selected 
peptide(s) d 

Biological 
activity Affinity Potential applications 

(Biological effects) Ref. 

VEGFR 
(KDR) b, d 3 ATWLPPR antagonist IC50 

~80 μM 

cancer therapy, treatment of diabetic 
retinopathy 

(inhibition of angiogenesis and cellular 
proliferation) 

[80] 

VEGFR 
(KDR and Flt-1) c6 8 + 8 and 

3 + 3 

GERWCFDGPRAW-

VCGWEI, 
GGNECDIARMWE-

WECFERL, 
RGWVEICAADDY-

GRCLTEAQ 

indirect 
antagonists 

(decoy 
receptors) 

IC50 
~0.7-7 μM 

cancer therapy, treatment of diabetic 
retinopathy 

(inhibition of angiogenesis and cellular 
proliferation) 

[85] 

VEGFR c5 3 WHLPFKC, 
WHKPFRF 

indirect 
antagonists 

(decoy 
receptors) 

Kd 
~2.7 μM 

cancer therapy, treatment of diabetic 
retinopathy 

(inhibition of angiogenesis and cellular 
proliferation) 

[84] 

VEGFR1 and 
NRP1 d 3 CPQPRPLC antagonist N/A 

cancer therapy, treatment of diabetic 
retinopathy 

(inhibition of angiogenesis and cellular 
proliferation) 

[35,88,
90] 

IFNAR a4, b 3 SVQARWEAAFDL-

DLY 
agonist IC50 

~50 μM 
study of the mechanism of IFNAR activation [65] 

IFNAR d, b 3 SLSPGLP, 
FSAPVRY 

antagonists N/A treatment of autoimmune diseases, study of 
ligand-receptor interactions [67] 

EpoR a3 8 + 8 and 
3 + 3 

GGTYSCHFGPLT-

WVCKPQGG 
agonist IC50 

~0.2 μM 

treatment of anemia, pure red cell aplasia 
resulting from anti-Epo antibodies 

(stimulation of erythropoiesis) 
[6] 
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Table 1. Cont. 

Targeted 
protein a 

Selection 
strategy b 

Library 
type c 

Selected 
peptide(s) d 

Biological 
activity Affinity Potential applications 

(Biological effects) Ref. 

TpoR a3 
8 + 8 (and 
non-phage 
libraries) 

GGCADGPTLREW-

ISFCGG 
agonist IC50 

~60 nM 

treatment of idiopathic thrombocytopenic 
purpura, thrombocytopenia 

(stimulation of thrombopoiesis) 
[7] 

GlyRα1 d 3 YESIRIGVAPSQ 

(and others) 

pos./neg. 
allosteric 

modulators 
N/A 

treatment of alcoholism, leads for developing 
anesthetics 

(inhibition/enhancement of ethanol activity) 
[12] 

CCR5 d 3 AFDWTFVPSLIL antagonist IC50 
~2.6 μM 

treatment of multiple sclerosis, rheumatoid 
arthritis, HCV and HIV infections, prevention 

of renal allograft rejection 
(anti-inflammatory effects, prevention of 

HIV-1 entry to CD4+ cells) 

[49] 

DR5 a4 3 CKVILTHRC antagonist Kd 
~272 nM 

therapy of neurodegenerative disorders 
(inhibition of TRAIL-induced apoptosis in 

neuronal cells)  
[37] 

DR5 a1 8 + 8 and 
3 + 3 

QEVCMTSCDKLM-

KCNWMAAM 
agonist IC50 

~6 nM 
cancer therapy 

(triggering of apoptosis in tumor cells) [74] 

PMCA4 a1, a2 3 TAWSEVLDLLRR 
allosteric 
inhibitor 

Ki 
~2.3 μM 

study of physiological PMCA4 function, 
study of arterial hypertension mechanisms 

and retinopathies, development of new class 
of contraceptives 

[38,91-
93] 

B-cell 
maturation 

antigen 
c5, c6 8 + 8 

SSCESPEVDYLE-

CLY, 
LQCRYDQLIEEW-

RCEY 

(and others) 

indirect 
antagonists 

(decoy 
receptors) 

IC50 
0.49-27 
μM 

cancer therapy 
(inhibition of APRIL (a proliferation-inducing 

ligand)-stimulated proliferation) 
[83] 
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Table 1. Cont. 

Targeted 
protein a 

Selection 
strategy b 

Library 
type c 

Selected 
peptide(s) d 

Biological 
activity Affinity Potential applications 

(Biological effects) Ref. 

αVβ3 integrin, 
unknown 

[RD cell line] 
d T7Select 

415-1b 
CQQSNRGDRKRC, 
CMGNKRSAKRPC 

N/A N/A 
cancer therapy 

(targeted delivery of therapeutic or diagnostic 
agents to rhabdomiosarcoma) 

[86] 

unknown 
[HT-1376 cells 

from human 
bladder carcinoma 

xenografts] 

d T7Select 
415-1b CSNRDARRC N/A N/A 

cancer therapy 
(targeted delivery of therapeutic or diagnostic 

agents to bladder cancer) 
[47] 

unknown 
[NCI-H1299 cell 

line] 
d 3 EHMALTYPFRPP N/A N/A 

cancer therapy 
(targeted delivery of therapeutic or diagnostic 

agents to NSCLC e cells) 
[94] 

unknown 
[HepG2 cell line] 

d 3 FLLEPHLMDTSM N/A N/A 
cancer therapy 

(targeted delivery of therapeutic or diagnostic 
agents to hepatocellular carcinoma) 

[45] 

unknown 
[MDA-MB-435 
cells from breast 
cancer xenograft] 

d, e T7Select 
415-1b CGNKRTRGC N/A N/A 

cancer therapy 
(targeted delivery of therapeutic or diagnostic 

agents to tumor lymphatics) 
[51] 

unknown 
[MDA-MB-231 cell 

line] 
d 8 + 8 CASPSGALRSC N/A N/A 

cancer therapy 
(targeted delivery of therapeutic or diagnostic 

agents to breast cancer) 
[46] 

a target protein abbreviations: IL-1R, interleukin-1 receptor; IL-6Rα, α subunit of interleukin-6 receptor; IL-11Rα, α subunit of interleukin-11 receptor; 
FGFR, fibroblast growth factor receptor; EGFR2, epidermal growth factor receptor 2; VEGFR, vascular endothelial growth factor receptor; KDR, kinase 
insert domain-containing receptor; Flt-1, fms-like tyrosine kinase-1; NRP1, neuropilin-1; IFNAR, interferon-α/β receptor; EpoR, erythropoietin receptor; 
TpoR, thrombopoietin receptor; GlyRα1, glycine receptor α1; CCR5, C-C chemokine receptor 5; DR5, death receptor 5; PMCA4, plasma membrane 
Ca2+ ATPase 4; b code according to classification in Figure 1; c filamentous phage library type according to classification by Petrenko and Smith [2]; d 
cysteines forming intramolecular disulfide bridges are depicted in bold; e NSCLC, non-small cell lung cancer 
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Indirect target attachment offers some important advantages: (i) uniform target orientation with a 
markedly reduced probability of denaturation (which may occur by non-specific adsorption) [38], (ii) 
minimal target consumption (due to the highly specific and strong interactions between the labeled 
target and the capturing molecules), and (iii) the potential to allow the phages to interact with the target 
in solution and subsequently capture on a solid phase the phage-target complexes (known as the 
“solution binding” approach) [2,38]. With solution binding, undesired avidity effects (caused by 
multivalent peptide display) are minimized, and the stringency of the selection can be easily controlled 
by adjusting the target concentration [2,99-101]. Matrices other than microtiter plates, such as beads 
[37,47,51,102,103] or chromatographic columns [38,93,104], can also be used for both direct or 
indirect attachment of target molecules. Chromatographic affinity selection allows the identification of 
high affinity binders in a single panning cycle, which reduces the overall duration of the experiment 
and avoids the introduction of amplification-dependent bias [104,105]. 

3.1.1. Recombinant Receptor Fragments 

In most studies, soluble ectodomains have been used to isolate bioactive peptides that target 
membrane receptors. For example, Vrielink et al. [37] screened a library of disulfide-constrained 
random peptides to identify death receptor 5 (DR5) antagonists. DR5, activated by TRAIL (TNF-
related apoptosis-inducing ligand), is the main receptor for mediating the signal for apoptosis [40,71], 
and antagonizing its activity might be beneficial for the treatment of neurodegenerative and 
autoimmune diseases. Affinity selection was carried out against the DR5 ectodomain-IgG Fc-fusion 
captured on protein A-coated paramagnetic beads. To direct selection against the receptor ectodomain, 
phages were subjected to negative screening against the Fc-region. Moreover, phages were eluted with 
the recombinant TRAIL to further enrich for clones targeting the ligand interaction site on DR5. 
Synthetic peptides identical to those isolated by phage-display, as well as peptide dimers generated in 
parallel and antiparallel orientations due to nonspecific double intermolecular disulfide bond 
formation, bound Jurkat cells expressing DR5 in a concentration-dependent manner and reduced 
TRAIL-induced cell death in Colo205 colon carcinoma cells [37]. 

Membrane receptors usually have large multidomain extracellular regions, which can potentially 
interact with diverse peptide sequences. The isolated ligand-binding domains of receptors are excellent 
surrogate targets for the focused selection of peptides that mimic endogenous ligands. Targeting 
shorter receptor fragments may also improve specificity for a particular member of a highly conserved 
receptor family. On the other hand, a synthetic peptide that corresponds to a particular receptor domain 
may adopt a different conformation than in the native protein, so the selected peptide may not 
recognize the receptor in its natural environment [38]. Therefore, it may be necessary to first screen a 
phage library against a synthetic peptide and then subject the resulting enriched library to affinity 
selection for binding the native protein (see Section 3.4) [38,93]. 

Some heteromeric receptors share a common membrane-spanning subunit, typically devoted to 
signal transduction, while other unique subunits interact with specific cytokines to trigger signaling. To 
identify selective receptor modulators, the common subunit should be avoided as a target. With that in 
mind, Su et al. [8] depleted a library of phages that bound the gp130 subunit, a common signaling co-
receptor for IL-6 and several other cytokine receptors, before exposing the library to the IL-6Rα 
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subunit, thereby recovering ligands selective for IL-6R. One peptide suppressed IL-6-induced tumor 
growth in an animal model, suggesting cancer therapy potential. In another report, Hetian et al. [9] 
identified peptide modulators selective for VEGFR2, also known as the kinase insert domain-
containing receptor (KDR). VEGF is one of the most important factors in both physiological and 
pathological angiogenesis and activates its cognate receptors VEGFR1-3. KDR is a tyrosine kinase 
receptor which, after VEGF-induced dimerization, mediates the majority of the biological activities of 
VEGF related to proliferation, differentiation, and migration of endothelial cells [106,107]. A random 
dodecapeptide library was screened against the fusion protein GST-KDR (extracellular domains I-IV 
of KDR fused to glutathione S-transferase) after being subjected to negative selection against three 
additional GST-fusion proteins (including VEGFR1). One of the recovered peptides competed with 
VEGF for binding to KDR and exerted anti-angiogenic activity in vitro (i.e., prevented human 
endothelial cell proliferation) and in vivo (i.e., inhibited angiogenesis in the chick embryo 
choroallantoic membrane and reduced tumor growth in mice) [9]. 

Two of the earliest and probably most prominent reports of the identification of potent agonistic 
peptides by phage library screening were contributed by Wrighton et al. [6] and Cwirla et al. [7] for 
the erythropoietin receptor (EpoR) and thrombopoietin receptor (TpoR), respectively. EpoR and TpoR 
are both members of a large hematopoietic cytokine receptor superfamily, which includes receptors for 
most interleukins and various other growth factors. Notably, peptides selected for binding EpoR and 
TpoR share a similar amino acid motif (GPLT and GPTL, respectively) and form a β-turn 
conformation in solution. Dimerization of EpoR itself is not sufficient for intracellular signaling 
[69,108], and it appears that the Epo mimetic peptide and, by extrapolation, Epo itself cause 
conformational changes in the receptor ectodomains that bring the cytoplasmic domains of the receptor 
subunits together and finally lead to intracellular signal transduction [63]. Wrighton et al. [6] used the 
soluble ectodomains of EpoR fused to the C-terminal sequence of the human placental alkaline 
phosphatase (HPAP) to capture the target protein on a microtiter plate via immobilized anti-HPAP 
monoclonal antibody (mAb). The specific exposure of EpoR ectodomains bound to a bivalent antibody 
may have favored the selection of peptides that interacted with the EpoR dimer like an agonist, as 
proposed by Dower [109]. Bound phages were released by cleaving the linker connecting EpoR to 
HPAP with thrombin, whereas unspecific elution using an acidic buffer did not enrich for specific 
EpoR binders. The initially selected binding clone was used as a template for the construction of 
partially degenerated low-valency phagemid libraries containing peptides of increased length. During 
the additional screenings, an increasing concentration of Epo was added to the selection media to 
compete away phages weakly bound to the receptor. The newly selected erythropoietin mimetic 
peptides (EMPs) specifically stimulated erythropoiesis in vivo despite an apparent lack of similarity to 
the erythropoietin primary structure. It was later shown that the EMPs form homodimers via 
hydrophobic interactions to promote both the dimerization and activation of EpoR [110]. Intrinsic 
activity of a representative peptide agonist, EMP1, was improved by covalently joining two molecules 
of EMP1 via a short linker. The EMP1 sequence was minimized without a significant loss of activity 
[111], and the peptide dimer was PEGylated to give rise to peginesatide (Hematide, Affymax) [112], 
which is currently in phase III clinical studies for the treatment of anemia [113-116].  

The selection strategy that led to the identification of TpoR peptide agonists was similar to the one 
described above for EpoR activators. In addition to phage-displayed libraries, Cwirla et al. [7] 
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screened libraries of random peptides fused to the Escherichia coli lac repressor (LacI) protein (i.e., 
peptides-on-plasmids libraries) against TpoR. The initial selection yielded two distinct families of 
small peptides with affinity to TpoR. As with EpoR, the sequences of the TpoR-binding peptides were 
not homologous to the primary structure of the endogenous ligand. Several non-phage mutagenesis 
libraries were constructed and used in affinity maturation of the TpoR ligands. A covalently linked 
dimeric form of a 14-amino acid peptide (AF13948) was as potent as the natural thrombopoietin in 
cell-based assays. On the basis of AF13948, Amgen developed a peptibody termed romiplostim. Each 
of the two identical subunits of the peptibody consists of a Fc-region of human IgG1 fused to two 
consecutive TpoR-binding peptides [117]. Romiplostim (marketed under the trade name Nplate) was 
approved in 2008 by the FDA for the treatment of idiopathic (immune) thrombocytopenic purpura 
[118]. Both EpoR and TpoR peptide agonists were selected solely based on their ability to bind to the 
corresponding receptor, which demonstrates that the biological activity of a peptide ligand (i.e., 
whether it acts as an agonist or an antagonist) cannot be predicted in advance. The assumption that 
ligands recovered from peptide libraries will simply displace the endogenous ligand from the receptor, 
thereby blocking signal transduction, is thus not necessarily valid. 

Karasseva et al. [79] identified a peptide, p6.1, that bound to human ErbB-2 tyrosine kinase 
receptor with a relatively modest affinity. ErbB-2 (also known as HER2) is a member of the epidermal 
growth factor (EGF) receptor family and is implicated in many human malignancies. Although ErbB-2 
itself cannot apparently bind any ligand from the EGF family, it acts as a preferred partner in 
heterodimeric complexes with other ligand-bound ErbBs to transduce signaling. Selection from a 
phage library was carried out against a biotinylated ErbB-2 ectodomain pre-captured on streptavidin-
coated microtiter plates. The amount of target was gradually reduced to increase the stringency of the 
selection. Because p6.1 binds tumor cells bearing ErbB-2, it has potential as a tumor imaging agent or 
a vehicle for the specific delivery of radionuclide or cytotoxic agents to tumors overexpressing  
ErbB-2 [89]. 

3.1.2. Neutralizing Antibodies against Endogenous Binding Partners 

Extracellular portions of integral membrane receptors, such as GPCRs, cannot be expressed as 
soluble recombinant proteins to be used as targets in affinity selections. The conformation of a 
GPCR’s ligand-binding site depends critically on the integration of the whole receptor molecule in the 
lipid bilayer. Neutralizing antibodies against endogenous ligands can, however, serve as alternative 
targets for the identification of bioactive peptides. Here, the assumption is that the antibody’s antigen-
binding regions mimic the receptor’s ligand binding site, thereby providing a “mold” for the recovery 
of peptides that will cross-react with the receptor. Bonetto et al. [81] have successfully identified 
melanocortin receptor 1 agonistic and antagonistic peptides by screening phage libraries against three 
monoclonal anti-adrenocorticotropic hormone antibodies. Peptides that target growth factor [80] and 
cytokine receptors [65,67], which were selected by binding the corresponding antibodies, have also 
been reported. In a number of cases, the use of neutralizing antibodies as targets has proved to be a 
superior strategy to directly screening against receptors or their structural parts [65,67,68,80]. This 
might be, in part, because the bivalent nature of antibodies contributes to a higher avidity of the phage-
target interaction. Moreover, antibody CDRs are generally more surface-exposed than receptor binding 
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sites because of the physiological roles of both types of molecules. Antibody structure is optimized in a 
way that enables rapid and effective antigen binding, often at the expense of specificity [119,120], 
which is supported by the widespread appearance of antibody cross-reactivity. On the other hand, 
receptors must distinguish between highly structurally related ligands from the same family, although 
this may be accompanied by individual binding sites with relatively low affinities. This is especially 
true for cytokine receptors with large and often multimeric binding sites. A much higher number of hot 
spot residues than is found in antibody CDRs ensures specific binding of the cytokine while preventing 
strong interactions with short peptides. At the same time, receptor interaction sites can be sufficiently 
buried in the ectodomain to render them inaccessible to peptides expressed on a large phage body 
while still possibly accommodating free peptides. 

Neutralizing antibodies, however, do not necessarily recognize the exact receptor-binding epitopes 
located on ligands but may exert their antagonistic effect by sterically blocking the ligand-receptor 
interaction by binding to sites proximal to these regions. Indeed, we have observed that a cyclic 
peptide selected against a monoclonal human leptin-neutralizing antibody competed with recombinant 
leptin for binding to the antibody but had no affinity for the recombinant leptin receptor ectodomain 
(unpublished data). We later noted that the peptide has some sequence similarity to one of the loops 
that connects helices known to constitute the receptor binding site. 

3.2. Panning against Whole Cells 

Phage libraries can also be screened against living cells expressing the membrane receptor of 
interest. This eliminates concerns about misfolding of the target protein and allows for selection 
against the extracellular regions of receptors in their native conformations. The targeted cells can either 
be in suspension or attached to a culture dish. 

The majority of reported pannings against whole cells employed different cancer cells  
[45-47,51,86,87,94]; the main goal was to find peptides that bound tumor-specific receptors that could 
be used for the targeted delivery of drugs or diagnostic agents. Depending on the type of cell culture, 
selection procedures can be classified as ex vivo or in vitro. Hoffman et al. [121] used the term ex vivo 
phage display to denote screenings against primary cell suspensions of organs and tissues that contain 
different types of cells (e.g., endothelial and tissue parenchymal cells). In contrast, the term in vitro 
phage display describes selections against immortalized cell lines (i.e., homogeneous populations of 
transformed cells). Alternatively, a cell line can be stably transfected to express the receptor of interest 
at high copy numbers [49,121]. The composition of the plasma membrane is extremely complex, with 
diverse protein and carbohydrate structures that act as potential decoys in affinity selections from 
phage libraries. Therefore, high cell surface density of the membrane receptors representing the actual 
targets favors the enrichment of relevant peptides. Additionally, subtractive panning against 
untransfected cells (thus lacking the target receptor) is strongly recommended to limit the recovery of 
target-unrelated peptides. In selections performed ex vivo, subtraction is carried out by incubating the 
library with similar but not identical cells (e.g., normal instead of tumor cells) [45,87,94]. 

In one example of an in vitro selection, Wang et al. [49] transfected Chinese hamster ovary (CHO) 
cells with vector harboring the human chemokine receptor 5 (CCR5) gene. CCR5 belongs to the G 
protein-coupled receptor (GPCR) family of integral membrane proteins. It is involved in a range of 
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human diseases (e.g., multiple sclerosis, rheumatoid arthritis, and renal allograft rejection) and 
mediates HIV-1 cell entry in concert with CD4 [122,123]. A library of phage-displayed random 
dodecapeptides was reacted with the transfected cell line in suspension, and the phages that bound to 
cells were separated from the unbound subpopulation via multiple rounds of centrifugation and 
washing. Two consecutive subtractive pannings against the untransfected CHO cells were performed 
before each positive selection step. After four rounds of selection, a peptide was identified that 
specifically bound CCR5 and inhibited the biological activity of RANTES (an endogenous ligand of 
CCR5). In another study [12], HEK 293 cells were transfected with the cDNA for glycine receptor α1 
(GlyRα1) and used as “target bearing vehicles” to screen for peptide modulators of GlyRα1. The 
glycine receptor is the major mediator of inhibitory neurotransmission in the spinal cord and brainstem 
and belongs to the Cys-loop superfamily of ligand-gated ion channels [124]. Untransfected cells were 
used in the negative selection steps. Phage display technology was combined with electrophysiological 
testing to identify peptides that modulated GlyR function without affecting the closely-related GABA 
receptors. Frog oocytes were transformed with either the glycine or the GABA receptor cDNAs, and 
the transmembrane ion current was measured after treatment with glycine and GABA alone or in 
combination with individual synthetic peptides. None of the reported peptides had any effect on the 
transmembrane ion current in the absence of glycine. However, some peptides selectively attenuated 
while others enhanced the effects of glycine and thus, most likely acted as negative and positive 
allosteric modulators of GlyRα1, respectively [12]. 

Giordano et al. [35] developed an innovative method for separating cell-bound phages from free 
phages in solution during the affinity selection. Termed BRASIL (biopanning and rapid analysis of 
selective interactive ligands), the method is based on differential centrifugation of an aqueous 
suspension containing mixed phages and cells through a lower non-miscible organic phase. Free 
virions are retained in the upper aqueous phase, while the phages that are anchored to cells are pelleted 
in the organic phase. Typically, a single centrifugation step is sufficient for selective recovery of cell-
bound phages. Giordano et al. [35] used the technique to screen for cyclic peptides that interacted with 
VEGFR1 and neuropilin-1. Neuropilin-1 (NRP1) is a membrane-bound co-receptor of different 
tyrosine kinase receptor families [125]. Before being exposed to VEGF-stimulated human umbilical 
vein endothelial cells (HUVECs), the phage library was first depleted of unspecific binders by 
exposure to HUVECs grown in the absence of VEGF (VEGF stimulation increases the expression of 
VEGFR). Interestingly, a peptide with the amino acid sequence CPQPRPLC, which was identified 
after three selection rounds, was a dual ligand that interacted with both VEGFR1 and NRP1 [35]. Only 
a portion of this peptide, the tripeptide RPL, was later shown to be responsible for binding both 
receptors [90]. Because of its small size, RPL is a perfect peptide lead for the design of a novel class of 
small VEGFR inhibitors. 

When screening phage libraries against whole cells, it is worthwhile to lyse the cells and recover 
phages that might have translocated into the cell interior by receptor-mediated endocytosis [45,46,51], 
especially if the goal is to identify peptides for intracellular delivery of therapeutic or diagnostic 
agents. If the selective recovery of only internalized phages is desired, extracellular phages can be 
inactivated by the protease subtilisin. Chloroquine can be added to cells during panning to increase 
membrane stability and inhibit degradation of internalized phages [46]. Zhu et al. [45] screened a 
peptide library against human hepatocellular carcinoma (hHCC) cells and found that only internalized 
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phages were enriched for peptides with a highly conserved motif, whereas the surface-bound phages 
(recovered by elution with an acidic buffer) did not display homologous peptides. 

3.3. In Vivo Selection  

For in vivo selections, library phages are injected intravenously into laboratory animals. A notable 
difference between in vivo and ex vivo approaches is that phages are primarily exposed to the vascular 
endothelial cells in the in vivo method but are exposed to all cell types from a particular tissue in the ex 
vivo variation [121]. Compared with in vivo phage display technology, cell-based panning is simpler 
and more effective. Capillary vessels of the vascular system may act as impenetrable barriers for phage 
passage, so the majority of phages recovered by in vivo panning actually bind to the vascular 
endothelium cells and not tissue parenchymal cells. Hence, it is not surprising that the use of in vivo 
phage display technology has led mainly to reports of specific vascular endothelium cell-binding 
peptides [19,60,126]. Considering the size of vascular fenestrations [127], in vivo targeting of a 
bacteriophage to tumor cells is theoretically possible (at least with smaller lytic phages) but would 
require a longer circulation time than targeting the vascular endothelium [47]. Hoffman et al. [121] 
have developed in vivo selection schemes using phage-displayed libraries to discover peptide and 
protein ligands for macromolecules that are expressed in an organ- and tissue-specific manner. 
Following injection of the phage library, phages are rescued from different organs or tissues and can be 
amplified and purified for potential iterations of selection. Vascular perfusion can be used to remove 
unbound phages, and additional ex vivo washing of tissue-isolated cells is also favorable. When 
looking for peptides that target human cancers, tumors can be implanted into laboratory mice in the 
form of xenografts, and the animals can be subjected to in vivo phage display [128]. 

A major breakthrough in in vivo selection was achieved by Arap et al. [19], who identified 
numerous peptides that targeted the human vasculature. They administered a random disulfide-
constrained heptapeptide phage library to a cancer patient, and tissue biopsies were obtained 15 
minutes after infusion to recover phages from various organs. Due to ethical concerns, only one round 
of selection was performed, which required a large input of phage library and the determination of a 
huge number of peptide sequences. Overall, 47,160 phage inserts that were recovered from the 
representative samples of five tissues and from the unselected library were analyzed. Computational 
processing of the amino acid sequences identified several peptide motifs that targeted organ-specific 
vasculatures. One of the peptides, CGRRAGGSC, was later shown to specifically bind the α subunit of 
the interleukin 11 receptor (IL-11Rα) [73]. As a member of the hematopoietic cytokine receptor 
family, the IL-11Rα chain forms an active receptor complex with the gp130 transducing subunit upon 
IL-11 binding [10]. IL-11 was initially characterized as a cytokine with thrombopoietic activity and 
was later found to have pleiotropic effects in multiple tissues. Notably, the peptide targeting IL-11Rα 
bears significant similarity to a region in the native IL-11 (RRAGGS; residues 112-117) that was not 
previously believed to be involved in receptor binding. The peptide induced cell proliferation through 
IL-11Rα-mediated STAT3 activation, which was reduced upon addition of soluble IL-11Rα [73]. This 
observation indicated that the peptide acted as a specific IL-11Rα agonist and may, in this context, 
represent a novel peptide lead for the design of drugs to prevent chemotherapy-induced 
thrombocytopenia. Moreover, the peptide CGRRAGGSC enables the targeting of IL-11Rα-expressing 
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cells and subsequent cellular internalization of conjugated small oligopeptides or larger particles (e.g., 
phages expressing the IL-11 mimic peptide). Because of the increased stage-specific expression of IL-
11Rα on prostate cancer cells and tumor endothelium during disease progression, this peptide could 
serve as a ligand for the targeted delivery of drugs and imaging agents in patients with prostate  
cancer [66]. 

3.4. Combining Selection Strategies 

Different strategies can be combined to improve the efficiency of affinity selection. For example, in 
a search for IFN-α2b antagonists, Tian et al. [67] initially panned a phage-displayed peptide library 
against immobilized human amnion WISH cells expressing interferon-α/β receptor (IFNAR) four 
times (eluting with recombinant IFN-α2b) before exposing it to polyclonal anti-IFN-α2b antibodies for 
three additional rounds of selection. Three groups of structurally related peptides with similarities to 
IFN functional domain amino acid sequences were recovered. Two peptides were synthesized and 
shown to interfere with IFN-α2b protection of WISH cells against vesicular stomatitis virus-induced 
cytopathic effects.  

Grover and co-workers [38,91-93,129] have developed an even more complex screening approach 
while searching for modulators of plasma membrane Ca2+ ATPases (PMCAs, also known as Ca2+-
Mg2+-ATPases). PMCAs are ubiquitous transmembrane proteins that function in the regulation of 
intracellular calcium levels. Four different isoforms exist, and they are expressed in a tissue-dependent 
manner [91]. Identification of a PMCA4-specific allosteric inhibitor (termed caloxin 1c2) required four 
separate selection phases performed with two different matrices for target immobilization: a microtiter 
plate and a calmodulin-sepharose chromatographic column. In phase 1, three rounds of biopanning 
using a microtiter plate coated with synthetic PCMA4-extracellular domain peptide conjugated to 
keyhole limpet hemocyanin were performed. Chromatographic columns with calmodulin-sepharose as 
a stationary phase for the immobilization of PMCA purified from erythrocyte membranes were used 
for the subsequent phases of selection. Because PMCA binds calmodulin only in the presence of Ca2+, 
the PMCA-bound phages were eluted simply by omitting Ca2+ from the buffer. Two selection rounds 
were carried out in phase 2; negative selection steps against calmodulin-sepharose preceded the 
positive ones with immobilized PMCA. In phase 3, a large number of phage clones from the final 
eluate of phase 2 was sequenced, and individual clones were pooled in equal ratios. The resulting 
library was screened in the same manner as in phase 2, exploiting the competition for target binding 
between individual phage clones to identify caloxin 1b1, which had a higher affinity for PMCA4. 
Finally, in phase 4, the authors created a focused library by limited mutagenesis (see Section 4.1) of 
caloxin 1b1 from which caloxin 1c2, which possessed improved activity and selectivity for the 
PMCA4 isoform, was selected [38]. 

4. Further Optimization of Selected Peptides 

Peptides typically suffer from low oral bioavailabilities and short biological half-lives, making them 
poor drug candidates. On the other hand, short peptides generally show high selectivity and specificity 
for their targets and have low systemic toxicity. Numerous structural modifications can be introduced 
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into peptides to further broaden the chemical space and develop analogues with improved 
pharmacokinetic and/or pharmacodynamic characteristics [130,131].  

Short peptides that bind to target receptors or cognate ligands with reasonable affinity and 
specificity can be considered alternatives to antagonistic antibodies. There are several advantages that 
therapeutic peptides have compared to antibodies: (i) lower manufacturing costs due to synthetic 
production, (ii) higher activity per mass, (iii) lower royalty stack due to a simpler intellectual property 
landscape during discovery and manufacturing, (iv) greater stability (longer shelf-life), (vi) generally 
lower immunogenicity, and (vii) better organ or tumor penetration [36,132]. Below, we briefly review 
some common approaches for improving peptides selected from phage-display libraries to allow their 
application as drugs or diagnostic agents. 

4.1. Optimization of Amino Acid Sequence (Affinity Optimization) 

Biological peptide libraries are typically much larger than their synthetic counterparts, which can 
strongly affect the outcome of affinity selection. The higher the diversity (i.e., the repertoire of phage-
displayed polypeptides), the higher the success rate of attaining high affinity ligands. Nevertheless, the 
strongest binding peptide may be underrepresented or even missing in the initial library (this is 
especially true for libraries of longer peptides) or may not be efficiently recovered during elution steps, 
leading to preferential enrichment of weaker binders. To obtain truly high-affinity peptides, a second 
generation library (focused library) can be constructed on the basis of the primarily selected sequences. 
Most often, affinity maturation libraries are constructed using either soft or hard randomization of the 
DNA sequence encoding the peptide with the highest binding affinity or that is most frequently 
represented. In soft randomization, each residue is mutated to a limited extent, and the overall 
sequence remains similar to that of the parent peptide. The theoretical frequency of amino acid 
substitution at any position depends on the quantitative ratios between the nucleotides added at 
particular steps during the synthesis of the oligonucleotides encoding the displayed peptides [133,134]. 
For example, Fairbrother et al. [85] synthesized mutagenesis inserts in a 80:7:7:7 manner, indicating 
that a mixture of 80% original base and ~7% each of the other three bases was added in each step, 
resulting in an amino acid mutation frequency of about 40% at each position. Conversely, in hard 
randomization degenerate codons encoding all twenty natural amino acids are introduced at defined 
positions of the peptide-encoding oligonucleotide. This can facilitate the identification of optimal 
amino acid residues in weakly conserved motifs [74,83] and the extension of primarily isolated 
peptides [6]. However, a “milder” randomization approach (called tailored randomization) is often 
used to substitute a particular parental residue (or set of residues) with an amino acid from a limited 
subset of natural amino acids that may share a common characteristic (e.g., hydrophobic or polar 
residues, etc.). Several amino acid subsets, determined by partially degenerate codons, can be 
introduced at each position. The derived consensus may differ from the original one depending upon 
which residues are allowed to co-vary within a library. This is most likely due to cooperative 
intramolecular interactions between peptide side chains [74]. 

All of the mutagenesis methods discussed above may be combined to construct a single focused 
library, but a more rational approach is to begin with soft randomization and later construct a tertiary 
library by site-directed hard randomization [85,134]. It may also be useful to use a polyvalent library 
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initially and later switch to monovalent display vectors for the construction of mutagenesis libraries to 
eliminate avidity effects and identify peptides with high intrinsic affinities [6,74,83,85,100]. 

Ultimately, peptides must be chemically synthesized or expressed using recombinant DNA 
technology to be amenable to thorough evaluation. The alanine scanning method, in which individual 
amino acid residues are systematically replaced by alanine, can be used to assess the contribution of 
each residue to binding affinity, specificity and/or activity. The minimal effective portion of a ligand 
can be further determined by gradually truncating the peptide’s terminal ends [111]. 

4.2. Options for Improving the In Vivo Fate of Peptide Drug Candidates  

The main disadvantage of peptide drugs is their short half-life in vivo (on the order of minutes) due 
to rapid degradation by proteases, extensive renal filtration, and uptake to other tissues [112,132]. 
Consequently, the biological activity of a peptide directly depends on its stability in serum. One 
method to improve pharmacokinetics is to incorporate unusual amino acids, such as D-enantiomeric 
amino acids, in synthetic peptides [36,131]. An elegant way to obtain peptide ligands in the D-
conformation was described by Schumacher et al. [135] and termed mirror image phage display. In 
principle, the selection is carried out against the mirror image of the original target molecule using a 
phage library of peptides in the naturally occurring L-conformation. The targeted polypeptide has the 
same amino acid sequence as its natural counterpart but is fully composed of D-enantiomeric amino 
acids. The ultimately selected peptide of interest is translated into its D-enantiomeric form, which 
should interact with the original target protein composed of natural L-amino acids. However, the 
required synthetic preparation of target molecules in the D-conformation is a serious obstacle because 
larger proteins are difficult to synthesize. Nevertheless, mirror image phage display should be 
considered a worthwhile and viable option due to the considerable advantages of D-peptides over L-
enantiomers. Most importantly, they are resistant to gut and serum proteases, a feature that can 
dramatically increase their serum half-life [131]. D-isomer peptides are also less immunogenic [136] 
due to the inability of antigen-presenting cells to process such peptides. 

The pharmacokinetic properties of peptides can also be improved by synthesizing retro-inverted 
(retro-inverso) analogues of bioactive L-peptides. Here, retro refers to the reversed direction of the 
primary sequence, and inverso denotes the alteration in chirality of each individual residue to the D-
enantiomer. Retro-inverted peptides retain a strong topological correlation to the parent peptide 
because the side-chain disposition is similar in both (the positions of side-chains are preserved). Thus, 
the binding affinities of retro-inverted peptides for their cognate targets usually remain unchanged 
relative to the parent L-peptide [82,131].  

The biological activity of short peptides is commonly potentiated by simply joining monomeric 
peptides into di-/tri- or higher oligomeric forms. For instance, the potency of both EpoR and TpoR 
peptide agonists was markedly improved by the formation of their respective dimeric forms; the effect 
was not due to increased avidity of the conjugates but because the active forms of the two agonists are 
actually dimeric peptides that must pair non-covalently in the absence of covalent fusion [6,7,110,137]. 
Different linkers are used to conjugate monomeric peptides to one another, such as small flexible 
molecules (e.g., a few ethylene glycol units) or larger carriers (e.g., a leucine zipper variant or the IgG 
Fc-region) [74]. In addition, ligands with non-overlapping sites on the receptor can be coupled to form 
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peptide concatemers. The dissociation constant (Kd) of such a heterooligomer-target complex is 
usually much lower than the Kd of the target and either component alone [38] due to the increased 
interaction area [63].  

An important consideration with peptide drugs is their short residence time in the body. To 
overcome weaknesses related to rapid elimination, peptides are either PEGylated (coupled to a 
polyethylene glycol chain, e.g., peginesatide [138]), directly fused to a larger protein molecule (such as 
the IgG Fc-region, e.g., romiplostim [118]), or attached to a group that adheres to serum albumin 
[139,140]. In general, decreasing immunogenicity, enhancing protease resistance, limiting renal 
filtration, and actively recycling IgG- and albumin-peptide fusions by the neonatal Fc receptor (FcRn) 
all contribute to a prolonged biological half-life [138,141]. 

5. Future Prospects 

Two of the most advanced drugs developed by screening phage-displayed libraries of random 
peptides are the PEGylated erythropoietin receptor agonist peginesatide (Hematide, Affymax) and the 
Fc-fused thrombopoietin receptor agonist romiplostim (Nplate, Amgen). Two other drugs, 
adalimumab, an anti-TNF-α antibody [142], and ecallantide, a small-protein inhibitor of the plasma 
protease kallikrein [143], have been developed using phage display, putting this technology side-by-
side with other well-established approaches in the field of drug discovery. 

Recent exciting advances in the technique predict a bright future for phage display therapeutics. For 
example, Tian et al. [144] and Sandman et al. [145] have incorporated genetically-encoded non-natural 
amino acids into phage-displayed peptides, thereby paving the way for combinatorial libraries of even 
wider chemical diversities (potentially applicable to the construction of second generation affinity 
maturation libraries). Furthermore, Woiwode et al. [146] designed a hybrid system of phage display 
and synthetic chemistry by chemically coupling synthetic compounds to the bacteriophage capsid on a 
one-compound-one-clone principle (each compound was encoded by a unique nucleotide sequence 
inserted in a non-coding region of the phage genome). Screening a library of folic acid analogues 
against KB carcinoma cells over-expressing folate receptors resulted in the identification of several 
folic acid mimetics. Additional approaches are being developed to better control screening conditions 
[147,148]. Highly sensitive biosensors, such as Biacore (based on surface plasmon resonance) and 
quartz crystal microbalance apparatuses (based on the piezoelectric effect), not only enable screening 
against minute amounts of target but, more importantly, also allow the monitoring of phage-target 
interactions in real time. This makes it possible to empirically modify the stringency of the washing 
and elution steps during a single experiment and recover truly high affinity binders. Considering the 
emergence of novel library designs and innovative selection strategies, we are confident that phage 
display will continue to provide a wealth of peptide leads to be used for the development of new 
membrane receptor modulators and agents for the targeted delivery of therapeutics and diagnostics.  

Acknowledgements 

The authors are grateful to Alenka Tomasic for assistance with Figure 1. 

 



Molecules 2011, 16                            
 

 

878

References and Notes 

1. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on 
the virion surface. Science 1985, 228, 1315-1317. 

2. Smith, G.P.; Petrenko, V.A. Phage Display. Chem. Rev. 1997, 97, 391-410. 
3. Bratkovič, T. Progress in phage display: evolution of the technique and its applications. Cell. 

Mol. Life Sci. 2010, 67, 749-767. 
4. Grøn, H.; Hyde-DeRuyscher, R. Peptides as tools in drug discovery. Curr. Opin. Drug Discov. 

Devel. 2000, 3, 636-645. 
5. Ja, W.W.; Roberts, R.W. G-protein-directed ligand discovery with peptide combinatorial 

libraries. Trends Biochem. Sci. 2005, 30, 318-324. 
6. Wrighton, N.C.; Farrell, F.X.; Chang, R.; Kashyap, A.K.; Barbone, F.P.; Mulcahy, L.S.; Johnson, 

D.L.; Barrett, R.W.; Jolliffe, L.K.; Dower, W.J. Small peptides as potent mimetics of the protein 
hormone erythropoietin. Science 1996, 273, 458-464. 

7. Cwirla, S.E.; Balasubramanian, P.; Duffin, D.J.; Wagstrom, C R.; Gates, C.M.; Singer, S.C.; 
Davis, A.M.; Tansik, R.L.; Mattheakis, L.C.; Boytos, C.M.; Schatz, P.J.; Baccanari, D.P.; 
Wrighton, N.C.; Barrett, R.W.; Dower, W.J. Peptide agonist of the thrombopoietin receptor as 
potent as the natural cytokine. Science 1997, 276, 1696-1699. 

8. Su, J.L.; Lai, K.P.; Chen, C.A.; Yang, C.Y.; Chen, P.S.; Chang, C.C.; Chou, C.H.; Hu, C.L.; 
Kuo, M.L.; Hsieh, C.Y.; Wei, L.H. A novel peptide specifically binding to interleukin-6 receptor 
(gp80) inhibits angiogenesis and tumor growth. Cancer Res. 2005, 65, 4827-4835. 

9. Hetian, L.; Ping, A.; Shumei, S.; Xiaoying, L.; Luowen, H.; Jian, W.; Lin, M.; Meisheng, L.; 
Junshan, Y.; Chengchao, S. A novel peptide isolated from a phage display library inhibits tumor 
growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase 
domain receptor. J. Biol. Chem. 2002, 277, 43137-43142. 

10. Schooltink, H.; Rose-John, S. Designing cytokine variants by phage-display. Comb. Chem. High 
Throughput Screen. 2005, 8, 173-179. 

11. McConnell, S.J.; Dinh, T.; Le, M.H.; Brown, S.J.; Becherer, K.; Blumeyer, K.; Kautzer, C.; 
Axelrod, F.; Spinella, D.G. Isolation of erythropoietin receptor agonist peptides using evolved 
phage libraries. Biol. Chem. 1998, 379, 1279-1286. 

12. Tipps, M.E.; Lawshe, J.E.; Ellington, A D.; Mihic, S.J. Identification of novel specific allosteric 
modulators of the glycine receptor using phage display. J. Biol. Chem. 2010, 285, 22840-22845. 

13. Tao, J.; Wendler, P.; Connelly, G.; Lim, A.; Zhang, J.; King, M.; Li, T.; Silverman, J.A.; 
Schimmel, P.R.; Tally, F.P. Drug target validation: Lethal infection blocked by inducible peptide. 
Proc. Natl. Acad. Sci. USA 2000, 97, 783-786. 

14. Hong, H.Y.; Lee, H.Y.; Kwak, W.; Yoo, J.; Na, M.H.; So, I.S.; Kwon, T.H.; Park, H.S.; Huh, S.; 
Oh, G.T.; Kwon, I.C.; Kim, I.S.; Lee, B.H. Phage display selection of peptides that home to 
atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J. Cell. Mol. Med. 
2008, 12, 2003-2014. 

15. De Berardinis, P.; Haigwood, N. New recombinant vaccines based on the use of prokaryotic 
antigen-display systems. Expert Rev. Vaccines 2004, 3, 673. 



Molecules 2011, 16                            
 

 

879

16. Skerra, A. Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 
2007, 18, 295. 

17. Grönwall, C.; Stahl, S. Engineered affinity proteins - generation and applications. J. Biotechnol. 
2009, 140, 254-269. 

18. Sergeeva, A.; Kolonin, M.G.; Molldrem, J.J.; Pasqualini, R.; Arap, W. Display technologies: 
application for the discovery of drug and gene delivery agents. Adv. Drug Deliv. Rev. 2006, 58, 
1622-1654. 

19. Arap, W.; Kolonin, M.G.; Trepel, M.; Lahdenranta, J.; Cardo-Vila, M.; Giordano, R.J.; Mintz, 
P.J.; Ardelt, P.U.; Yao, V.J.; Vidal, C.I.; Chen, L.; Flamm, A.; Valtanen, H.; Weavind, L.M.; 
Hicks, M.E.; Pollock, R.E.; Botz, G.H.; Bucana, C.D.; Koivunen, E.; Cahill, D.; Troncoso, P.; 
Baggerly, K.A.; Pentz, R.D.; Do, K.A.; Logothetis, C.J.; Pasqualini, R. Steps toward mapping the 
human vasculature by phage display. Nat. Med. 2002, 8, 121-127. 

20. Hertveldt, K.; Belien, T.; Volckaert, G. General M13 phage display: M13 phage display in 
identification and characterization of protein-protein interactions. Methods Mol. Biol. 2009, 502, 
321-339. 

21. Rowley, M.J.; O'Connor, K.; Wijeyewickrema, L. Phage display for epitope determination: A 
paradigm for identifying receptor-ligand interactions. Biotechnol. Annu. Rev. 2004, 10, 151-188. 

22. Sedlacek, R.; Chen, E. Screening for protease substrate by polyvalent phage display. Comb. 
Chem. High Throughput Screen. 2005, 8, 197-203. 

23. Kay, B.K.; Hamilton, P.T. Identification of enzyme inhibitors from phage-displayed 
combinatorial peptide libraries. Comb. Chem. High Throughput Screen. 2001, 4, 535-543. 

24. Jung, S.; Honegger, A.; Pluckthun, A. Selection for improved protein stability by phage display. 
J. Mol. Biol. 1999, 294, 163-180. 

25. Fernandez-Gacio, A.; Uguen, M.; Fastrez, J. Phage display as a tool for the directed evolution of 
enzymes. Trends Biotechnol. 2003, 21, 408-414. 

26. Rosenberg, A.; Griffin, K.; Studier, F.; McCormick, M.; Berg, J.; Novy, R.; Mierendorf, R.; 
Cloning, P. T7Select® Phage Display System: A powerful new protein display system based on 
bacteriophage T7. Innovations 1996, 1-6. 

27. Hoess, R.H. Bacteriophage lambda as a vehicle for peptide and protein display. Curr. Pharm. 
Biotechnol. 2002, 3, 23-28. 

28. Krumpe, L.R.; Atkinson, A.J.; Smythers, G.W.; Kandel, A.; Schumacher, K.M.; McMahon, J.B.; 
Makowski, L.; Mori, T. T7 lytic phage-displayed peptide libraries exhibit less sequence bias than 
M13 filamentous phage-displayed peptide libraries. Proteomics 2006, 6, 4210-4222. 

29. Gram, H.; Marconi, L.A.; Barbas, C.F., 3rd; Collet, T.A.; Lerner, R.A.; Kang, A.S. In vitro 
selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin 
library. Proc. Natl. Acad. Sci. USA 1992, 89, 3576-3580. 

30. Nanduri, V.; Sorokulova, I.B.; Samoylov, A.M.; Simonian, A.L.; Petrenko, V.A.; Vodyanoy, V. 
Phage as a molecular recognition element in biosensors immobilized by physical adsorption. 
Biosens. Bioelectron. 2007, 22, 986-992. 

31. Skerra, A. Engineered protein scaffolds for molecular recognition. J. Mol. Recognit. 2000, 13, 
167-187. 



Molecules 2011, 16                            
 

 

880

32. Nygren, P.A.; Skerra, A. Binding proteins from alternative scaffolds. J. Immunol. Methods 2004, 
290, 3-28. 

33. Uchiyama, F.; Tanaka, Y.; Minari, Y.; Tokui, N. Designing scaffolds of peptides for phage 
display libraries. J. Biosci. Bioeng. 2005, 99, 448-456. 

34. Yanofsky, S.D.; Baldwin, D.N.; Butler, J.H.; Holden, F.R.; Jacobs, J.W.; Balasubramanian, P.; 
Chinn, J.P.; Cwirla, S.E.; Peters-Bhatt, E.; Whitehorn, E.A.; Tate, E.H.; Akeson, A.; Bowlin, 
T.L.; Dower, W.J.; Barrett, R.W. High affinity type I interleukin 1 receptor antagonists 
discovered by screening recombinant peptide libraries. Proc. Natl. Acad. Sci. USA 1996, 93, 
7381-7386. 

35. Giordano, R.J.; Cardo-Vila, M.; Lahdenranta, J.; Pasqualini, R.; Arap, W. Biopanning and rapid 
analysis of selective interactive ligands. Nat. Med. 2001, 7, 1249-1253. 

36. Ladner, R.C.; Sato, A.K.; Gorzelany, J.; de Souza, M. Phage display-derived peptides as 
therapeutic alternatives to antibodies. Drug Discov. Today 2004, 9, 525-529. 

37. Vrielink, J.; Heins, M.S.; Setroikromo, R.; Szegezdi, E.; Mullally, M.M.; Samali, A.; Quax, W.J. 
Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS J. 2010, 
277, 1653-1665. 

38. Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: Concept, innovations, applications and 
future. Biotechnol. Adv. 2010, 28, 849-858. 

39. Arinaminpathy, Y.; Khurana, E.; Engelman, D.M.; Gerstein, M.B. Computational analysis of 
membrane proteins: the largest class of drug targets. Drug Discov. Today 2009, 14, 1130-1135. 

40. Deller, M.C.; Yvonne Jones, E. Cell surface receptors. Curr. Opin. Struct. Biol. 2000, 10,  
213-219. 

41. Bantscheff, M.; Eberhard, D.; Abraham, Y.; Bastuck, S.; Boesche, M.; Hobson, S.; Mathieson, 
T.; Perrin, J.; Raida, M.; Rau, C.; Reader, V.; Sweetman, G.; Bauer, A.; Bouwmeester, T.; Hopf, 
C.; Kruse, U.; Neubauer, G.; Ramsden, N.; Rick, J.; Kuster, B.; Drewes, G. Quantitative 
chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. 
Biotechnol. 2007, 25, 1035-1044. 

42. Grimminger, F.; Schermuly, R.T.; Ghofrani, H.A. Targeting non-malignant disorders with 
tyrosine kinase inhibitors. Nat. Rev. Drug Discov. 2010, 9, 956-970. 

43. Goubaeva, F.; Ghosh, M.; Malik, S.; Yang, J.; Hinkle, P.M.; Griendling, K.K.; Neubig, R.R.; 
Smrcka, A.V. Stimulation of cellular signaling and G protein subunit dissociation by G protein 
betagamma subunit-binding peptides. J. Biol. Chem. 2003, 278, 19634-19641. 

44. Lavery, K.S.; King, T.H. Antisense and RNAi: Powerful tools in drug target discovery and 
validation. Curr. Opin. Drug Discov. Devel. 2003, 6, 561-569. 

45. Zhu, X.; Wu, H.; Luo, S.; Xianyu, Z.; Zhu, D. Screening and identification of a novel 
hepatocellular carcinoma cell binding peptide by using a phage display library. J. Huazhong 
Univ. Sci. Technolog. Med. Sci. 2008, 28, 299. 

46. Dong, J.; Liu, W.; Jiang, A.; Zhang, K.; Chen, M. A novel peptide, selected from phage display 
library of random peptides, can efficiently target into human breast cancer cell. Chin. Sci. Bullet. 
2008, 53, 860-867. 



Molecules 2011, 16                            
 

 

881

47. Lee, S.M.; Lee, E.J.; Hong, H.Y.; Kwon, M.K.; Kwon, T.H.; Choi, J.Y.; Park, R.W.; Kwon, 
T.G.; Yoo, E.S.; Yoon, G.S.; Kim, I.S.; Ruoslahti, E.; Lee, B.H. Targeting bladder tumor cells in 
vivo and in the urine with a peptide identified by phage display. Mol. Cancer Res. 2007, 5, 11-19. 

48. Pardridge, W.M. Drug and gene targeting to the brain with molecular Trojan horses. Nat. Rev. 
Drug Discov. 2002, 1, 131-139. 

49. Wang, F.Y.; Zhang, T.Y.; Luo, J.X.; He, G.A.; Gu, Q.L.; Xiao, F. Selection of CC chemokine 
receptor 5-binding peptide from a phage display peptide library. Biosci. Biotechnol. Biochem. 
2006, 70, 2035-2041. 

50. Nilsson, F.; Tarli, L.; Viti, F.; Neri, D. The use of phage display for the development of tumour 
targeting agents. Adv. Drug Deliv. Rev. 2000, 43, 165. 

51. Laakkonen, P.; Porkka, K.; Hoffman, J.A.; Ruoslahti, E. A tumor-homing peptide with a 
targeting specificity related to lymphatic vessels. Nat. Med. 2002, 8, 751-755. 

52. Brown, K.C. Peptidic tumor targeting agents: The road from phage display peptide selections to 
clinical applications. Curr. Pharm. Des. 2010, 16, 1040-1054. 

53. Fievez, V.; Plapied, L.; Plaideau, C.; Legendre, D.; des Rieux, A.; Pourcelle, V.; Freichels, H.; 
Jerome, C.; Marchand, J.; Preat, V.; Schneider, Y.J. In vitro identification of targeting ligands of 
human M cells by phage display. Int. J. Pharm. 2010, 394, 35-42. 

54. Yoo, M.K.; Kang, S.K.; Choi, J.H.; Park, I.K.; Na, H.S.; Lee, H.C.; Kim, E.B.; Lee, N.K.; Nah, 
J.W.; Choi, Y.J.; Cho, C.S. Targeted delivery of chitosan nanoparticles to Peyer's patch using M 
cell-homing peptide selected by phage display technique. Biomaterials 2010, 31, 7738-7747. 

55. Ivanenkov, V.V.; Felici, F.; Menon, A.G. Targeted delivery of multivalent phage display vectors 
into mammalian cells. Biochim. Biophys. Acta 1999, 1448, 463-472. 

56. Vives, E.; Schmidt, J.; Pelegrin, A. Cell-penetrating and cell-targeting peptides in drug delivery. 
Biochim. Biophys. Acta 2008, 1786, 126-138. 

57. Lee, T.Y.; Lin, C.T.; Kuo, S.Y.; Chang, D.K.; Wu, H.C. Peptide-mediated targeting to tumor 
blood vessels of lung cancer for drug delivery. Cancer Res. 2007, 67, 10958-10965. 

58. Li, Z.; Zhang, J.; Zhao, R.; Xu, Y.; Gu, J. Preparation of peptide-targeted phagemid particles 
using a protein III-modified helper phage. Biotechniques 2005, 39, 493-497. 

59. Larocca, D.; Burg, M.A.; Jensen-Pergakes, K.; Ravey, E.P.; Gonzalez, A.M.; Baird, A. Evolving 
phage vectors for cell targeted gene delivery. Curr. Pharm. Biotechnol. 2002, 3, 45-57. 

60. Pasqualini, R.; Koivunen, E.; Ruoslahti, E. Alpha v integrins as receptors for tumor targeting by 
circulating ligands. Nat. Biotechnol. 1997, 15, 542-546. 

61. Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor 
vasculature in a mouse model. Science 1998, 279, 377-380. 

62. Schreiber, G.; Walter, M.R. Cytokine-receptor interactions as drug targets. Curr. Opin. Chem. 
Biol. 2010, 14, 511-519. 

63. Kaushansky, K. Small molecule mimics of hematopoietic growth factors: Improving on Mother 
Nature? Leukemia 2001, 15, 673-674. 

64. Kallen, K.J.; Grotzinger, J.; Rose-John, S. New perspectives on the design of cytokines and 
growth factors. Trends Biotechnol. 2000, 18, 455-461. 

65. Sato, A.; Sone, S. A peptide mimetic of human interferon (IFN)-beta. Biochem. J. 2003, 371,  
603-608. 



Molecules 2011, 16                            
 

 

882

66. Zurita, A.J.; Troncoso, P.; Cardo-Vila, M.; Logothetis, C.J.; Pasqualini, R.; Arap, W. 
Combinatorial screenings in patients: The interleukin-11 receptor alpha as a candidate target in 
the progression of human prostate cancer. Cancer Res. 2004, 64, 435-439. 

67. Tian, W.; Bai, G.; Li, Z.H.; Yang, W.B. Antagonist peptides of human interferon-alpha2b 
isolated from phage display library inhibit interferon induced antiviral activity. Acta Pharmacol. 
Sin. 2006, 27, 1044-1050. 

68. Yayon, A.; Aviezer, D.; Safran, M.; Gross, J.L.; Heldman, Y.; Cabilly, S.; Givol, D.; Katchalski-
Katzir, E. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor 
from a random phage-epitope library. Proc. Natl. Acad. Sci. USA 1993, 90, 10643-10647. 

69. Livnah, O.; Johnson, D.L.; Stura, E.A.; Farrell, F.X.; Barbone, F.P.; You, Y.; Liu, K.D.; 
Goldsmith, M.A.; He, W.; Krause, C.D.; Pestka, S.; Jolliffe, L.K.; Wilson, I.A. An antagonist 
peptide-EPO receptor complex suggests that receptor dimerization is not sufficient for activation. 
Nat. Struct. Biol. 1998, 5, 993-1004. 

70. Overington, J.; Al-Lazikani, B.; Hopkins, A. How many drug targets are there? Nat. Rev. Drug 
Disc. 2006, 5, 993. 

71. Heins, M.; Quax, W. Implications of a Newly Discovered DR5 Specific Antagonistic Peptide for 
Neurodegenerative Disorders. Mol. Cell. Pharmacol. 2010, 2, 97. 

72. Stephen, C.W.; Helminen, P.; Lane, D.P. Characterisation of epitopes on human p53 using 
phage-displayed peptide libraries: insights into antibody-peptide interactions. J. Mol. Biol. 1995, 
248, 58-78. 

73. Cardo-Vila, M.; Zurita, A.J.; Giordano, R.J.; Sun, J.; Rangel, R.; Guzman-Rojas, L.; Anobom, 
C.D.; Valente, A.P.; Almeida, F.C.; Lahdenranta, J.; Kolonin, M.G.; Arap, W.; Pasqualini, R. A 
ligand peptide motif selected from a cancer patient is a receptor-interacting site within human 
interleukin-11. PLoS One 2008, 3, e3452. 

74. Li, B.; Russell, S.J.; Compaan, D.M.; Totpal, K.; Marsters, S.A.; Ashkenazi, A.; Cochran, A.G.; 
Hymowitz, S.G.; Sidhu, S.S. Activation of the proapoptotic death receptor DR5 by oligomeric 
peptide and antibody agonists. J. Mol. Biol. 2006, 361, 522-536. 

75. Monne, M.; Chan, K.W.; Slotboom, D.J.; Kunji, E.R. Functional expression of eukaryotic 
membrane proteins in Lactococcus lactis. Protein Sci. 2005, 14, 3048-3056. 

76. Tate, C.G. Overexpression of mammalian integral membrane proteins for structural studies. 
FEBS Lett. 2001, 504, 94-98. 

77. Majumdar, S.; Hajduczki, A.; Mendez, A.S.; Weiss, G.A. Phage display of functional, full-length 
human and viral membrane proteins. Bioorg. Med. Chem. Lett. 2008, 18, 5937-5940. 

78. Castillo, J.; Goodson, B.; Winter, J. T7 displayed peptides as targets for selecting peptide specific 
scFvs from M13 scFv display libraries. J. Immunol. Methods 2001, 257, 117-122. 

79. Karasseva, N.G.; Glinsky, V.V.; Chen, N.X.; Komatireddy, R.; Quinn, T.P. Identification and 
characterization of peptides that bind human ErbB-2 selected from a bacteriophage display 
library. J. Protein Chem. 2002, 21, 287-296. 

80. Binetruy-Tournaire, R.; Demangel, C.; Malavaud, B.; Vassy, R.; Rouyre, S.; Kraemer, M.; 
Plouet, J.; Derbin, C.; Perret, G.; Mazie, J.C. Identification of a peptide blocking vascular 
endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J. 2000, 19, 1525-1533. 



Molecules 2011, 16                            
 

 

883

81. Bonetto, S.; Carlavan, I.; Baty, D. Isolation and characterization of antagonist and agonist 
peptides to the human melanocortin 1 receptor. Peptides 2005, 26, 2302-2313. 

82. Cardo-Vila, M.; Giordano, R.J.; Sidman, R.L.; Bronk, L.F.; Fan, Z.; Mendelsohn, J.; Arap, W.; 
Pasqualini, R. From combinatorial peptide selection to drug prototype (II): Targeting the 
epidermal growth factor receptor pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 5118-5123. 

83. Gordon, N.C.; Lien, S.; Johnson, J.; Wallweber, H.J.; Tran, T.; Currell, B.; Mathieu, M.; Quan, 
C.; Starovasnik, M.A.; Hymowitz, S.G.; Kelley, R.F. Multiple novel classes of APRIL-specific 
receptor-blocking peptides isolated by phage display. J. Mol. Biol. 2010, 396, 166-177. 

84. Erdag, B.; Balcioglu, K.B.; Kumbasar, A.; Celikbicak, O.; Zeder-Lutz, G.; Altschuh, D.; Salih, 
B.; Baysal, K. Novel short peptides isolated from phage display library inhibit vascular 
endothelial growth factor activity. Mol. Biotechnol. 2007, 35, 51-63. 

85. Fairbrother, W.J.; Christinger, H.W.; Cochran, A.G.; Fuh, G.; Keenan, C.J.; Quan, C.; Shriver, 
S.K.; Tom, J.Y.; Wells, J.A.; Cunningham, B.C. Novel peptides selected to bind vascular 
endothelial growth factor target the receptor-binding site. Biochemistry 1998, 37, 17754-17764. 

86. Witt, H.; Hajdin, K.; Iljin, K.; Greiner, O.; Niggli, F.K.; Schafer, B.W.; Bernasconi, M. 
Identification of a rhabdomyosarcoma targeting peptide by phage display with sequence 
similarities to the tumour lymphatic-homing peptide LyP-1. Int. J. Cancer 2009, 124, 2026-2032. 

87. Zhang, B.; Zhang, Y.; Wang, J.; Chen, J.; Pan, Y.; Ren, L.; Hu, Z.; Zhao, J.; Liao, M.; Wang, S. 
Screening and identification of a targeting peptide to hepatocarcinoma from a phage display 
peptide library. Mol. Med. 2007, 13, 246-254. 

88. Giordano, R.J.; Cardo-Vila, M.; Salameh, A.; Anobom, C.D.; Zeitlin, B.D.; Hawke, D.H.; 
Valente, A.P.; Almeida, F.C.; Nor, J.E.; Sidman, R.L.; Pasqualini, R.; Arap, W. From 
combinatorial peptide selection to drug prototype (I): Targeting the vascular endothelial growth 
factor receptor pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 5112-5117. 

89. Kumar, S.R.; Quinn, T.P.; Deutscher, S.L. Evaluation of an 111In-radiolabeled peptide as a 
targeting and imaging agent for ErbB-2 receptor expressing breast carcinomas. Clin. Cancer Res. 
2007, 13, 6070-6079. 

90. Giordano, R.J.; Anobom, C.D.; Cardo-Vila, M.; Kalil, J.; Valente, A.P.; Pasqualini, R.; Almeida, 
F.C.; Arap, W. Structural basis for the interaction of a vascular endothelial growth factor mimic 
peptide motif and its corresponding receptors. Chem. Biol. 2005, 12, 1075-1083. 

91. Pande, J.; Mallhi, K.K.; Grover, A.K. A novel plasma membrane Ca(2+)-pump inhibitor: caloxin 
1A1. Eur. J. Pharmacol. 2005, 508, 1-6. 

92. Chaudhary, J.; Walia, M.; Matharu, J.; Escher, E.; Grover, A.K. Caloxin: A novel plasma 
membrane Ca2+ pump inhibitor. Am. J. Physiol. Cell Physiol. 2001, 280, C1027-1030. 

93. Pande, J.; Mallhi, K.K.; Sawh, A.; Szewczyk, M.M.; Simpson, F.; Grover, A.K. Aortic smooth 
muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the 
extracellular inhibitor caloxin 1b1. Am. J. Physiol. Cell Physiol. 2006, 290, C1341-1349. 

94. Zang, L.; Shi, L.; Guo, J.; Pan, Q.; Wu, W.; Pan, X.; Wang, J. Screening and identification of a 
peptide specifically targeted to NCI-H1299 from a phage display peptide library. Cancer Lett. 
2009, 281, 64-70. 

95. Waugh, D.S. Making the most of affinity tags. Trends Biotechnol. 2005, 23, 316-320. 



Molecules 2011, 16                            
 

 

884

96. Lichty, J.J.; Malecki, J.L.; Agnew, H.D.; Michelson-Horowitz, D.J.; Tan, S. Comparison of 
affinity tags for protein purification. Protein Expr. Purif. 2005, 41, 98-105. 

97. Koolpe, M.; Burgess, R.; Dail, M.; Pasquale, E.B. EphB receptor-binding peptides identified by 
phage display enable design of an antagonist with ephrin-like affinity. J. Biol. Chem. 2005, 280, 
17301-17311. 

98. El-Mousawi, M.; Tchistiakova, L.; Yurchenko, L.; Pietrzynski, G.; Moreno, M.; Stanimirovic, 
D.; Ahmad, D.; Alakhov, V. A vascular endothelial growth factor high affinity receptor 1-
specific peptide with antiangiogenic activity identified using a phage display peptide library. J. 
Biol. Chem. 2003, 278, 46681-46691. 

99. Azzazy, H.M.; Highsmith, W.E., Jr. Phage display technology: clinical applications and recent 
innovations. Clin. Biochem. 2002, 35, 425-445. 

100. Lee, C.V.; Sidhu, S.S.; Fuh, G. Bivalent antibody phage display mimics natural immunoglobulin. 
J. Immunol. Methods 2004, 284, 119-132. 

101. Fagerlund, A.; Myrset, A.H.; Kulseth, M.A. Construction and characterization of a 9-mer phage 
display pVIII-library with regulated peptide density. Appl. Microbiol. Biotechnol. 2008, 80,  
925-936. 

102. Lee, Y.J.; Choi, H.J.; Lim, J.S.; Earm, J.H.; Lee, B.H.; Kim, I.S.; Frokiaer, J.; Nielsen, S.; Kwon, 
T.H. A novel method of ligand peptidomics to identify peptide ligands binding to AQP2-
expressing plasma membranes and intracellular vesicles of rat kidney. Am. J. Physiol. Renal 
Physiol. 2008, 295, F300-309. 

103. D'Mello, F.; Howard, C.R. An improved selection procedure for the screening of phage display 
peptide libraries. J. Immunol. Methods 2001, 247, 191-203. 

104. Noppe, W.; Plieva, F.; Galaev, I.Y.; Pottel, H.; Deckmyn, H.; Mattiasson, B. Chromato-panning: 
An efficient new mode of identifying suitable ligands from phage display libraries. BMC 
Biotechnol. 2009, 9, 21. 

105. Plieva, F.M.; Galaev, I.Y.; Noppe, W.; Mattiasson, B. Cryogel applications in microbiology. 
Trends Microbiol. 2008, 16, 543-551. 

106. Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor 
receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 
2007, 19, 2003-2012. 

107. Otrock, Z.K.; Makarem, J.A.; Shamseddine, A.I. Vascular endothelial growth factor family of 
ligands and receptors: review. Blood Cells Mol. Dis. 2007, 38, 258-268. 

108. Livnah, O.; Stura, E.A.; Middleton, S.A.; Johnson, D.L.; Jolliffe, L.K.; Wilson, I.A. 
Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand 
activation. Science 1999, 283, 987-990. 

109. Dower, W.J. Targeting growth factor and cytokine receptors with recombinant peptide libraries. 
Curr. Opin. Chem. Biol. 1998, 2, 328-334. 

110. Livnah, O.; Stura, E.A.; Johnson, D.L.; Middleton, S.A.; Mulcahy, L.S.; Wrighton, N.C.; Dower, 
W.J.; Jolliffe, L.K.; Wilson, I.A. Functional mimicry of a protein hormone by a peptide agonist: 
the EPO receptor complex at 2.8 A. Science 1996, 273, 464-471. 

111. Johnson, D.L.; Farrell, F.X.; Barbone, F.P.; McMahon, F.J.; Tullai, J.; Hoey, K.; Livnah, O.; 
Wrighton, N.C.; Middleton, S.A.; Loughney, D.A.; Stura, E.A.; Dower, W.J.; Mulcahy, L.S.; 



Molecules 2011, 16                            
 

 

885

Wilson, I.A.; Jolliffe, L.K. Identification of a 13 amino acid peptide mimetic of erythropoietin 
and description of amino acids critical for the mimetic activity of EMP1. Biochemistry 1998, 37, 
3699-3710. 

112. McGregor, D.P. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol. 
2008, 8, 616-619. 

113. Hematide™ Injection for Anemia in Chronic Hemodialysis (HD) Patients (EMERALD 1). 
http://clinicaltrials.gov/ct2/show/NCT00597753?term=hematide&rank=5 (accessed on 15 
November 2010). 

114. Hematide™ Injection for Anemia in Chronic Hemodialysis (HD) Patients (EMERALD 2). 
http://clinicaltrials.gov/ct2/show/NCT00597584?term=hematide&rank=6 (accessed on 15 
November 2010). 

115. Safety & Efficacy of Hematide™ for the Correction of Anemia in Patients With Chronic Renal 
Failure (PEARL 1). http://clinicaltrials.gov/ct2/show/NCT00598273?term=hematide&rank=8 
(accessed on 15 November 2010). 

116. Safety and Efficacy of Hematide™ for the Correction of Anemia in Patients With Chronic Renal 
Failure (PEARL 2). http://clinicaltrials.gov/ct2/show/NCT00598442?term=hematide&rank=11 
(accessed on 15 November 2010). 

117. Cines, D.B.; Yasothan, U.; Kirkpatrick, P. Romiplostim. Nat. Rev. Drug Discov. 2008, 7,  
887-888. 

118. Newland, A. Romiplostim: A breakthrough treatment for the management of immune 
thrombocytopenic purpura. Eur. J. Haematol. Suppl. 2009, 20-25. 

119. Janin, J.; Bahadur, R. P.; Chakrabarti, P. Protein-protein interaction and quaternary structure. Q. 
Rev. Biophys. 2008, 41, 133-180. 

120. Reichmann, D.; Rahat, O.; Cohen, M.; Neuvirth, H.; Schreiber, G. The molecular architecture of 
protein-protein binding sites. Curr. Opin. Struct. Biol. 2007, 17, 67-76. 

121. Hoffman, J.A.; Laakkonen, P.; Porkka, K.; Bernasconi, M.; Ruoslahti, E. In vivo and ex vivo 
selections using phage-displayed libraries. In Phage Display: A Practical Approach; Lowman, H. 
B., Clackson, T., Eds.; Oxford University Press: New York, NY, USA, 2004; pp 171-192. 

122. Ribeiro, S.; Horuk, R. The clinical potential of chemokine receptor antagonists. Pharmacol. 
Ther. 2005, 107, 44-58. 

123. Kromdijk, W.; Huitema, A.; Mulder, J. Treatment of HIV infection with the CCR5 antagonist 
maraviroc. Expert Opin. Pharmacother. 2010, 11, 1215-1223. 

124. Webb, T.I.; Lynch, J.W. Molecular pharmacology of the glycine receptor chloride channel. Curr. 
Pharm. Des. 2007, 13, 2350-2367. 

125. Bagri, A.; Tessier-Lavigne, M.; Watts, R.J. Neuropilins in tumor biology. Clin. Cancer Res. 
2009, 15, 1860-1864. 

126. Pasqualini, R.; Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 
1996, 380, 364. 

127. Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: the need for 
precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1-9. 



Molecules 2011, 16                            
 

 

886

128. Passarella, R.J.; Zhou, L.; Phillips, J.G.; Wu, H.; Hallahan, D.E.; Diaz, R. Recombinant peptides 
as biomarkers for tumor response to molecular targeted therapy. Clin. Cancer Res. 2009, 15, 
6421-6429. 

129. Szewczyk, M.M.; Pande, J.; Grover, A.K. Caloxins: a novel class of selective plasma membrane 
Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch. 2008, 456, 255-266. 

130. Lien, S.; Lowman, H.B. Therapeutic peptides. Trends Biotechnol. 2003, 21, 556-562. 
131. Funke, S.A.; Willbold, D. Mirror image phage display - a method to generate D-peptide ligands 

for use in diagnostic or therapeutical applications. Mol. Biosyst. 2009, 5, 783-786. 
132. Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: 

science and market. Drug Discov. Today 2010, 15, 40-56. 
133. Russel, M.; Lowman, H.; Clackson, T. Introduction to phage biology and phage display. In 

Phage Display: A Practical Approach; Lowman, H.B., Clackson, T., Eds.; Oxford University 
Press: New York, NY, USA, 2004; pp. 1-26. 

134. Dennis, M.S.; Lowman, H.B. Phage selection strategies for improved affinity and specificity of 
proteins and peptides. In Phage Display: A Practical Approach; Lowman, H.B., Clackson, T., 
Eds.; Oxford University Press: New York, NY, USA, 2004; pp. 66-68. 

135. Schumacher, T.N.; Mayr, L.M.; Minor, D.L., Jr.; Milhollen, M.A.; Burgess, M.W.; Kim, P.S. 
Identification of D-peptide ligands through mirror-image phage display. Science 1996, 271,  
1854-1857. 

136. Dintzis, H.M.; Symer, D.E.; Dintzis, R.Z.; Zawadzke, L.E.; Berg, J.M. A comparison of the 
immunogenicity of a pair of enantiomeric proteins. Proteins 1993, 16, 306-308. 

137. Dower, W.J.; Cwirla, S.E.; Balasubramanian, P.; Schatz, P.J.; Baccanari, D.P.; Barrett, R.W. 
Peptide agonists of the thrombopoietin receptor. Stem Cells 1998, 16 (Suppl. 2), 21-29. 

138. Macdougall, I.C.; Rossert, J.; Casadevall, N.; Stead, R.B.; Duliege, A.M.; Froissart, M.; Eckardt, 
K.U. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N. Engl. J. Med. 
2009, 361, 1848-1855. 

139. Zobel, K.; Koehler, M.F.; Beresini, M.H.; Caris, L.D.; Combs, D. Phosphate ester serum albumin 
affinity tags greatly improve peptide half-life in vivo. Bioorg. Med. Chem. Lett. 2003, 13, 1513-
1515. 

140. Koehler, M.F.; Zobel, K.; Beresini, M.H.; Caris, L.D.; Combs, D.; Paasch, B.D.; Lazarus, R.A. 
Albumin affinity tags increase peptide half-life in vivo. Bioorg. Med. Chem. Lett. 2002, 12,  
2883-2886. 

141. Vaccaro, C.; Zhou, J.; Ober, R.J.; Ward, E.S. Engineering the Fc region of immunoglobulin G to 
modulate in vivo antibody levels. Nat. Biotechnol. 2005, 23, 1283-1288. 

142. Jespers, L.S.; Roberts, A.; Mahler, S.M.; Winter, G.; Hoogenboom, H.R. Guiding the selection of 
human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 
(NY) 1994, 12, 899-903. 

143. Levy, J.H.; O'Donnell, P.S. The therapeutic potential of a kallikrein inhibitor for treating 
hereditary angioedema. Expert Opin. Investig. Drugs 2006, 15, 1077-1090. 

144. Tian, F.; Tsao, M.L.; Schultz, P.G. A phage display system with unnatural amino acids. J. Am. 
Chem. Soc. 2004, 126, 15962-15963. 



Molecules 2011, 16                            
 

 

887

145. Sandman, K.; Benner, J.; Noren, C. Phage display of selenopeptides. J. Am. Chem. Soc. 2000, 
122, 960-961. 

146. Woiwode, T.F.; Haggerty, J.E.; Katz, R.; Gallop, M.A.; Barrett, R.W.; Dower, W.J.; Cwirla, S.E. 
Synthetic compound libraries displayed on the surface of encoded bacteriophage. Chem. Biol. 
2003, 10, 847-858. 

147. Yuan, B.; Schulz, P.; Liu, R.; Sierks, M.R. Improved affinity selection using phage display 
technology and off-rate based selection. Electron. J. Biotechnol. 2006, 9, 171-175. 

148. Takakusagi, Y.; Takakusagi, K.; Kuramochi, K.; Kobayashi, S.; Sugawara, F.; Sakaguchi, K. 
Identification of C10 biotinylated camptothecin (CPT-10-B) binding peptides using T7 phage 
display screen on a QCM device. Bioorg. Med. Chem. 2007, 15, 7590-7598. 

Sample Availability: Not available. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 

 


