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Applied Machine Learning for Spine Surgeons:
Predicting Outcome for Patients Undergoing
Treatment for Lumbar Disc Herniation Using
PRO Data

Casper Friis Pedersen, MSSc1,2 , Mikkel Østerheden Andersen, MD1,2 ,
Leah Yacat Carreon, MD, MSc1,2 , and Søren Eiskjær, MD3

Abstract

Study Design: Retrospective/prospective study.

Objective: Models based on preoperative factors can predict patients’ outcome at 1-year follow-up. This study measures the
performance of several machine learning (ML) models and compares the results with conventional methods.

Methods: Inclusion criteria were patients who had lumbar disc herniation (LDH) surgery, identified in the Danish national
registry for spine surgery. Initial training of models included 16 independent variables, including demographics and presurgical
patient-reported measures. Patients were grouped by reaching minimal clinically important difference or not for EuroQol,
Oswestry Disability Index, Visual Analog Scale (VAS) Leg, and VAS Back and by their ability to return to work at 1 year follow-up.
Data were randomly split into training, validation, and test sets by 50%/35%/15%. Deep learning, decision trees, random forest,
boosted trees, and support vector machines model were trained, and for comparison, multivariate adaptive regression splines
(MARS) and logistic regression models were used. Model fit was evaluated by inspecting area under the curve curves and per-
formance during validation.

Results: Seven models were arrived at. Classification errors were within+1% to 4% SD across validation folds. ML did not yield
superior performance compared with conventional models. MARS and deep learning performed consistently well. Discrepancy
was greatest among VAS Leg models.

Conclusions: Five predictive ML and 2 conventional models were developed, predicting improvement for LDH patients at the 1-
year follow-up. We demonstrate that it is possible to build an ensemble of models with little effort as a starting point for further
model optimization and selection.

Keywords
lumbar disc herniation, machine learning, predictive, deep learning, neural network, artificial intelligence, PRO, patient-reported
outcomes

Introduction

For the past decade, various advanced techniques in predictive

analytics commonly known as machine learning (ML) have

gained interest in orthopaedics and medicine at large.1 The

effectiveness of ML compared with more traditional methods

has been well demonstrated in solving classification problems,

especially in medical image analysis, but as of yet has not

been widely adopted by spine surgeons.2,3 The increasing accu-

mulation of health data leaves a gap between available data and

actual data use. ML might leverage the use of large amounts of
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health data and accelerate the development of predictive,

preventive, or personalized medicine.4 However, the appli-

cation of ML algorithms has traditionally required specific

programming skills not readily available among medical

professionals. The reliance on data scientists to explore

health data may be an obstacle to widespread use of ML.

The advent of modern visual code-free software platforms

might put ML in the hands of surgeons.5 The purpose of this

study was to assess the feasibility of predicting outcomes

following lumbar discectomy by comparing 5 ML methods

using a modern visual data science software platform,

RapidMiner Studio.6 Results were compared with 2 conven-

tional learning algorithms. To demonstrate differences and

similarities, these various methods were applied to single-

center retrospective registry data collected on patients fol-

lowing lumbar discectomy.

Methods

Patient Population and Data Source

Patients who had surgery for lumbar disc herniation (LDH)

at a single center from 2010 to 2016 were identified in the

Danish national registry for spine surgery (DaneSpine). Of

3216 patients identified, 1988 had complete baseline and

1-year follow-up patient-reported outcomes (PRO) data. In

all, 20 patients had extreme body mass index (BMI) values

(>80 kg/m2) likely because of erroneous data entry and

were excluded. A total of 1968 patients were included in

this study.

Study Variables

Two primary health outcome variables were chosen for assess-

ment: EuroQol (EQ-5D)7 and the Oswestry Disability Index

(ODI).8 In addition, back and leg pain on the Visual Analog

Scale (VAS; 0-100)9 and patients’ ability to return to work

were included. In accordance with generally accepted practice

when solving classification problems, outcome variables were

binary coded as either success or nonsuccess.10 With the excep-

tion of return to work, success was defined as achievement of

minimal clinically important difference (MCID). MCID thresh-

olds were arrived at using the anchor-based receiver operating

characteristic curve (ROC) method.11 For both EQ-5D and

ODI, 1-year postoperative response to the Short Form-36

Health Transition Item (Item 2) that asks the question,

“Compared to one year ago, how would you rate your health

in general now?”12 was used as the anchor. Possible answers

are “much better,” “somewhat better,” “about the same,” or

“somewhat worse” or “much worse.” Cutoff for success/non-

success was set between patients who responded “somewhat

better” versus “about the same.” For VAS back and VAS leg

pain, responses to the Global Assessment questions at 1 year

postoperatively were used: “How is your back pain today com-

pared with before the operation” and “How is your leg pain/

sciatica today, compared with before the operation?”

Responses were “completely gone,” “much better,” “somewhat

better,” “unchanged,” or “worse.” Cutoff for success/nonsuc-

cess was set between patients who responded “somewhat

better” versus “unchanged.”

In determining MCID thresholds, sensitivity and specificity

were valued equally, and cutoff points were estimated from the

coordinates of the ROC curves using the sum-of-squares

approach. The smallest sum of squares of 1-sensitivity and 1-

specificity identifies the point closest to the top-left corner in

the ROC diagram space.13 A wide variety of preoperative fac-

tors were selected as possible predictors, including gender, age,

smoking status, level of pain, walking distance, and health-

related measures (Table 1).

Statistical Analysis and Data Handling

During data preparation, distance-based outlier detection was

applied to identify and remove extreme cases, which were

assumed to be erroneous data entries.14 Less than 1% were

identified as outliers and removed case wise from the data set.

The resulting data were randomly split into a training, valida-

tion, and test set by a 50%/35%/15% ratio. Class imbalances

ranging from 60% to 78%/40% to 22% were present in the

target outcome measures. Many ML classification algorithms

are sensitive to imbalanced data and have poor accuracy for the

infrequent class.15 To ensure optimal class performance of

the models, synthetic minority oversampling was applied to the

training and validation data sets.16 The test set (holdout data)

was left untouched. All data preparation was done in RapidMi-

ner (Figure 1).

For each outcome measure, 5 popular ML models were

trained: deep learning, decision trees, random forest, boosted

trees, and support vector machine (SVM). For comparison, 2

conventional types of models—logistic regression (LR) and

multivariate adaptive regression splines (MARS)—were

trained. With the exception of MARS, all modeling was per-

formed in RapidMiner Studio 9.3.001 using the “Auto-model”

feature. Further tuning was done adjusting model hyperpara-

meters during validation. Auto-model does not support full

cross-validation. Instead, performance is evaluated for 7 dis-

joint subsets of the validation data. The largest and the highest

performance are removed, and the average of the remaining 5

performances are reported. MARS models were built and

trained using R version 3.5.3 and the CRAN package earth.17,18

MARS models were tuned by manipulating model complexity

(number of basic functions) and degree of interactions using the

earth functions nk and degree. K-fold cross-validation was per-

formed using the functions nfold (number of cross-validation

folds) and ncross (number of cross-validations performed). In

both software packages, model fit was evaluated during train-

ing by inspecting area under the curve (AUC) curves and the

mean performance and SD of performance across validation

folds. Final validation of all models was done by applying them

to the test data set.
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Machine Learning

In this study, ML is simply regarded as the study on how

computers can learn to solve problems without being explicitly

programmed.19 More formally, ML can be stated as methods

that can automatically detect patterns in data. The uncovered

patterns are used to predict future data or other outcomes of

interest. ML is typically divided into 2 main types: supervised

and unsupervised learners. In the supervised approach, the

algorithms learn from labeled example data. In the unsuper-

vised approach, no corresponding output variables are pre-

sented. Algorithms are left to their own to discover patterns

in the data. The ML methods used in this study are

supervised.20

Predictive Algorithms

LR is a highly popular method for solving classification prob-

lems and has been the de facto standard in many fields, includ-

ing health care, for several decades. LR follows the same

principles applied in general linear regression. However,

because the outcome is binary, the mean of the regression must

fall between 0 and 1. This is satisfied by using a logit model and

assuming a binomial distribution.21,22

MARS is an advanced form of regression that extends the

capabilities of standard linear regression by automatically

modeling nonlinearities and interactions between variables.

The MARS algorithm adapts to nonlinearities by piecewise

fitting together smaller localized linear models that are defined

pairwise.23,24

Deep learning belongs to a class of ML methods based on

deep artificial neural networks (ANNs). An ANN is a simplistic

representation of the functioning of a biological brain. The

neural network consists of highly interconnected artificial neu-

rons called nodes organized in several processing layers. Like

synapses in a brain, the connections allow nodes to transmit

signals to other nodes. Each node is initially assigned with a

random numeric weight for each of its incoming connections.

When a node receives signals from other nodes, the strength of

the signals is adjusted by the associated weights. The resulting

numbers are then summed and passed through a simple non-

linear function, which produces the output.25-27

Decision trees are models for classification and regression.

A decision tree is structured like a flowchart resembling a tree.

It learns by processing input from the top (root) and splitting

data into increasingly smaller subsets following an if-then-else

decision logic. Splits are made by decision nodes followed by

Figure 1. RapidMiner process for minority class upsampling of outcome measures using SMOTE.
Abbreviations: CSV, Comma-separated values; EQ-5D; EuroQol; ODI, Oswestry Disability Index; RTW, return to work; VAS, Visual Analog Scale.
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another decision node or a leaf (prediction). Splits below nodes

are called branches. The decision tree algorithm evaluates all

possible splits in each step and multiple thresholds in order to

make the most homogeneous subsets.28

Random forest is an ensemble method where the training

model consists of a multitude of ordinary decision trees. The

final model is determined by majority vote when solving clas-

sification problems and mean value when tasked with regres-

sion. The basic idea is that merged together, the predictions of

several trees should be closer to the true value than any single

tree.29,30

Boosted trees are ensembles of very simple decision trees

referred to as weak learners. The model is trained by gradually

improving estimations by applying trees in a sequence, where

each new tree is optimized for predicting the residuals (errors)

of the preceding tree. Optimization is done by an algorithm that

favors incorrectly classified predictions by assigning them a

higher weight, which forces subsequent trees to adapt to the

examples that were incorrectly classified by the previous trees.

The idea is that many simple models when combined perform

better than 1 complex model.31

SVMs are commonly used to classify a data set into 2 classes.

It achieves this by finding the line that best separates data points.

Support vectors are the data points closest to the dividing line.

When a data set is nonlinearly separable, SVM transforms data

into a 3D dimension. The dividing line now resembles a plane.

Data will be mapped into increasingly higher dimensions until a

plane succeeds in segregating the classes.32,33

Results

Outcome Measures

MCID cutoff points for the chosen dichotomous outcome mea-

sures (target variables) were established as follows: EQ-5D ¼
0.17; ODI ¼ 18; VAS Back ¼ 10; VAS Leg ¼ 17.

Predictors

During training and validation, feature selection was reduced to

the following independent preoperative variables: employment

status, BMI, sick leave status, EQ-5D, pain duration (back and

leg), VAS pain level (back and leg), walking distance, walking

impairment caused by pain, and self-reported expectation to

return to work after surgery.

Predictive Modeling

Following training, validation, and optimization, 7 different

models were arrived at for each of the 5 selected outcome

measures. Classification errors for all models were within

+1% to 4% SD across validation folds. Model performance

from the final holdout data set is compared in Tables 2 to 6 and

illustrated in Figure 2. Evaluation was done using performance

metrics from the resulting confusion matrices, including the

Matthews correlation coefficient.34

Improvement in EQ-3D at 1 year (positive predictive value

[PPV]) was predicted with an average accuracy of 80% (med-

ian ¼ 79%; range ¼ 5%). The mean AUC value was 0.82

(median ¼ 0.81; range ¼ 0.12). Nonimprovement (negative

predictive value [NPV]) was predicted with an average accu-

racy of 73% (median ¼ 74%; range ¼ 7%). LR and MARS

models performed on par with the best performing ML models.

Improvement in ODI at 1 year (PPV) was predicted by the

models with an average accuracy of 69% (median ¼ 71%;

range ¼ 12%). The mean AUC value was 0.75 (median ¼
0.76; range ¼ 0.09). Nonimprovement (NPV) was predicted

with an average accuracy of 69% (median ¼ 71%; range ¼
12%). MARS performed on par with the best performing ML

models. LR performed poorly but better than the worst per-

forming ML models.

Improvement in VAS Leg at 1 year (PPV) was predicted by

the models with an average accuracy of 67% (median ¼ 66%;

range¼ 12%). The mean AUC value was 0.73 (median¼ 0.74;

range ¼ 0.12). Nonimprovement (NPV) was predicted with an

average accuracy of 67% (median ¼ 68%; range ¼ 12%).

MARS performed on par with the best ML models. LR did not

perform well.

Improvement in VAS Back at 1 year (PPV) was predicted by

the models with an average accuracy of 82% (median ¼ 79%;

range¼ 14%). The mean AUC value was 0.81 (median¼ 0.82;

Table 2. EQ-5D Index Score Performance of the Final Machine Learning, MARS, and Logistic Regression Models Assessed on the Holdout Data
Set.

Performance metrics Logistic regression MARS Deep learning Decision tree Random forest Boosted trees SVM

AUC 0.84 0.84 0.81 0.77 0.81 0.80 0.89
Accuracy 79% 79% 78% 78% 76% 75% 77%
Sensitivity 70% 70% 68% 67% 66% 65% 67%
Specificity 84% 84% 85% 85% 84% 81% 84%
PPV 83% 82% 80% 79% 78% 79% 79%
NPV 71% 72% 76% 76% 74% 69% 75%
F1 score 0.83 0.83 0.82 0.82 0.80 0.80 0.82
MCC 0.54 0.54 0.54 0.53 0.50 0.47 0.53

Abbreviations: AUC, area under the curve; EQ-5D; EuroQol; F1 score, measure for harmonic mean of precision and sensitivity; MARS, multivariate adaptive
regression splines; MCC, Matthews correlation coefficient (a balanced measure sensitive to true and false positives and negatives); NPV, negative predictive value;
PPV, positive predictive value (precision); SVM, support vector machine.
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range ¼ 0.05). Nonimprovement (NPV) was predicted with an

average accuracy of 63% (median ¼ 63%; range ¼ 16%).

MARS performed on par with the best performing ML models.

The performance of the LR model was inferior.

Whether patients were successfully able to return to work at

1 year (PPV) was predicted by the models with an average

accuracy of 89% (median ¼ 90%; range ¼ 7%). The mean

AUC value was 0.84 (median ¼ 0.84; range ¼ 0.06). Nonsuc-

cess (NPV) was predicted with an average accuracy of 68%
(median ¼ 68%; range ¼ 18%). MARS performed on par with

the best ML model. The LR model performed slightly worse

than the least successful ML models.

Discussion

The ML methods applied in this study did not yield overall

superior performance compared with the conventional meth-

ods. Performance of MARS was on par with the best perform-

ing ML method, deep learning. MARS and deep learning

models performed consistently well across outcome measures.

Table 3. ODI Index Score Performance of the Final Machine Learning, MARS, and Logistic Regression Models Assessed on the Holdout Data
Set.

Performance metrics Logistic regression MARS Deep learning Decision tree Random forest Boosted trees SVM

AUC 0.74 0.79 0.76 0.70 0.71 0.77 0.77
Accuracy 69% 72% 70% 67% 67% 72% 68%
Sensitivity 67% 68% 68% 65% 62% 70% 66%
Specificity 70% 75% 72% 68% 71% 73% 70%
PPV 71% 71% 72% 62% 62% 74% 71%
NPV 65% 72% 67% 71% 72% 69% 66%
F1 score 0.71 0.73 0.72 0.69 0.66 0.74 0.71
MCC 0.37 0.43 0.40 0.33 0.34 0.43 0.37

Abbreviations: AUC, area under the curve; F1 score, measure for harmonic mean of precision and sensitivity; MARS, multivariate adaptive regression splines;
MCC, Matthews correlation coefficient (a balanced measure sensitive to true and false positives and negatives); NPV, negative predictive value; ODI, Oswestry
Disability Index; PPV, positive predictive value (precision); SVM, support vector machine.

Table 4. VAS Leg Performance of the Final Machine Learning, MARS, and Logistic Regression Models Assessed on the Holdout Data Set.

Performance metrics Logistic regression MARS Deep learning Decision tree Random forest Boosted trees SVM

AUC 0.65 0.74 0.67 0.75 0.75 0.74 0.78
Accuracy 64% 71% 69% 67% 65% 67% 67%
Sensitivity 43% 51% 48% 46% 45% 45% 45%
Specificity 80% 82% 85% 85% 84% 83% 83%
PPV 66% 74% 69% 64% 62% 66% 68%
NPV 60% 62% 70% 72% 72% 68% 65%
F1 score 0.57 0.55 0.76 0.73 0.72 0.74 0.75
MCC 0.25 0.35 0.35 0.33 0.32 0.31 0.31

Abbreviations: AUC, area under the curve; F1 score, measure for harmonic mean of precision and sensitivity; MARS, multivariate adaptive regression splines;
MCC, Matthews correlation coefficient (a balanced measure sensitive to true and false positives and negatives); NPV, negative predictive value; PPV, positive
predictive value (precision); SVM, support vector machine; VAS, Visual Analog Scale.

Table 5. VAS Back Performance of the Final Machine Learning, MARS, and Logistic Regression Models Assessed on the Holdout Data Set.

Performance metrics Logistic regression MARS Deep learning Decision tree Random forest Boosted trees SVM

AUC 0.78 0.83 0.82 0.80 0.82 0.80 0.82
Accuracy 72% 75% 74% 75% 75% 74% 74%
Sensitivity 64% 84% 69% 73% 79% 67% 70%
Specificity 77% 70% 77% 76% 73% 79% 76%
PPV 79% 88% 79% 84% 90% 76% 79%
NPV 61% 63% 66% 62% 54% 70% 66%
F1 score 0.78 0.78 0.78 0.80 80% 0.78 0.78
MCC 0.41 0.52 0.46 0.47 0.47 0.46 0.45

Abbreviations: AUC, area under the curve; F1 score, measure for harmonic mean of precision and sensitivity; MARS, multivariate adaptive regression splines;
MCC, Matthews correlation coefficient (a balanced measure sensitive to true and false positives and negatives); NPV, negative predictive value; PPV, positive
predictive value (precision); SVM, support vector machine; VAS, Visual Analog Scale.
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Mixed results were observed across outcome measures for both

LR and other ML models. Discrepancy in performance mea-

sures was greatest among the models predicting leg pain

improvement. In some cases, ML methods were slightly out-

performed by the logistic regression models. One possible

explanation for the results may be attributed to the univariate

correlations found during model training. This suggests that

outcome is linearly related to the severity of patients’ health

status preoperatively. That is, patients who are worse off tend

to improve the most. This is consistent with the findings of

Staartjes et al.2 Previous studies indicate that ML primarily has

performance advantages when data exhibit strong interactions

between predictors and nonlinearities.35 The absence of these

qualities might explain the failure of ML methods to prove

superior in this study.

Transparency Versus Explainability

Parallel to the empirical success of ML methods in recent

years, there is a rising concern about their lack of transpar-

ency.36 Complex models such as deep learning are in essence

black boxes once they have been trained. Their inner workings

are, although accessible, beyond human comprehension and

interpretation. Complex models are often more accurate, but

less interpretable and vice versa.37 Ethically, the problem of

explainability is especially important in a clinical setting where

patient’s lives and well-being depend on decision-making.38 It

has been well documented that ML can lead to unforeseen bias

and discrimination inherited by the algorithms from either

human prejudices or artefacts in the training data.39 Consider-

able efforts to bridge accuracy and explainability in ML have

already been done but remains in its infancy.40 From an epis-

temological point of view, the problem of explainability under-

lines the basic requirement of science to be able to describe the

cause and effect of any given system and align the inputs with

any given output. Explanatory and predictive accuracy have

different qualities and may be viewed as 2 dimensions that all

models possess.41 This suggests that depending on the purpose,

trade-offs between transparency and accuracy should be care-

fully evaluated in model selection. In short, choosing the sim-

pler model might be preferable.

A Priori Model Selection

Several studies have suggested that simple models often per-

form just as well as more advanced models.42-44 In a recent

systematic review including 71 studies (Christodoulou et al45),

the authors found no evidence of superior performance of ML

over LR. However, they did not investigate which factors might

explain this and recommend that future research should focus

on identifying which algorithms are optimal for different types

of prediction problems. The above-mentioned findings are in

line with the theoretical work of Wolpert,46 which states that

averaged across all possible problems, all learning algorithms

will perform equally well because of their inherent inductive

bias. According to this theorem, there are no objective a priori

reasons to favor any algorithm over any others.46 In conclusion,

despite lacking evidence of the superiority of ML, we suggest

that clinical prediction should always explore and compare

multiple models.

Limitations

The registry used in this single-center study has previously been

demonstrated to be unaffected by loss of follow-up.47 Still, some

degree of selection bias cannot be ruled out. No attempt to eval-

uate missingness of the initial data set (n¼ 3216) wasmade, and

it was assumed to be missing at random. Consequently, data

were not imputed because the final study sample was relatively

large. Application of an imputation technique—for example,

multiple imputation by chained equations,48 would have made

a larger source of information available to the models, possibly

leading to better results. ML techniques appear to require far

more data per variable to achieve stability compared with con-

ventional methods such as LR.49 Comorbidities were not fac-

tored in. Neither were surgical methods or complications.

Furthermore, to counter overfitting and reduce redundancy, the

feature selection was limited to a small subset. Although this

strategy could help improve the robustness of the models, it is

possible that more predictors could have resulted in a higher

degree of accuracy. Finally, the decision in this study to value

sensitivity and specificity equally in determining MCIDs is

somewhat arbitrary. Prevalence, severity of the condition, and

possible adverse effects from treatment should ideally all be

Table 6. Return toWork Performance of the Final Machine Learning, MARS, and Logistic Regression Models Assessed on the Holdout Data Set.

Performance metrics Logistic regression MARS Deep learning Decision tree Random forest Boosted trees SVM

AUC 0.81 0.86 0.85 0.81 0.87 0.84 0.84
Accuracy 86% 86% 87% 86% 84% 85% 85%
Sensitivity 61% 61% 63% 62% 55% 59% 59%
Specificity 92% 93% 93% 91% 94% 92% 92%
PPV 91% 90% 90% 92% 85% 89% 89%
NPV 63% 72% 71% 59% 77% 68% 68%
F1 score 0.91 0.91 0.92 0.91 0.89 0.91 0.91
MCC 0.53 0.57 0.59 0.51 0.55 0.54 0.54

Abbreviations: AUC, area under the curve; F1 score, measure for harmonic mean of precision and sensitivity; MARS, multivariate adaptive regression splines;
MCC, Matthews correlation coefficient (a balanced measure sensitive to true and false positives and negatives); NPV, negative predictive value; PPV, positive
predictive value (precision); SVM, support vector machine.
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considered when deciding an acceptable trade-off between true

positives and false positives.50

Conclusions

We have developed 5 different ML models and 2 conventional

models across 5 outcome measures, predicting improvement

for patients following surgery for LDH at 1 year after surgery:

EQ-5D, ODI, VAS Leg, VAS Back, and Return to Work. The

study demonstrates that it is possible to build and train an

ensemble of different predictive ML models with little effort

and no programming skills, as a starting point for model com-

parison and further optimization and development. Modern

code-free software like RapidMiner may encourage the use

Figure 2. Performance metrics for models: EQ5D, ODI, VAS Leg, VAS Back, Return to Work.
Abbreviations: AUC, area under the curve; EQ-5D; EuroQol; MARS, multivariate adaptive regression splines; MCC, Matthews correlation
coefficient; NPV, negative predictive value; ODI, Oswestry Disability Index; PPV, positive predictive value; SVM, support vector machine; VAS,
Visual Analog Scale.
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of PRO data for predictive purposes by surgeons and other

medical professionals by eliminating the need for program-

ming skills.
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