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Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series,
e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis
of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming
language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features
has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python
module for EEG feature extraction.

1. Introduction

Computer-aided diagnosis based on EEG has become possi-
ble in the last decade for several neurological diseases such as
Alzheimer’s disease [1, 2] and epilepsy [3, 4]. Implemented
systems can be very useful in the early diagnosis of those
diseases. For example, traditional epilepsy diagnosis may
require trained physicians to visually screen lengthy EEG
records whereas computer-aided systems can shorten this
time-consuming procedure by detecting and picking out
EEG segments of interest to physicians [5, 6]. On top of that,
computers can extend our ability to analyze signals. Recently,
researchers have developed systems [3, 4, 7, 8] that can
hopefully use (any) random interictal (i.e., non-seizure) EEG
records for epilepsy diagnosis in instances that are difficult
for physicians to make diagnostic decisions with their naked
eyes. In addition to analyzing existing signals, this computer-
based approach can help us model the brain and predict
future signals, for example, seizure prediction [9, 10].

All the above systems rely on characterizing the EEG
signal into certain features, a step known as feature extrac-
tion. EEG features can come from different fields that study
time series: power spectral density from signal processing,

fractal dimensions from computational geometry, entropies
from information theory, and so forth. An open source tool
that can extract EEG features would benefit the computa-
tional neuroscience community since feature extraction is
repeatedly invoked in the analysis of EEG signals. Because
of Python’s increasing popularity in scientific computing,
and especially in computational neuroscience, a Python
module for EEG feature extraction would be highly useful.
In response, we have developed PyEEG, a Python module for
EEG feature extraction, and have tested it in our previous
epileptic EEG research [3, 8, 11].

Compared to other popular programming languages in
scientific computing such as C++ or MATLAB, Python is
an open source scripting language of simple syntax and
various high-level libraries (for detailed advantages of
Python, read http://www.python.org/about/), such as Scipy
(http://www.scipy.org/) which allows users to run MATLAB
codes after slight modification. There have been several pop-
ular open source Python projects in the neuroimaging com-
munity already, such as NIPY (http://nipy.sourceforge.net/).
However, in neural physiology community, Python is not yet
quite popular. As we are not aware of any open source tools in
Python (or other programming languages) that can extract
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EEG features as mentioned above, we introduce and release
PyEEG in this paper.

Though originally designed for EEG, PyEEG can also be
used to analyze other physiological signals that can be treated
as time series, especially MEG signals that represent the
magnetic fields induced by currents of neural electrical
activities.

The rest of the paper is organized as follows. In Section 2,
we introduce the framework of PyEEG. Section 3 gives the
definitions to compute EEG features. A tutorial of applying
PyEEG onto a public real EEG dataset is given in Section 4.
Section 5 concludes the paper.

2. Main Framework

PyEEG’s target users are programmers (anyone who writes
programs) working on computational neuroscience. Figure 1
shows its framework. PyEEG is a Python module that focuses
only on extracting features from EEG/MEG segments. There-
fore, it does not contain functions to import data of various
formats or export features to a classifier. This is due to the
modularity and composition principles of building open
source software which indicate that small programs that can
work well together via simple interfaces are better than big
monolithic programs. Since open source tools like EEG/MEG
data importers (e.g., EEGLab, Biosig, etc.) and classifier
front-ends are already available, there is no need for us to
reinvent the wheel. Users can easily hook PyEEG up with
various existing open source software to build toolchains for
their EEG/MEG research.

PyEEG consists of two sets of functions.

(1) Preprocessing functions, which do not return any
feature values. Only two such functions have been
implemented so far. ����� ����� builds embedding
sequence (from given lag and embedding dimen-
sion) and 	
��� 
���� �
		�� computes first-
order differential sequence. One can build differential
sequences of higher orders by repeatedly applying
first-order differential computing.

(2) Feature extraction functions, that return feature val-
ues. These are listed in Table 1.

PyEEG only uses functions in standard Python library
and SciPy, the de facto Python module for scientific com-
puting. PyEEG does not define any new data structure,
but instead uses only standard Python and NumPy data
structures. The reason is that we want to simplify the use
of PyEEG, especially for users without much program-
ming background. The inputs of all functions are a time
sequence as a list of floating-point numbers and a set
of optional feature extraction parameters. Parameters have
default values. The output of a feature extraction function is
a floating-point number if the feature is a scalar or a list of
floating-point numbers (a vector) otherwise. Details about
functions are available in the PyEEG reference guide at
http://PyEEG.SourceForge.net/.

Non feature
extraction functions

Feature extraction
functions

Feature values

PyEEG

EEG series

Figure 1: PyEEG framework.

3. Supported Feature Extraction

In this section, we detail the definitions and computation
procedures to extract EEG features (as shown in Table 1)
in PyEEG. Since there are many parameters and various
algorithms for one feature, the numerical value of a feature
extracted by PyEEG may be different from that extracted by
other toolboxes. Users may need to adjust our code or use
non-default values for the parameters in order to meet their
needs. Please note that the index of an array or a vector starts
from 1 rather than 0 in this section.

3.1. Power Spectral Intensity and Relative Intensity Ratio.
To a time series [x1, x2, . . . , xN ], denote its Fast Fourier
Transform (FFT) result as [X1,X2, . . . ,XN ]. A continuous
frequency band from flow to fup is sliced into K bins,
which can be of equal width or not. Boundaries of bins are
specified by a vector band = [ f1, f2, . . . , fK ], such that the
lower and upper frequencies of the ith bin are fi and fi+1,
respectively. Commonly used unequal bins are EEG/MEG
rhythms, which are, δ (0.5–4 Hz), θ (4–7 Hz), α (8–12 Hz),
β (12–30 Hz), and γ (30–100 Hz). For these bins, we have
band = [0.5, 4, 7, 12, 30, 100].

The Power Spectral Intensity (PSI) [12] of the kth bin is
evaluated as

PSIk =
�N( fk+1/ fs)�∑

i=�N( fk/ fs)�
|Xi|, k = 1, 2, . . . ,K − 1, (1)

where fs is the sampling rate, and N is the series length.
Relative Intensity Ratio (RIR) [12] is defined on top of

PSI

RIR j =
PSI j

∑K−1
k=1 PSIk

, j = 1, 2, . . . ,K − 1. (2)

PSI and RIR are both vector features.



Computational Intelligence and Neuroscience 3

Table 1: PyEEG-supported features and extraction functions with their return types.

Feature name Function name Return type

Power Spectral Intensity (PSI) and Relative Intensity Ratio (RIR) ��� �����	
 Two 1-D vectors

Petrosian Fractal Dimension (PFD) ���	
 A scalar

Higuchi Fractal Dimension (HFD) 
��	
 A scalar

Hjorth mobility and complexity 
����
	
 Two scalars

Spectral Entropy (Shannon’s entropy of RIRs) �������� �������	
 A scalar

SVD Entropy ��� �������	
 A scalar

Fisher Information ���
�� ����	
 A scalar

Approximate Entropy (ApEn) �� �������	
 A scalar

Detrended Fluctuation Analysis (DFA) ���	
 A scalar

Hurst Exponent (Hurst) 
����	
 A scalar

3.2. Petrosian Fractal Dimension (PFD). To a time series,
PFD is defined as

PFD = log10N

log10N + log10(N/(N + 0.4Nδ))
, (3)

where N is the series length, and Nδ is the number of sign
changes in the signal derivative [13]. PFD is a scalar feature.

3.3. Higuchi Fractal Dimension (HFD). Higuchi’s algorithm
[14] constructs k new series from the original series
[x1, x2, . . . , xN ] by

xm, xm+k, xm+2k , . . . , xm+�(N−m)/k�k, (4)

where m = 1, 2, . . . , k.
For each time series constructed from (4), the length

L(m, k) is computed by

L(m, k) =
∑�(N−m)/k�

i=2

∣∣xm+ik − xm+(i−1)k
∣∣(N − 1)

�(N −m)/k�k . (5)

The average length iscomputed asL(k) = [
∑k

i=1 L(i, k)]/k.
This procedure repeats kmax times for each k from 1 to

kmax, and then uses a least-square method to determine the
slope of the line that best fits the curve of ln(L(k)) versus
ln(1/k). The slope is the Higuchi Fractal Dimension. HFD is
a scalar feature.

3.4. Hjorth Parameters. To a time series [x1, x2, . . . , xN ],
the Hjorth mobility and complexity [15] are, respectively,
defined as

√
M2/TP and

√
(M4 · TP)/(M2 ·M2), where

TP = ∑
xi/N , M2 = ∑

di/N , M4 = ∑
(di − di−1)2/N , and

di = xi−xi−1. Hjorth mobility and complexity are both scalar
features.

3.5. Spectral Entropy. The spectral entropy [16] is defined as
follows

H = − 1
log(K)

K∑

i=1

RIRi log RIRi, (6)

where RIRi and K are defined in (2). Spectral entropy is
a scalar feature.

3.6. SVD Entropy. Reference [17] defines an entropy mea-
sure using Singular Value Decomposition (SVD). Let the
input signal be [x1, x2, . . . , xN ]. We construct delay vectors as

y(i) = [xi, xi+τ , . . . , xi+(dE−1)τ
]
, (7)

where τ is the delay and dE is the embedding dimension. In
this paper, dE = 20 and τ = 2. The embedding space is then
constructed by

Y = [y(1), y(2), . . . , y(N − (dE − 1)τ)
]T
. (8)

The SVD is then performed on matrix Y to produce M
singular values, σ1, . . . , σM , known as the singular spectrum.

The SVD entropy is then defined as

HSVD = −
M∑

i=1

σilog2σi, (9)

where M is the number of singular values and σ1, . . . , σM are
normalized singular values such that σi = σi/

∑M
j=1 σj . SVD

entropy is a scalar feature.

3.7. Fisher Information. The Fisher information [18] can be
defined in normalized singular spectrum used in (9)

I =
M−1∑

i=1

(σi+1 − σi)2

σi
. (10)

Fisher information is a scalar feature.

3.8. Approximate Entropy. Approximate entropy (ApEn) is
a statistical parameter to quantify the regularity of a time
series [19].

ApEn is computed by the following steps.

(1) Let the input signal be [x1, x2, . . . , xN ].

(2) Build subsequence x(i,m) = [xi, xi+1, . . . , xi+m−1] for
1 ≤ i ≤ N − m, where m is the length of the
subsequence. In [7], m = 1, 2, or 3.

(3) Let r represent the noise filter level, defined as r =
k × SD for k = 0, 0.1, 0.2, . . . , 0.9.
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(4) Build a set of subsequences {x( j,m)} = {x( j,m) |
j ∈ [1..N −m]}, where x( j,m) is defined in step 2.

(5) For each x(i,m) ∈ {x( j,m)}, compute

C(i,m) =
∑N−m

j=1 kj

N −m , (11)

where

kj =
⎧
⎨
⎩

1 if
∣∣x(i,m)− x( j,m)

∣∣ < r,

0 otherwise.
(12)

(6)

ApEn(m, r,N) = 1
N −M

⎡
⎣
N−m∑

i=1

ln
C(i,m)

C(i,m + 1)

⎤
⎦. (13)

ApEn is a scalar feature.

3.9. Detrended Fluctuation Analysis. Detrended Fluctuation
Analysis (DFA) is proposed in [20].

The procedures to compute DFA of a time series
[x1, x2, . . . , xN ] are as follows.

(1) First integrate x into a new series y = [y(1), . . . ,

y(N)], where y(k) =∑k
i=1(xi−x) and x is the average

of x1, x2, . . . , xN .

(2) The integrated series is then sliced into boxes of equal
length n. In each box of length n, a least-squares line is
fit to the data, representing the trend in that box. The
y coordinate of the straight line segments is denoted
by yn(k).

(3) The root-mean-square fluctuation of the
integrated series is calculated by F(n) =√

(1/N)
∑N
k=1 [y(k)− yn(k)]2, where the part

y(k)− yn(k) is called detrending.

(4) The fluctuation can be defined as the slope of the line
relating logF(n) to logn.

DFA is a scalar feature.

3.10. Hurst Exponent. The hurst exponent (HURST) [21] is
also called Rescaled Range statistics (R/S). To calculate the
hurst exponent for time series X = [x1, x2, . . . , xN ], the first
step is to calculate the accumulated deviation from the mean
of time series within range T

X(t,T) =
t∑

i=1

(xi − x), where x = 1
T

T∑

i=1

xi, t ∈ [1..N].

(14)

Then, R(T)/S(T) is calculated as

R(T)
S(T)

= max(X(t,T))−min(X(t,T))√
(1/T)

∑T
t=1 [x(t)− x]2

. (15)

The Hurst Exponent is obtained by calculating the slope of
the line produced by ln(R(n)/S(n)) versus ln(n) for n ∈
[2..N]. Hurst Exponent is a scalar feature.

4. Using PyEEG on Real Data

In this section, we use PyEEG on a real EEG dataset to dem-
onstrate its use in everyday research.

The dataset (http://epileptologie-bonn.de/cms/front
content.php?idcat=193&lang=3), from Klinik für Epilep-
tologie, Universität Bonn, Germany [22], has been widely
used in previous epilepsy research. In total, there are five
sets, each containing 100 single-channel EEG segments.
Each segment has 4096 samples. Data in sets A and B are
extracranial EEGs from 5 healthy volunteers with eyes open
and eyes closed, respectively. Sets C and D are intracranial
data over interictal periods while Set E over ictal periods.
Segments in D are from within the epileptogenic zone,
while those in C are from the hippocampal formation of
the opposite hemisphere of the brain. Sets C, D, and E are
composed from EEGs of 5 patients. The data had a spectral
bandwidth of 0.5–85 Hz. Please refer to [22] for more details.

Using PyEEG is like using any other Python module.
Users simply need to import PyEEG and then call its
functions as needed. PyEEG is provided as a single Python
file. Therefore, it only needs to be downloaded and placed
under a directory on Python module search paths, such as the
working directory. Alternatively, ���������� environment
variable can be set to point to the location of PyEEG.

On Python interpreter, we first import PyEEG and load
the data

>>> 
��
�� �����

>>> 	
� � 
�������������� ����

>>> ��� � 	
����!�"
�����

>>> �!�! � #	"
!��$� 	
� $ 
� ���%

where �������� is the first segment in set A. The data type
of �!�! is "
��. After loading EEG data, we can use PyEEG
to extract features as follows (using all default parameters):

>>> &'� � �������	!��!�!�

>>> &'�

��(�)*�*+,-)(�+-.*)

>>> �/��� 0��
���� � ������1/�����!�!�

>>> �/��� 0��
����

��,(�*..+�(�++)�,2*

>>> �'& � �������	���!�!�

>>> �'&

��*(,*���(.+2�)(-.+

Due to space limitations, we are not able to print all
feature values of all EEG segments. Instead, we visualize
the averages of the features (except RIR and PSI) within
each of the five sets in Figure 2. Error bars represent the
variances of features in each set. PSIs for five sets are
plotted in Figure 3. Users can replot these pictures and get
averages of features on Python interpreter by a testing script
(http://code.google.com/p/pyeeg/wiki/TestScript) from our
project website.
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Figure 2: Distributions of ten features extracted by PyEEG in each set.

Table 2: Values of parameters used in our example.

Parameter name Value In feature(s)

kmax 5 HFD

τ 4 SVD Entropy

dE 10 Fisher Information

r 0.3σ1

ApEn
m 10

fs 173 Spectral Entropy

band [1, 3, 5, . . . , 85] PSI and RIR
1σ is the standard deviation of the EEG segment.

From Figures 2 and 3, we can see that healthy, interictal,
and ictal EEG signals have different distributions for most
features. Table 2 lists parameters used in this experiment.

5. Discussion and Future Development

So far, we have listed features that can be extracted by
PyEEG and their definitions. Our implementation sticks

on their definitions precisely even though faster algorithms
may exist. There are many other EEG features, such as
Lyapunov Exponents, that have not been yet implemented
in PyEEG. More EEG features will be added into PyEEG
in the future while we finish unit testing and documen-
tation for each function. In personal emails, some open
source projects, such as ConnectomeViewer (http://www.
connectomeviewer.org/viewer) and NIPY/PBrain (http://
nipy.sourceforge.net/pbrain/), have expressed the interest in
including PyEEG into their code. Therefore, we will keep
maintaining PyEEG as long as it can benefit the entire
computational neuroscience community.

Availability

The software is released under GNU GPL v.3 at Google Code:
http://code.google.com/p/pyeeg/. No commercial software is
required to run PyEEG. Because Python is cross-platform,
PyEEG can run on Linux, Mac OS, and Windows.
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Figure 3: Average PSI of each set. Note that the scale in y-axis of set E is much larger than that of other sets.
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