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Abstract

Background: Duck is an ancient domesticated animal with high economic value, used for its meat, eggs, and
feathers. However, the origin of indigenous Chinese ducks remains elusive. To address this question, we performed
whole-genome resequencing to first explore the genetic relationship among variants of these domestic ducks with
their potential wild ancestors in eastern China, as well as understand how the their genomes were shaped by
different natural and artificial selective pressures.

Results: Here, we report the resequencing of 60 ducks from Chinese spot-billed ducks (Anas zonorhyncha), mallards
(Anas platyrhnchos), Fenghua ducks, Shaoxing ducks, Shanma ducks and Cherry Valley Pekin ducks of eastern China
(ten from each population) at an average effective sequencing depth of ~6x per individual. The results of
population and demographic analysis revealed a deep phylogenetic split between wild (Chinese spot-billed ducks
and mallards) and domestic ducks. By applying selective sweep analysis, we identified that several candidate genes,
important pathways and GO categories associated with artificial selection were functionally related to cellular
adhesion, type 2 diabetes, lipid metabolism, the cell cycle, liver cell proliferation, and muscle functioning in
domestic ducks.

Conclusion: Genetic structure analysis showed a close genetic relationship of Chinese spot-billed ducks and
mallards, which supported that Chinese spot-billed ducks contributed to the breeding of domestic ducks. During
the long history of artificial selection, domestic ducks have developed a complex biological adaptation to captivity.
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Background

Domestication is the process of animal adaptation to
captive environment and human interventions such as
providing protection, offering food and promoting ani-
mal breeding [1]. Compared to their wild ancestors, do-
mestic animals have great variation in behavior,
morphology and physiology in response to domestica-
tion, and this variation is the result of genetic changes
across many generations. The genetic differentiation
among domestic animals and their wild ancestors is in-
fluenced by multiple mechanisms, including selection,
mutation, drift and gene flow [2]. Detecting selective sig-
natures associated with domestication is important for
understanding the genetic basis of both adaptations to
new environments and rapid phenotype change. In re-
cent years, whole-genome resequencing delivers a com-
prehensive view of detecting the signatures left by
domestication, such as in pig [3], chickens [4], dogs [5]
and yaks [6].

Chinese domestic ducks are among the earliest domes-
ticated waterfowl in the world dating back to 2228 years
before present (YBP) [7]. China is famous for its abun-
dance of waterfowl breeds, as many as 31 domestic duck
breeds have been recognized. Owing to domestication
and directional breeding, domestic ducks have many typ-
ical characteristics in morphology, behavior and produc-
tion performance, such as reduction in brain size [8], leg
morphology changes [9], decrease aggression behaviors
[10] and higher egg productivity. Domestic ducks have
been bred for various purposes, such as egg and/or meat
production. Shaoxing and Shanma ducks are Chinese ex-
cellent egg-type duck breeds, characterized by small
body size, early maturity and high productivity. In Chin-
ese written history, Shaoxing duck can be traced back to
the Song Dynasty about 1000 years ago. Through 50
years of systematic breeding, the egg production of
Shaoxing ducks reached 300 at the age of 500 days [11].
Shanma duck, another famous Chinese indigenous
duck, has been domesticated for 400years in Fujian
Province [12]. Fenghua (FH) duck is a special dual-
purpose local duck breed in Zhejiang Province, which
has similar appearance with mallards. Different from
other domestic breeds, Fenghua duck still retains some
habits of wild ducks such as seasonal reproduction, fly-
ing and high disease resistance, because of the short
time of domestication. Chinese Pekin ducks are named
Cherry Valley Pekin ducks after they were exported to
the United Kingdom in1872. After more than 100 years
of intensive selection, Cherry Valley Pekin ducks are
famous for their fast-growth, high lean rate and high
feed conversion ratio [13].

Although many studies have been conducted on the
diversity and origin of Chinese domestic ducks by apply-
ing microsatellite markers, mitochondrial DNA
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sequencing and whole-genome resequencing, the origin
and evolution of Chinese domestic ducks are still de-
bated. Some scholars suggest that Chinese domestic
ducks originated from wild mallards [14, 15], while
others argue that domestic ducks might also originate
from Chinese spot-billed ducks [16, 17]. Mallard is the
most common wild duck species in China, which is of
particular economic importance [18]. Chinese spot-
billed duck is a close relative of mallard, with distribu-
tions partially overlapping in most of Japan, Korea, and
northeastern China [19]. Owing to the observed
hybridization of mallards and spot-billed ducks in East
Asia [19], another hypothesis suggests that domestic
ducks might originate from hybrids of mallards and
spot-billed ducks [17, 20].

Ducks are not only economically import, but serve as
important non-model study systems in evolutionary biol-
ogy [21]. Thus, elucidating the evolutionary history of
the various domestic breeds is essential when attempting
to understand how different selective regimes have
shaped their genetic variation. Therefore, we sequenced
the genomes of 60 individuals from two wild popula-
tions, the spot-billed ducks and mallards, and four indi-
genous Chinese breeds (Fenghua, Shaoxing, Shanma and
Cherry Valley Pekin ducks) to explore the genetic rela-
tionships among wild and domestic ducks and identify
the genomic footprints of selection during the domesti-
cation of native ducks.

Results

We selected 60 individuals from six breeds (mallard,
Chinese spot-billed, Fenghua, Shaoxing, Shanma and
Cherry Valley Pekin ducks) (Fig. 1 and Supplementary
Table S1). Using the Illumina Genome Analyzer plat-
form, we generated a total of 397.88 GB of clean data
with an average of 6.63 GB per individuals (Supple-
mentary Table S2). 2.5 billion reads mapped to
95.09% of the reference genome assembly with 6.52-
fold average depth (Supplementary Table S3). We
called 2,809,077 high-quality single nucleotide poly-
morphic sites (SNPs) for 60 ducks, 63.92% (1.8 mil-
lion) of the high-quality SNPs were located in the
intergenic regions, and only 1.94% (0.55 million) were lo-
cated in the exonic regions (Supplementary Table S4-5).
We identified 42,463 synonymous SNPs and 12,084 non-
synonymous of exons, for a nonsynonymous/synonymous
ratio of 0.28. And 838,413 SNPs were common between
six breeds (Supplementary Fig. S1).

Population genetic structure

To explore relatedness among the domestic ducks, we
conducted a principal component analysis (PCA) based
on genome wide SNP data. The laying duck breeds
(Shaoxing and Shanma ducks) and meat duck breeds
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Fig. 1 Graphical representation of six duck populations. a Mallard (b) Chinese Spot-billed duck () Fenghua duck (d) Shaoxing duck (e) Shanma
duck (f) Cherry Valley Pekin duck
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Fig. 2 Phylogenetic and population genetic analyses of wild and domestic ducks. MA, mallards; SB, Chinese spot-billed ducks; FH, Fenghua ducks; SX,
Shaoxing ducks; SM, Shanma ducks; CV, Cherry Valley Pekin ducks. a Principal component plot of 60 individuals. b Unrooted neighbor-joining tree
constructed using the p-distances between individuals. ¢ Population structure of 60 ducks (K= 2-6). The y-axis represents the proportion of the individual's
genome from inferred ancestral populations, and x-axis represents the different populations. d Genome-wide linkage disequilibrium of ducks
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(Cherry Valley Pekin duck) were separated by different
clusters that were also distinct from the wild populations
(Chinese spot-billed duck and mallard) and Fenghua
duck (Fig. 2a, supplementary Fig. S2). The neighbor-
joining (NJ) tree revealed that the individuals from Chin-
ese indigenous breeds were clustered into a subclade,
suggesting they have a closer genetic relationship and
potentially derive from a common ancestor (Fig. 2b). To
estimate different ancestral proportions, we further per-
formed a population structure analysis with FRAPPE by
assuming K ancestral populations (Fig. 2c). When K =2,
a clear division was observer between wild and domestic
ducks with slight shared ancestry between these two
groups. Moreover, Fenghua ducks appeared admixed,
with individuals having on average of 59 and 41% assign-
ment probability to wild and domestic breeds, respect-
ively; suggesting these represent a wild x domestic duck
hybrid population. When K =5, there was a division be-
tween each group except Shaoxing and Shanma ducks.
Next, we used fineRADstructure [22] to further
evaluate population structure by assessing individual
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coancestry plots across samples (Fig. 3). First, fineRAD-
structure recovered two major genetic clusters, one in-
cluding Fenghua ducks, Chinese spot-billed ducks and
mallards. The second large group contained Shaoxing
ducks, Shanma ducks and Cherry Valley Pekin ducks.
Second, the resulting plot also showed higher shared
coancestry within each species compared to that be-
tween species, and slightly higher coancestry levels
were seen between mallards and Chinese spot-billed
ducks, as did Shaoxing and Shanma ducks. These find-
ings confirmed PCA, phylogenetic tree and structure
results, supporting their close evolutionary relationship
[23-25]. Finally, Fenghua ducks shown similar coances-
try levels with mallards and Chinese spot-billed ducks,
although local records indicated that Fenghua ducks
were originated from mallards. Notably, some individ-
uals showed a particularly high proportion of coances-
try with others, which are unlikely to be explained by
sibling statues and artificial selection, and may be due
to complex introgression patterns among these duck
population [26].

.

Fig. 3 Output of the fineRADstructure individual (above diagonal) and average (below diagonal) coancestry coefficient matrix of the genomic
data. The heatmap indicates pairwise coancestry between individuals, with blue and purple representing the highest levels, red and orange
indicating intermediate levels, and yellow representing the lowest levels of shared coancestry
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Patterns of genomic variation and linkage disequilibrium
The genome-wide average genomic diversity (6,) values
were 5.949 x 10~ * for mallard, 5.862 x 10”* for Chinese
spot-billed duck, 5.815 x 10~ * for Fenghua duck, 5.303 x
10~ * for Shaoxing duck, 5.462 x 10~ * for Shanma duck
and 4.694 x 10~ * for Cherry Valley Pekin duck (Supple-
mentary Table S6), These values were much lower than
in other animals (Supplementary Table S7). The wild
duck had the greatest 6, and 8y, suggesting that domes-
tication reduces genetic diversity. Additionally, Linkage
disequilibrium (LD) also showed that the wild ducks had
a faster decay of the pairwise correlation coefficient (r7)
than the domestic duck (Fig. 2d).
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Demographic history

We employed the pairwise sequentially Markovian
coalescent (PSMC) method [27] to infer fluctuations in
the ancestral effective population sizes (N.) of each
breed in response to Quaternary climatic change (Fig. 4).
From 1 million to 10 thousand years, all of the domestic
breeds (Shaoxing, Shanma, Fenghua and Cherry Valley
Pekin ducks) exhibited similar demographic trajectories
with a peak in ancestral N, at 50—60 thousand years ago
followed by distinct declines (Supplementary Fig. S3).
The decline occurred ~ 60 thousand year ago, coinciding
with the beginning of the Last Glacial Maximum [28].
The effective population sizes of mallard and spot-
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Fig. 4 Demographic history of the duck populations. a Dynamic changes in the effective population sizes (N.) of six duck breeds inferred by
PSMC. MA, mallards; SB, Chinese spot-billed ducks; FH, Fenghua ducks; SX, Shaoxing ducks; SM, Shanma ducks; CV, Cherry Valley Pekin ducks. The
gray-shaded area (from left to right) refers to the Last Glaciation, the Penultimate Glaciation and the Naynyxungla Glaciation [28]. b The
temperature from 10 KYA to 1000 KYA [29] (c) Sea level changed from 10 KYA to 1000 KYA [30]
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billed duck appears to have increased rapidly after ~
40 and ~ 20 thousand year ago, respectively (Supple-
mentary Fig. S3).

Genome-wide selective sweep test
To accurately detect the genomic footprints of selection,
we pooled the domestic duck samples (Shaoxing, Shanma
and Cherry Valley Pekin ducks) and compared them to the
wild duck (Mallard and Chinese spot-billed duck), which
are geographically close. Using the top 5% the Fsr values
and 8, ratio cutoffs (Fst>0.13 and log, (6, ratio (8, wia
duck/ O, domestic ductd) =0.84), we identified 665 candidate do-
mestication regions (CDRs) containing 387 genes under se-
lection in the domestic ducks (Fig. 5a, Supplementary
Table S8). We also calculated the Tajima’s D value of se-
lected genes, which were significantly lower than values for
other genes (Fig. 5b, ¢). In addition, ten candidate genes
(Cmip, Tmem132b, Mphosph6, Smg7, Lyst, Zbtb37, Ser-
pincl, Npl, Tmeml132c and Plcg2) ranking within the top
10 Fst values with log, (6, ratio (6,, wid duck/O, domestic duck)
> 0.84 were functionally involved in cellular adhesion func-
tion, type 2 diabetes, lipid metabolism, cell cycle, liver cell
proliferation and muscle functioning [31-36] (Table 1).

To identify the active pathways in the domestication
of ducks, the positively selected genes in domestic ducks
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were mapped to the canonical reference pathways in the
KEGG database. The top three enriched pathways were
“pantothenate and CoA biosynthesis” (2 genes, P=
0.02667), “FoxO signaling pathway” (6 genes, P=
0.03002), and “inositol phosphate metabolism” (4 genes,
P=0.03511) (Supplementary Fig. S4, Supplementary
Table S9). The positively selected genes of domestic
ducks that were successfully annotated to 47 categories
of Gene Ontology (GO), belonging to three parts: cellular
components, molecular function and biological processes
(Supplementary Fig. S5, Supplementary Table S10). Of
these, the categories that were most represented in the
“biological process” principal category were “cellular
process” (137 genes), followed by “single-organism
process” (123 genes). In the principal category of “cellular
component”, the two categories most represented were
“cell” (149 genes) and “cell part” (149 genes). Within the
“molecular function” principal category belonged to the
“bind” (107 genes).

Positively selected genes involved in insulin signaling
pathway

Using the top 5% of the Fgsr values and 6 ratio cutoffs
based on sliding 40 kb windows for the Shaoxing ducks
compared to wild mallards, we identified 497 candidate
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Table 1 Positively selected genes with top 10 Fsy values in domestic ducks

Gene ID Gene name Gene Fst  Description
symbol
ENSA c-Maf inducing protein ~ Cmip 0496 associating with language and reading, type 2 diabetes, obesity, lipid metabolism,
PLT00000011005 breast and gastric cancer, negatively regulating T cell signaling
ENSA transmembrane protein - Tmem132b 0468 associating with excessive daytime sleepiness
PLT00000011847 132B
ENSA M-phase Mphosph6  0.464 regulating cell cycle and ovary development, recruiting the exosome to the pre-
PLTO0000002396 phosphoprotein 6 rRNA, associating with coronary artery disease, IgA nephropathy and leukocyte telo-
mere length
ENSA nonsense mediated Smg7 0463 regulating DNA damage response and nonsense-mediated mRNA decay
PLT00000016529 mMRNA decay factor
ENSA lysosomal trafficking Lyst 0458 associating with Chediak-Higashi syndrome
PLT00000006672 regulator
ENSA zinc finger and BTB Zbtb37 0424 involving in aryl hydrocarbon receptor in hematopoietic stem cell functional
PLT00000005034 domain containing 37 regulation
ENSA serpin family C member Serpinc] 0424 associating with antithrombin deficiency and ovarian cancer
PLT00000005105 1
ENSA N-acetylneuraminate Npl 0421 regulating the cellular concentrations of sialic acid which is essential for muscle
PLT00000004292 pyruvate lyase function
ENSA transmembrane protein - Tmem132c 0412 associating with pulmorary function, breast cancer, insulin secretion impairment,
PLTO0000012003 132C body weight
ENSA phospholipase C Plcg2 0.391 involving in inherited immune disorders, promoting liver cell proliferation

PLTO0000011198 gamma 2

domestication regions (CDRs) containing 311 genes with
both high Fg; values and a high O ratio (Fig. 6a). Six
genes exhibiting strong selective sweep signals were sig-
nificantly over-represented in insulin signaling pathway,
including ectonucleotide pyrophosphatase /phosphpdi-
sesterase-1 (Enppl), ectonucleotide pyrophosphatase/
phosphpdisesterase-3 (Enpp3), SHC adapter protein 4
(Shc4), SOS Ras/Rac guanine nucleotide exchange factor
1 (SosI), neuroblastoma RAS viral oncogene homolog
(Nras) and protein kinase cAMP-dependent type II regu-
latory subunit beta (Prkar2b).

Notably, we observed much higher Fst values (Fig. 6¢)
and lower Tajima’s D values (Fig. 6d) for the target gene
Enppl compared to those in the adjacent genomic re-
gions, providing further support that the candidate genes
were reliable. 8 SNPs were found in this sliding window
(Fig. 6e). We also used transcriptome sequencing to in-
vestigate the molecular signatures of domestication and
identified significantly downregulation Enppl expression
in the muscle and liver tissues of Shaoxing ducks com-
pared to mallards (Fig. 6b).

Transcriptome differences in muscle, liver and cerebellum
between Shaoxing ducks and mallards

Shaoxing duck is an outstanding representative of the
local egg-laying duck breed in China, which contributes
greatly to the Chinese waterfowl industry. To infer
whether the potential positively selected genes between
mallards and Shaoxing ducks could also affecting gene
expression, we used Illumina paired-end RNA-seq

approach to sequenced the breast muscle, liver and cere-
bellum of mallards and Shaoxing ducks. We obtained a
total of 731 million clean reads, approximately 60.6% of
them were successfully mapped to the duck genome
(Supplementary Table S11). Compared with mallards,
319, 161 and 28 differentially expressed genes were iden-
tified in muscle, liver and cerebellum of Shaoxing ducks
respectively (Supplementary Fig. S6, Supplementary
Table S13-18). Six positively selected genes of resequen-
cing, including Coq9, Adamts9, Zcchc24, Eyal, Enpp3
and Enppl, were differentially expressed in muscle
(Supplementary Fig. S10). However, only Enppl was
found differntically expressed in liver. GO enrichment
analysis was performed to discover the major functional
categories represented in these genes. The GO
categories related to cellular process, single-organism
process, biological regulation, binding and catalytic
(Supplementary Fig. S7, S8 and S9). There were a few
KEGG pathways that were significantly enriched in
muscle, including oxidative phosphorylation, fatty acid
degradation, and cardiac muscle  contraction
(Supplementary Table S12).

Discussion

Population structure

In this study, we carried out whole-genome resequen-
cing of 60 individuals to explore the genetic relation-
ships among domestic ducks and wild ducks in eastern
China. PCA and structure analysis clearly distinguished
the wild ducks from domesticated ducks. Notably,
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individuals from Chinese spot-billed ducks and mal-
lards were clustered together in PCA plot and sepa-
rated in structure analysis only from K=5, indicating
a close relationship between them. Further, we con-
structed NJ tree based on whole-genome variants to
infer phylogenetic relationships of these ducks. The
result showed that four domestic ducks belong to the
same large branch, which was consistent with previ-
ous studies suggesting a single domestication of do-
mestic ducks [15, 37]. Additionally, phylogenetic tree
confirmed that Chinese spot-billed ducks is a sister
clade of mallard. Moreover, we found that Chinese
spot-billed duck shared a relatively high degree of
coancestry with mallard. Taken together, these results
supported that Chinese spot-billed ducks and mallards
were weakly genetically differentiated, although they
were quite different in morphological appearance (Fig.

1). It was not surprising as hybridization is common
between Chinese spot-billed ducks and mallards. Sev-
eral mallard x Chinese spot-billed duck have recently
been reported to occur on Hongkong, China [38],
Khank Lake, Russia [39], and Tokyo, Japan [19]. The
asymmetric hybridization and sex-biased gene flow
between Chines spot-billed ducks and mallards was
also confirmed [19, 25]. Due to the close genetic rela-
tionship between Chinese spot-billed duck and mal-
lard, it was difficult to distinguish the role of Chinese
spot-billed in domestic duck origination. Moreover,
we found that the coancestry between Chinese spot-
billed duck and domestic duck was similar to that be-
tween mallard and domestic duck. Taken together,
our results indicated that Chinese spot-billed duck
also shown substantial genetic contribution of Chinese
domestic duck.
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Demographic history

We carried out PSMC analysis to infer fluctuations in his-
torical effective population size (Ne) of 6 breeds, and ob-
served the similar trajectories for four Chinese domestic
ducks with an apparent expansion during the Penultimate
Glaciation and the Last Interglaciation, and a decline be-
tween 50 and 60 thousand years ago (Fig. 4a). However,
mallard and Chines spot-billed duck population reached
their pinnacle between 20 and 40 thousand years ago. The
trend of Ne is similar with previous studies of other Chin-
ese domestic ducks, which increased in the interglacial pe-
riods and decreased in the Pleistocene [37, 40]. On coastal
regions such as eastern China, Quaternary glacial-
interglacial changes in climate (Fig. 4b) and sea level (Fig.
4c) had major effects on terrestrial plant and animal com-
munities. The population expansion of interglacial periods
can be explained by the warm and humid weather [41].
Beside, a severe reduction of Ne approximately coinciding
with the beginning of the Last Glacial Period or occurring
during this period was observed in many avian popula-
tions, which may be due to climatic deterioration, habitat
loss, and reduction of food supply [21]. Therefore, we be-
lieve that the similar reason is responsible for the bottle-
neck of ducks during Last Glacial Period.

Selection for domestication

Shaoxing duck is a typical Chinese egg-type duck breed,
which is under intense artificial selection to achieve ex-
cellent egg production. In order to the candidate regions
for the targeted selection of Chinese native duck during
domestication, we scanned the genome of Shaoxing
ducks and mallards for regions with extreme Fst and the
highest Om ratio. On our results, the Enppl, Enpp3, Shc4,
Sos1, Nras and Prkar2b, which are related to the insulin
signaling pathway, showed signals of positive selection in
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Shaoxing duck. Enppl is the subtypes of ENPP family,
which directly interacts with the insulin receptor and
blocks the insulin signaling pathway [42], serving as a
gatekeeper of insulin action. Transcriptome results
showed that the expression level of Enppl in skeletal
muscle and live of Shaoxing ducks was significantly
lower than that of mallards, suggesting Enppl may have
played a crucial role in duck domestication by improving
insulin sensitivity. Enpp3 is positively associated with the
serum ATP concentration, facilitating lipid deposition
[43]. And Enpp3 and Prkar2b were also identified as the
targets of selection during the domestication of Pekin
ducks and other indigenous Chinese ducks [7]. The pro-
tein encoded by Prkar2b is a regulatory subunits of the
protein kinase A (PKA) and is involved in insulin resist-
ance [44]. Shc4 (also known as SheD) serves as a phos-
photyrosine adapter molecule that induces Ras GTPase
and mitogen activated protein kinase (MAPK) activation
[45]. Also, the SOSI and NRAS provide protein-making
instructions that are involved in regulating the activation
of the Ras/MAPK signaling pathway, which helps to
control insulin signaling (Fig. 7).

Skeletal muscle plays an important role in regulating
glucose uptake and body metabolism [48]. The associ-
ation between increased muscle lipid content and insulin
resistance has been confirmed [49]. And it has been ob-
served that improving insulin sensitivity helped increase
muscle mass in songbirds [50]. Additionally, our early
study confirmed that Shaoxing ducks had lower intra-
muscular fat contents compared to mallards [51]. The
positive selection of genes associated with insulin signal-
ing and decrease of muscle lipid content indicated that
insulin sensitivity of Shaoxing duck was improved with
increasing muscle mass during domestication, to achieve
people’s breeding object.

Insulin

Insulin Resistence €——————  pLotein Synthesis

Fig. 7 Selection of the insulin signaling pathway [46, 47]. The candidate genes under selection in duck domestication are shown in red
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Conclusion

In conclusion, we performed whole-genome resequen-
cing to characterize the evolutionary origin of ducks in
eastern China and the genome-wide signatures of artifi-
cial selection associated with domestication. We have
shown that Chinese spot-billed duck was close related to
mallard and contributed to domestic duck origination.
Several candidate genes, important pathways and GO
categories associated with artificial selection were func-
tionally related to cellular adhesion, type 2 diabetes, lipid
metabolism, the cell cycle, liver cell proliferation, and
muscle functioning in domestic ducks. We found strong
genomic evidence for the involvement of the insulin sig-
naling pathway in the domestication of Shaoxing duck.
These results advance our understanding of the genetic
relationships between domestic and wild ducks, reveals
the genetic footprints of domestication and shed light on
the genetic mechanisms underlying species adaptation to
captivity.

Methods

Sampling

The blood samples from all the 60 individual ducks (10
per breed) were collected from the wing vein using vac-
uum tubes containing EDTA-K, as an anticoagulant.
The spot-billed ducks, mallards and Fenghua ducks were
captured in Fenghua City, Zhejiang Province, China
(29°35" N, 121°24" E). The Shaoxing and Shanma ducks
were collected in Zhuji City, Zhejiang Province, China
(29°38" N, 120°10" E), and the Cherry Valley Pekin duck
were raised in Huzhou City, Zhejiang Province, China
(30°41" N, 120°19" E). From Shaoxing ducks and mal-
lards, 3 randomly selected ducklings were killed by rapid
decapitation and sterile dissection, and muscle and liver
tissues were sampled and immediately snap frozen in li-
quid nitrogen.

Sequencing and quality control

A total of 60 ducks, which were sampled from Eastern
China, were sequenced on the [llumina HiSeq 2000 plat-
form (Illumina, San Diego CA, USA). We generated a
total of 401.491 Gb of raw sequence data (supplementary
Table S2).

Raw reads in fastq format were firstly processed for
quality using in-house C scripts. Specifically, low-quality
reads were filtered out based as below [52]: reads with
>10% unidentified nucleotides (N); reads with >50%
bases having phred quality < 5; reads with > 10 nt aligned
to the adapter, allowing <10% mismatches; putative PCR
duplicates generated by PCR amplification in the library
construction process (read 1 and read 2 of two paired-
end reads that were completely identical).
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Consequently, 387.88 Gb were retained for assembly,
of which the quality of 96.06 and 91.52% of the bases
were > Q20 and > Q30, respectively.

Reads mapping and SNP calling

The remaining high quality reads were mapped to the
mallard (Anas platyrhynchos) reference genome (BGI_
duck_1.0) [53] using Burrows-Wheeler Aligner (Version:
0.7.8) [54] with the command line was ‘aln -e 10 -t 4 -1
32 -i 15 -q 10". SAMtools was used to remove the dupli-
cated reads to reduce mismatch generated by PCR amp-
lification before sequencing.

After alignment, we used SAMtools [55] to carry out
SNP calling. The ‘mpileup’ command was used to iden-
tify SNPs with the parameters as -q 1 -C 50 -S -D -m 2
-F 0.002". The following filtering steps were applied in
order to obtain high quality SNPs as follow: quality
score > = 20; coverage depth > =2 and < =1000.

Annotation of genetic variants

Using the ANNOVAR package [56], 2,809,077 high-
quality SNPs were annotated according to the genome.
Based on the genome annotation, SNPs were classified
into several categories, such as exonic regions, intronic
regions, splicing sites, upstream and downstream re-
gions and intergenic regions. SNPs from coding exon
regions were identified as either synonymous or
Nonsynonymous.

Principal component analysis

The software GCTA [57] was used for PCA. The signifi-
cance level of the eigenvectors was determined using the
Tracey-Widom test to clarify the phylogenetic relation-
ship among 60 individuals. The first three significant
components were plotted (supplementary Fig. S2), and
the discrete points to a degree reflect the real structure
of population.

Phylogenetic genetic analysis

First, we inferred an individual-based neighbor-joining
(NJ) tree from 2,809,077 SNPs data matrix using TreeB-
eST (http://treesoft.sourceforge.net/treebest.shtml#inno)
based on the p-distance. The bootstrap was set to 1000
times to evaluate the reliability of branch.

Second, the population genetic structure of 60 individ-
uals was inferred by FRAPPE [58]. We set the number of
cluster (K) from 2 to 6 and ran analysis with 10,000
iterations.

Third, population structure was assessed using fineR-
ADstructure [22], which calculates recent shared co-
ancestry based on patterns of genomic similarity. The
vcf file was transformed using hapsFromVCF module,
and then the co-ancestry matrix was calculated and used
to identify populations. The MCMC chain ran with a
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thinning interval of 1000, a burnin of 100,000, and 100,
000 iterations.

Linkage disequilibrium analysis

We compared the pattern of linkage disequilibrium (LD)
among 6 breeds using the 2.8 million high-quality SNPs.
To estimate LD decay, we calculated the squared correl-
ation coefficient (r°) between pairwise SNPs using the
software Haploview [59]. The average 7 value was calcu-
lated for pairwise markers in a 500-kb window and aver-
aged across the whole genome.

Effective population size

We used a hidden Markov model (HMM) of pairwise se-
quentially Markovian coalescence (PSMC) to recon-
structed demographic history of 60 individuals. Firstly,
we called genotype each individual using the package
SamTools [54] based on the command ‘mpileup’ with
the parameter ‘-C 50 -D -S -m 2 -F 0.002". Then, we per-
formed the program ‘fq2psmcfa’ with the parameter
‘-N30, -t15, -r5 and-p 4+25*2+4+6" to convert
the consensus sequence to the required input format. A
mutation rate (u) of 1.6 x10™° per bp per generation
[14] and a generation time of 1 year were used for ana-
lysis. In addition, we applied a bootstrapping approach,
repeating sampling 100 times to estimate the variance of
simulated results.

Selective sweep analysis

The nucleotide diversity (6,), population-differentiation
statistic (Fst), Tajima’s D statistic and Watterson estima-
tor (fw) were calculated with sliding windows of 40 kb
that had 20kb overlap between adjacent windows. The
putative genomic regions under positive selection during
domestication were extracted based on being the highest
differences in genetic diversity (log,(6, ratio)) and the
top 5% of Fst. We identified a total of 665 potential
selective-sweep regions overlapping with 387 candidate
genes in merging domestic ducks and 491 potential
selective-sweep regions overlapping with 311 candidate
genes in Shaoxing ducks, which would be used for sub-
sequent analysis and discussion.

Functional enrichment analysis

Gene Ontology term enrichment analysis was processed
with those selective genes by goseq packages in R soft-
ware. We used the GOSeq R package, in which gene
length bias was corrected, to perform GO and functional
pathway analysis on the candidate genes. The Gene
ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways with a Benjamini ad-
justed P-values less than 0.05 were considered signifi-
cantly enriched.
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RNA-seq and gene expression analysis

To infer whether the genes under selection could also
affecting gene expression between Shaoxing ducks and
mallards, we compared gene expression in breast
muscle, liver and cerebellum between this two groups. 3
mature females from Shaoxing ducks and mallards re-
spectively were selected for transcriptomics analysis.

All samples were individually sequenced by Illumina
HiSeq 4000 sequencing platform. Perl scripts was used
to ensure the quality of raw data. The reference genomes
and the annotation file were downloaded from ENSE
MBL database (http://www.ensembl.org/index.html). We
used Bowtie/Bowtie 2 to build the genome index and
TopHat v2.0.12 to map clean data to reference genome.
And HTSeq v6.0 was used to count the number of frag-
ments for each gene in each sample. The expression
level of genes in each sample was estimated by FPKM
(Fragments Per Kilobase Per Million Mapped Fragment).
We used DEGseq v1.18.0 to analyze differential gene ex-
pression between Shaoxng and Shanma ducks. Genes
with q<0.05 and |log,Ratio| > 1 are identified as differ-
entially expressed genes.
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