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Abstract

Background: Diseases are complex phenotypes often arising as an emergent property of a non-linear network of genetic
and epigenetic interactions. To translate this resulting state into a causal relationship with a subset of regulatory features,
many experiments deploy an array of laboratory assays from multiple modalities. Often, each of these resulting datasets is
large, heterogeneous, and noisy. Thus, it is non-trivial to unify these complex datasets into an interpretable phenotype.
Although recent methods address this problem with varying degrees of success, they are constrained by their scopes or
limitations. Therefore, an important gap in the field is the lack of a universal data harmonizer with the capability to
arbitrarily integrate multi-modal datasets. Results: In this review, we perform a critical analysis of methods with the
explicit aim of harmonizing data, as opposed to case-specific integration. This revealed that matrix factorization, latent
variable analysis, and deep learning are potent strategies. Finally, we describe the properties of an ideal universal data
harmonization framework. Conclusions: A sufficiently advanced universal harmonizer has major medical implications,
such as (i) identifying dysregulated biological pathways responsible for a disease is a powerful diagnostic tool; (2)
investigating these pathways further allows the biological community to better understand a disease’s mechanisms; and (3)
precision medicine also benefits from developments in this area, particularly in the context of the growing field of selective
epigenome editing, which can suppress or induce a desired phenotype.
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Background
Importance of data harmonization

Answers to gene regulation of disease and normal development
lie encrypted in the epigenome. In this context, we define the
epigenome as the chromatin state map of the genome and other
gene expression–controlling factors (Fig. 1). To capture this state,
we require genome-wide measurement of combinations of epi-
genetic marks occurring in different cell types under various
conditions (Fig. 2). Epigenetic systems contributing to this re-
sulting epigenomic state are highly complex and are often the
result of multi-layered and combinatorial interactions between
different regulatory components of an epigenome [2]. In addi-
tion, these interactions are highly dynamic and can vary under

different conditions. Therefore, any individual omics assay or
data modality results in an incomplete view of a biological sys-
tem. Recently, the community has been moving towards adopt-
ing data-driven approaches to determine gene-specific regula-
tory pathways of complex phenotypes in cases such as disease
progression. This is due to the increasing availability of large-
scale high-throughput epigenomic datasets. Therefore, coher-
ently integrating and identifying gene regulatory information
across multiple datasets, especially across different types of
omics experiments as well as data modalities (such as assay
for transposase-accessible chromatin sequencing [ATAC-Seq]
[3], chromatin immunoprecipitation sequencing [ChIP-Seq] [4],
high-throughput chromosome conformation capture [Hi-C] [5],
methylation sequencing [Methyl-Seq] [6–8], and RNA immuno-
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2 Integrative computational epigenomics to build data-driven gene regulation hypotheses

Figure 1: Genomic features affecting gene regulation are shown, along with the
corresponding assays used to infer the state of the regulatory feature. We note
that this is not an exhaustive list of assays available to profile regulatory features.

Figure 2: Information returned by types of functional assays targeting RNA-
DNA interactions, RNA-protein interactions (including histones), quantifying
RNA abundance, DNA-DNA interactions, DNA-protein interactions (including hi-
stones), and direct biochemical modifications to DNA. By probing the association

of DNA with these regulatory factors, we can observe the activity fingerprint of a
genome. Combined with functional outcome information such as gene expres-
sion, we can infer the flow of signals that result in a phenotype. (Methyl-Seq

normally covers the entire genome, but for simplicity we show coverage at a sin-
gle methylated site in the hypothetical genome. We note that the performance
of some of these assays may vary depending on the experimental design and
region targeted [1].)

precipitation sequencing [RIP-Seq] [9] as bulk or single-cell se-
quencing data), is now an essential and challenging task (Fig. 1).
Current attempts are usually limited to a restricted set of modal-
ities, and there are many methods that seem to be integrative at
first glance but upon closer investigation have different scopes
[10–14]. Unfortunately, no method currently meets this need of
capturing a complete cell or tissue state in an accurate and com-
prehensive way.

Later in this review, we discuss in detail opportunities in-
volved in harmonizing different types of omics data within
and across experiments to unlock deeper layers of information
present within a biological process involved in disease or com-
plex traits. This holistic genomics approach has been recently
gaining momentum [15–19]. Simultaneously harmonizing data,

e.g., gene expression with chromatin accessibility, provides an
extra layer of validation for the obtained results and reduces the
false discovery rate while increasing reproducibility. The user
will have a higher degree of confidence in the results owing to
their concordance on separate data categories. Together, these
complementary methods provide a higher-resolution view into
the data, improving our understanding of epigenetic mecha-
nisms of complex diseases as well as traits and subsequently
enabling new treatment opportunities.

Challenges in data harmonization
Although multi-modal data integration seems attractive, it
comes with exponential technical, statistical, and computa-
tional challenges. For example, (i) biological data are generated
from a wide range of dimensions and from an equally large vari-
ety of sources. Dataset heterogeneity results in significant com-
putational issues during analysis, as technical artefacts, dataset
complexity, and small sample sizes all contribute to noise in the
data. (ii) Furthermore, domain-specific knowledge is required to
interpret the results of computational tools, and this require-
ment is particularly important when considering the specific
assumptions that these tools usually make. (3) Analysing data
from even a single modality, whether from a single experiment
or multiple experiments, is cumbersome because thousands of
genes can now be assayed in parallel, generating an equal num-
ber of hypotheses. In the case of analysing multimodal data, this
challenge is amplified by the non-linear relationship between
different omics datasets.

Strategies to harmonize data
Integrating information from different resources in a single, uni-
fied view can be performed in a variety of ways. While many
existing workflows do not explicitly model data modality har-
monization, they nevertheless use information from different
layers of omics data. Integrating these data can happen at dif-
ferent stages of data processing: primary, intermediate states, or
fully processed data. Commonly, integration happens at the final
step by repeatedly summarizing primary data from each modal-
ity and collapsing them into gene lists, removing a significant
amount of quantitative and other forms of valuable information.

This need for a greater level of biological understanding has
given rise to methods that attempt to take a more holistic,
inter-omics approach, in contrast to the reductionist approach
where hypotheses are modular. These fall into 2 broad cate-
gories, (i) targeted data integration (inter-modality restricted)
and (ii) general data harmonization (inter-modality free) (Fig. 3).
Targeted data integration focuses on integrating 2 or 3 specific
data modalities with clear correlations, e.g., the relationship be-
tween chromatin occupancy and transcription. Recently, more
agnostic data harmonization methods aiming to unify informa-
tion from an arbitrary number of categories have been emerg-
ing [20,21]. In the latter case, there are few such methods avail-
able owing to the previously discussed challenges of unifying
different data modalities and the relative novelty of this class
of approaches. In the rest of the article we examine different
types of epigenomic regulatory features, epigenomic data avail-
able for regulatory feature detection, and computational meth-
ods for building correlation-to-causal gene regulation hypothe-
ses. A critical comprehensive review of these methods has not
previously been attempted.

Epigenetic regulatory features driving gene activity
Before reviewing these methods, it is first necessary to consider
the breadth and mechanisms of epigenetic regulatory features
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Figure 3: Our proposed functional taxonomy of data integration methods. (A) Inter-modality and intra-modality harmonization methods exist. Data aggregation tools

are separate from these methods, which are not data integrators in the context of our review. With inter-modality restricted methods, custom strategies are common. (B)
For inter-modality generic methods, 5 approaches are common. Mutual nearest neighbours exploits common points between single-cell datasets as references, matrix
factorization operates on abundance measures to categorize data and is agnostic to data type, multivariate models attempt to account for dependent and independent
variable contribution to the output, latent variable models attempt to model an unobserved factor’s contribution to the output, and deep learning optimizes a series of

regressions to yield a categorical variable or generate an output. Intra-modality harmonization methods share these strategies but apply them specifically to reduce
unwanted technical variation. We note that current methods use data in a processed state, and for a better harmonization raw or intermediate data (as shown by the
dotted lines in panel A) can be used.

present in the genome. We show that 2 common themes exist
among these regulatory features. First, they induce a transcrip-
tionally permissive or repressive environment by altering steric
hindrance in DNA towards other regulatory elements. Second,
regulatory features rarely act alone, and a signal transduction
cascade mediated by multiple regulatory elements is necessary
to shape a cell state [22] (see Supplementary Figure S1). Each fea-
ture is highly nuanced, and they are not always directly corre-
lated, making direct comparisons difficult.

Gene expression is a tightly modulated process, and pertur-
bations at any step can have negative consequences. Many hu-
man diseases are associated with dysregulation of gene expres-
sion, including many cancers [23]. Understanding this epige-
nomic regulatory machinery is therefore crucial to both un-
derstanding the biology of any system and applying this in-
formation to treat human diseases. Known epigenetic regu-
latory features are diverse but can be classified into several
general categories. At a high level, 3D chromosome structure
can be measured with Hi-C [5]. ATAC-Seq captures nucleo-
some occupancy to reveal the accessibility state of chromatin
(open or closed) [3] whereas ChIP-Seq [4] and RIP-Seq [24] cap-
ture DNA-protein and RNA-protein binding sites, respectively.

Both can probe the occupancy of nucleic acid by regulatory
proteins.

It is also possible to capture interactions between as well as
within nucleic acids and proteins by means of other immuno-
precipitation techniques such as RIP-Seq [9], along with direct
biochemical modifications such as methylation to any of these
[6–8]. A detailed list of epigenomic features and laboratory as-
says to study them are provided in Supplementary Table S1.

Many of these features alter the level of steric hindrance in
DNA towards other regulatory features. Disruptive DNA loops,
chromatin formation, and DNA methylation prevent gene tran-
scription by physically excluding facilitative protein complexes
from binding. Conversely, permissive DNA loops, chromatin-free
regions, and transcription factors boost the probability of regula-
tory element binding events by removing or circumventing this
barrier.

Although some epigenomic regulatory features have a di-
rect effect on gene expression, gene regulation is often achieved
through a web of cause and effect, of which there are abun-
dant examples. Protein biochemical modifications such as hi-
stone methylation stabilize associated chromatin to strengthen
transcriptional silencing while histone deacetylation has the op-
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posite effect [25–27]. Cis-acting long non-coding RNA (lncRNA)
can act as a targeted scaffold to bind DNA and proteins to mod-
ulate transcriptional permissiveness and are often associated
with enhancers [28,29]. (These are distinct from enhancer RNAs,
which are shorter and unstable [29]). In some cases, lncRNAs can
even encode functional proteins [30]. Other forms of RNA regu-
lation are co-transcribed circular RNA and microRNA (miRNA),
which control messenger RNA levels [31–34]. lncRNA can act as
an miRNA sponge, thus working in a feedback loop to release or
sequester RNA or even protein [35]. This effect extends to tran-
scription factors in the case of lncRNAs GAS5 [36] and RMST [37].
Meanwhile, transcription factors can work in combination with
each other, as well as with activator and repressor proteins, to
further tune gene expression levels [38]. Metabolite abundance
levels in or around the cell may trigger signal cascades through
the activation or deactivation of receptor proteins, which result
in an upregulation or downregulation of transcription.

After transcription, it is still possible for a cell to selectively
calibrate transcript quantity. Trans-acting lncRNA stabilizer pro-
teins and functionally equivalent RNA may bind to transcripts
to increase their half-life in the cell, or tag them for degradation
by enzymes [29]. Extending this ability, trans-acting circular RNA
can sequester or release transcripts, acting as an RNA battery
within the cell [31, 39, 40].

Genome sequence is by definition not epigenomic, but it is
relevant to note that changes in DNA sequence that alter steric
hindrance or 3D chromosome structure can directly affect the
epigenome. An initial dysregulated binding event may trigger
a chain reaction with significant positive or negative effects.
At the same time, this highlights the limitations of a reference
genome [41]. Despite being a powerful resource, it remains in-
complete and is affected by both biological [42] and technical
[43] variation just as with any other epigenetic data modality.
Thus, informative variation within organisms even of the same
species can be masked, decreasing inference accuracy.

Outline

In this article, we critically review methods that aim to resolve
the issue of multi-modal data integration, and classify them into
categories on the basis of their scope. In each category, as well
as across the field as a whole, we identify common features
shared by these strategies and highlight those that show the
most potential. At the same time, we suggest a list of epige-
nomic databases containing the previously discussed gene reg-
ulatory features for use by researchers interested in develop-
ing or refining such methods, and note the properties of these
databases that may positively or negatively affect this process.
From this analysis of strategies and databases, we then envision
the attributes of an ideal universal data harmonization frame-
work and demonstrate some powerful applications.

Existing data integration approaches

Many attempts have been made to address the challenges of
epigenomic data harmonization both across and within modal-
ities (Tables 1,2,3). These methods are diverse, and we devel-
oped a functional taxonomy for the methods surveyed. We fil-
tered out data aggregation methods that group data for viewing,
e.g., as Venn diagrams of gene lists, and do not directly integrate
data. We then classified integrative methods into 2 categories:
intra-modality and inter-modality approaches. Intra-modality
approaches focus on removing technical variation caused by
batch effects, while inter-modality approaches aim to combine

different data modalities thatt may not be directly comparable.
Inter-modality data harmonization can be further subclassified
into 2 categories, modality restricted and modality free (Fig. 3).
The former has a highly restricted scope and is configured to
work with a specific experimental design, while the latter is the-
oretically generalizable to any experimental design.

1. Inter-modality restricted

Modality-restricted approaches target a specific set of modal-
ities, often applying modality-specific constraints or assump-
tions to 2 or 3 data modalities only (Tables 1 and 4). Often,
they exploit the strong correlation present between certain data
modalities, e.g., in the case of relating chromatin occupancy
to transcript expression in EPIP [44] and TEPIC [45]. Further-
more, many methods including LemonTree [46], ELMER [47], and
PARADIGM [48] are configured specifically for or tested only on a
target category of biological systems, in particular human can-
cers, sometimes to the extent of being less generalizable to other
systems.

Among these modality-restricted methods, a common
theme is the use of ensemble learning, such as random forests
[61], on quantitative omics data. Examples of such methods are
EPIP [44], EAGLE [51], IM-PET [55], JEME [56], and RIPPLE [57]. Their
popularity and success may be attributable to the nature of the
algorithm, where an ensemble of clusters representing indepen-
dent biological signals results in convergence even in hetero-
geneous data. Notably, these methods appear to be more gen-
eralizable than the other methods reviewed (Table 1). Another
group of methods approach the problem from a different per-
spective by applying network analysis to leverage biomolecular
interaction information instead of molecule abundance. These
methods include LemonTree [46], PANDA [54], and PARADIGM
[48]. Owing to the unique angles of each method, formulations
of the problem, and applications of the strategy, the advantages
and disadvantages of each method vary significantly. These are
evaluated in detail in Table 1. One method worth highlighting is
RIMBANET [50], which is interesting owing to its ability to inte-
grate data from 6 different modalities including proteomics and
metabolomics data, but it is important to note that it was tai-
lored to a specific experiment.

2. Inter-modality free

In contrast to modality-restricted approaches, modality-free
methods (Tables 2 and 5) are omics-agnostic, to the point of
accepting medical imaging data in a few cases. Many of these
methods, such as DIABLO [20], iCluster [62], GFA [63], and MOFA
[64], use latent variable analysis, and others like NMF [65], iNMF
[66], and LIGER [67] use non-negative matrix factorization to har-
monize multi-omics data (Fig. 3, Table 2). These categories of
methods are particularly viable and flexible because any data
can be ingested as long as they can be represented as a generic
matrix of values (Fig. 3). DIABLO [20] in particular stands out as
a method that was successfully applied to 4 categories of multi-
modal data, including proteomics and metabolomics. We com-
pare and contrast these methods in more detail in Table 2. At
least 1 recent method has successfully combined non-negative
matrix factorization with deep learning [21], and this trend of
coupling of deep learning to conventional integration strategies
is expected to continue given deep learning’s applicability in de-
convoluting non-linear relationships in large datasets [68]. We
also note that 2 single-cell methods, LIGER [67] as well as seurat
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Table 1: Inter-modality data harmonization approaches with a restricted modality scope

Method name Strategy Main advantages Main limitations Citation

MDI Bayesian Consensus
Clustering

Identifies gene clusters across
datasets with specific shared
characteristics. Can model
time-series data

Limited to querying a small subset of
genes. Trained only on array data

[49]

RIMBANET Bayesian MCMC Integrates many data types
simultaneously

Requires large quantities of
multimodal data. Method was
specifically designed for experiment

[50]

EPIP Ensemble boosting Effective in unbalanced datasets Limitations of training data reduce
model effectiveness in small datasets

[44]

EAGLE Ensemble boosting Uses higher-level features to buffer
against overfitting

Custom genome-specific features
need to be calculated for
classification

[51]

PreSTIGE Information theory Outputs different specificity
thresholds

Biased to cell type [52]

TEPIC Machine learning Feature space improves result
interpretability

Limited performance in gene-dense
regions or with small sample sizes

[45]

iOmicsPASS Network analysis Produces a sparse set of easily
interpretable biological interactions.
Effective in heterogeneous datasets

Important markers that are poorly
represented in biological networks
can be lost in the analysis

[53]

LemonTree Network analysis; Gibbs
sampler; decision tree

Modular model parts for different
cases

Trained on cancer data [46]

PANDA Network analysis;
message passing

Accounts for lack of direct regulatory
element interaction

Choice of convergence parameter
affects results. Results may be
difficult to interpret

[54]

PARADIGM Network analysis;
Probabilistic Graph
Model

Robust to false-positive results Training was performed on
microarray data. Effectiveness in
sequencing data unknown. Trained
on cancer data

[48]

IM-PET Random forest classifier Expected to generalize to other
species

Requires assembly of 4 manually
derived scores

[55]

JEME Random forest classifier;
regression

Easily retrainable on different
systems if sufficient data are
available

At least 4 input data types are
required

[56]

RIPPLE Random forest classifier;
regression

Generalizable to other biological
conditions and cell types

Assumes balanced data categories [57]

SVM-MAP Support Vector Machine Expected to generalize to multiple
cancer types

Limited enhancer coverage in
training data

[58]

ELMER Wilcoxon rank-sum test Identifies upstream master regulators Restricted to methylation arrays in
cancer

[47]

TENET Wilcoxon rank-sum test Expected to generalize to other
biological systems

Targets group expression differences
only

[59]

RegNetDriver Wilcoxon rank-sum test Provides a framework to construct
tissue-specific regulatory networks

Requires assembly of multiple
manually derived scores from
system-specific steps

[60]

Names, strategies, advantages, and limitations of each method is provided. Regarding advantages and limitations, a few major points were highlighted, and it is
important to note that many of these methods are highly nuanced. A citation for reference to the original manuscript of each method is provided where full details
can be obtained.

[69], are present and observe that bulk RNA-Seq methods and
single-cell methods are mutually exclusive.

3. Intra-modality

A special subset of data harmonization approaches is focused
on unifying intra-modality data, and more of these details are
available in Table 3. This arose as a result of the common prob-
lem in biology of handling unwanted technical variation in data,
which can easily be caused by performing experiments on dif-
ferent instruments or on different days [77]. While this class
of methods is not directly associated with the broader prob-
lem of inter-modality data harmonization, mathematical ap-
proaches used to address this problem tend to overlap, such as

mutual nearest neighbours in mnnCorrect [78] and seurat [69]
(Figure S2). It is highly likely that we can exploit properties of
relevant strategies and methods to achieve a better model of
data harmonization, e.g., by adding mutual nearest neighbours
as an intermediate or refining step to the existing combina-
tion of latent variable analysis, matrix factorization, and deep
learning.

4. Common themes across all methods

Five interesting patterns emerge from this aggregated compari-
son of methods (Tables 4 and 5). First, gene expression data seem
to be universal to all approaches and are often assigned a bridg-
ing role across the data modalities. This is likely due to their
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Table 2: Inter-modality data harmonization approaches with a free modality scope

Method name Strategy Main advantages Main limitations Citation

DeepMF Deep learning and
non-negative matrix
factorization

Robust to noise and missing data Manual parameter tuning and prior
information may be required

[70]

JIVE Dimensionality
reduction

Identifies the global modes of
variation that drive associations
across and within data types

Not robust to outliers, missing
values, or class imbalance

[71]

GCCA Generalized canonical
correlation analysis

Identifies blocks of variables within
datasets for correlation across
datasets

Less effective if the number of
observations is smaller than the
number of variables or if multiple
linear correlations are present
between datasets. Biases towards
strong variation in the data

[72]

NetICS Graph diffusion Robust to frequency of aberrant
genes in sample

Can only examine effects of known
genes present in a defined interaction
network

[73]

DIABLO Multivariate model and
latent variable model

Captures quantitative information.
Visual outputs aid interpretation

Assumes a linear relationship
between the selected omics features.
Parameter tuning is required

[20]

iCluster Latent variable model Captures both concordant and
unique alterations across data types

Sensitive to initial subset selection.
Trained only on array data

[62]

GFA Latent variable model Accepts data with missing values Manual parameter tuning. Prior
information may be required

[63]

MOFA Latent variable model
and probabilistic
Bayesian

Leverages multiomics to impute
missing values. Single-cell version
available

Assumes a linear relationship
between the selected omics features.
Manual parameter tuning required

[74]

seurat Mutual nearest
neighbours

Effective in intra-modality as well as
inter-modality integration. Robust to
parameter changes

Restricted to single cell. Requires
robust reference data

[69]

SNF Network analysis Effective in small heterogeneous
samples. Captures quantitative
information

Does not yield quantitative data.
Trained only on array data

[75]

NMF Non-negative matrix
factorization

Accounts for complex modular
structures in multimodal data

Trained only on array data [65]

iNMF Non-negative matrix
factorization

Stable even in heterogeneous
conditions

Trained only on array data [66]

LIGER Non-negative matrix
factorization

Effective in intra-modality as well as
inter-modality integration; effective
in highly divergent datasets

Restricted to single cell [67]

sMBPLS Sparse multi-block
partial least-squares
regression

Derives weights for modalities
indicating contributions to
expression

Performance is reduced with lower
data dimensions

[76]

Note that seurat and LIGER are specific to single-cell data and the others are intended for bulk data. Names, strategies, advantages, and limitations of each method
are provided. Regarding advantages and limitations, a few major points are highlighted. A citation for reference to the original publication of each method is provided
where full details can be obtained.

direct correlation to gene activity, as well as their relative in-
terpretability compared to other omics data, being a straight-
forward readout of gene activity. Second, quantitative omics
data such as gene expression and proteomics are often easier
to merge because all data involved are representable as matrices
of discrete or continuous values, as opposed to qualitative omics
data such as chromosome conformation or chromatin accessi-
bility. Thus, methods merging quantitative omics data such as
DIABLO [20] are more generalizable than those merging qualita-
tive and quantitative omics data. Third, data harmonization can
be performed at any stage but is commonly performed as a final
step with fully processed data. Fourth, single-cell multi-omics
harmonization approaches are separate from bulk-cell multi-
omics harmonization approaches. This is mainly attributable to
the distinct statistical properties between single-cell and bulk
cell data, which are not straightforward to reconcile. Fifth, it is

not uncommon to observe combinations of strategies within a
single method, e.g., the coupling of network analysis to decision
trees or regression. The main reason for this is that the comple-
mentary nature of different methods working in tandem usually
results in a higher-resolution view of a dataset.

We also emphasize the fact that while some methods may
seem to be integrative at first glance, this may not neces-
sarily be the case depending on the application and nuances
of the method. For example, a method may combine differ-
ent data modalities during method development but apply it
specifically to signal detection in unimodal data. Deep learning–
based methods such as Deepbind [10], BP-Net [12], EP-DNN
[11], RE-VAE [13], x-CNN [14], and others commonly fall into
this category because models are often trained on multi-modal
data but with a restricted goal of identifying motifs in nucleic
acids.
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Table 3: Intra-modality data harmonization approaches

Method name Strategy Main advantages Main limitations Citation

ComBat Bayesian empirical Removes batch effect in most cases Removes biological signal in most
cases

[4]

RUV Linear model Effective with spike-in controls Individual variants make specific
assumptions about the data

[79]

removeBatchEffect Linear model Generalizable to most transcriptomic
data types

May be less effective in complex
experimental designs

[80]

SVN Linear model Generalizable to many cases Assumes that feature similarities
between datasets are due to biology

[81]

mnnCorrect Mutual nearest
neighbours

Accounts for heterogeneity within
sample groups

Restricted to single-cell data [78]

MINT Multivariate model Robust to overfitting and strong
multidimensional technical variation

Minimum sample count requirement [82]

Scanorama Mutual nearest
neighbours

Scales to very large sample sizes.
Robust to overcorrection

Restricted to single-cell data [83]

MultiCluster Tensor decomposition Accounts for multiple batch variables
simultaneously

Restricted to 3-way variable
comparisons

[84]

zeroSum Zero sum regression Generalizable across different
technologies and platforms

Weak or non-linear features may be
masked by strong features

[85]

Batch is a special case of intra-modality harmonization and is included for completeness because many underlying strategies used are applicable to broader data
integration. All methods are restricted to a single data modality of transcriptomics. Names, strategies, advantages, and limitations of each method are provided.
Regarding advantages and limitations, a few major points are highlighted. A citation for reference to the original publication of each method is provided where full
details can be obtained.

Table 4: Type and number of data modalities supported by each inter-modality data harmonization approach (restricted modality scope).

Method
name

No. of
modalities
compatible

3D
chromosome

structure
DNA

methylation
Epigenetic
peak data

DNA-Protein
binding

DNA-RNA
interactions

RNA-Protein
interactions

Protein-
Protein

interactions Genomics Transcriptomics Citation

MDI 3 X X O X X X O X O [49]
RIMBANET 4 X X X O X X O O O [50]
EPIP 4 O X O O X X X X O [44]
EAGLE 2 X X X O X X X X O [51]
PreSTIGE 2 X X O X X X X X O [52]
TEPIC 3 O X O X X X X X O [45]
iOmicsPASS 2 X X X X X X X O O [53]
LemonTree 2 X X X X X X X O O [46]
PANDA 3 X X X O X X O X O [54]
PARADIGM 2 X X X X X X X O O [48]
IM-PET 2 X X O X X X X X O [55]
JEME 2 X X O X X X X X O [56]
RIPPLE 3 X X O O X X X X O [57]
SVM-MAP 2 X O X X X X X X O [58]
ELMER 2 X O X X X X X X O [47]
TENET 2 X O X X X X X X O [59]
RegNetDriver 5 X O O O X X X O O [60]

”DNA methylation” in this context refers specifically to the ratio of signal between methylated and unmethylated alleles. For simplicity, some modalities have
been aggregated, e.g., transcriptomics data include both gene expression and small RNA data. Some methods are capable of handling proteomics, metabolomics,
or medical images, but these are excluded because they are not a focus of this review. A link to each method is provided for easy reference.

5. Epigenomic data resources

Therefore, we demonstrate the requirement for a universal data
harmonizer. However, before proposing and describing a suit-
able framework, we first need to discuss suitable training and
validation data because this is the most important component
in any biological framework and will be the main factor in the
resulting viability of a method.

6. Data standardization

To develop appropriate models or methods, it is necessary to
have a well-curated set of high-quality epigenomic data (see
Supplementary Fig. S4B). Currently there is a wealth of biological
data available, but not all publicly accessible biological data are
standardized or curated to the extent needed by some types of
experiments. Standardized laboratory protocols and standard-

ized software pipelines are necessary to limit the effect of un-
wanted technical variation in the data, which can contribute to
significant noise in the data or lead to unintentionally flawed
conclusions [77].

7. Data accessibility

Furthermore, databases can have specific scopes or restrict ac-
cess to data, especially pertaining to sensitive patient informa-
tion (see Supplementary Table S4B). IHEC (International Human
Epigenome Consortium) [86] and TCGA (The Cancer Genome At-
las) [87] are the primary examples of this (see Supplementary
Table S2). In such cases, users may be limited to non-primary
data sources or a restricted subset of samples, which may yield
sufficient information depending on the purposes and design of
the integrative experiment.
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Table 5: Type and number of data modalities tested by each inter-modality data harmonization approach (free modality scope)

Method
name

No. of
modalities

trained

3D
chromosome

structure
DNA

methylation
Epigenetic
peak data

DNA-Protein
binding

DNA-RNA
interactions

RNA-Protein
interactions

Protein-
Protein

interactions Genomics Transcriptomics Citation

DeepMF 1 X X X X X X X X O [70]
JIVE 1 X X X X X X X X O [71]
GCCA 2 X X X X X X X O O [72]
NetICS 3 X O X X X X X O O [73]
DIABLO 2 X O X X X X X X O [20]
iCluster 3 X O X X X X X O O [62]
GFA 2 X O X X X X X X O [63]
MOFA 2 X O X X X X X X O [74]
seurat∗ 2 X X O X X X X X O [69]
SNF 2 X O X X X X X X O [75]
NMF 2 X O X X X X X X O [65]
iNMF 2 X O X X X X X X O [66]
LIGER∗ 2 X O X X X X X X O [67]
sMBPLS 3 X O X X X X X O O [76]

Note that GCCA [72], seurat [69], and LIGER [67] are specific to single-cell data and the others are intended for bulk data. “DNA methylation” in this context
refers specifically to the ratio of signal between methylated and unmethylated alleles. In contrast to Table 4, the quantity of modalities represents the quantity of
modalities on which the algorithm was tested and does not reflect the modalities with which the algorithm is compatible. For simplicity, some modalities have
been aggregated, e.g., transcriptomics data include both gene expression and small RNA data, which gives the illusion that DeepMF [21] and JIVE [71] were trained
on unimodal data. Some methods are capable of handling proteomics, metabolomics, or medical images, but these are excluded because they are not a focus of
this review. A link to each method is provided for easy reference.

8. Data modality

There are a wide variety of epigenomics data modalities present
in each database (see Supplementary Table S4A). The choice of
database from which to obtain training data for a method should
be made on the basis of their individual scopes while taking data
standardization and accessibility into account. For example,
users interested in human development or disease can select
the ENCODE (Encyclopedia of DNA Elements) [88] or Roadmap
[89] databases because they contain relevant, standardized, and
publicly accessible curated datasets (see Supplementary Table
S2). In contrast, users seeking less common datasets associ-
ated with rare diseases may not necessarily find the informa-
tion in a standardized or accessible database and can broaden
their search to include ArrayExpress [90], GEO (Gene Expres-
sion Omnibus) [91] or INSDC (International Nucleotide Sequence
Database Collaboration) [92–94], which stores the data of inde-
pendent experiments. Quality of data in such cases is not guar-
anteed, and this is best illustrated with a recent example show-
ing that among several hundred stem cell datasets from these
databases, one-third were irreproducible owing to inappropriate
experimental design or sample mislabellings [95]. Care should
be taken to detect and account for unwanted technical variation
in such cases.

1. Towards a Universal Data Harmonizer

With such suitable data, we propose and outline the ideal uni-
versal data harmonizer, which would be agnostic to input omics
type and scale to an arbitrary cardinality of modalities. In addi-
tion, it should be easy to use, yield interpretable results, and be
robust to noise (see Supplementary Table S3).

1. Functionality

A universal data harmonizer has to resolve the previously dis-
cussed challenges of distinct omics types and arbitrary cardinal-
ity. We re-emphasize the necessity of accounting for non-linear
relationships across multimodal datasets. While many existing
methods yield results by exploiting strong correlations between
specific omics data, e.g., between gene expression and chro-
matin accessibility [55–57], this does not hold true in all cases.

One scenario where this is particularly visible is the relation-
ship between DNA methylation and chromosome conformation,
where simple linear correlation is unlikely to be effective in pre-
dicting a state given information about the other. Therefore, a
universal data harmonizer will not be able to take advantage of
linear correlations in all situations and will have to be designed
to be agnostic in this context.

To address the equally challenging problem of cardinality, the
universal harmonizer needs to infer properties directly from the
data instead of imposing broad conditions or constraints. Intu-
itively, it may first appear that flooding a method with multiple
layers of information may allow easier signal detection. How-
ever, increasing the quantity of modalities surveyed may further
amplify the non-linear relationship between omics datasets,
adding noise to the data. Furthermore, different features may be
either sparse or enriched in different omics datasets and com-
binations of datasets.

2. Usability

In the context of usability, data should have to undergo mini-
mal preprocessing. This is advantageous for 2 reasons; preserv-
ing method input data in a state as close to primary data as pos-
sible, e.g., in the form of raw sequence data, allows the user to
promptly and easily analyse their data. More importantly, as-
sumptions associated with preprocessing or intermediate data
analyses are avoided. For the same reason, the method should
require minimal parameters. This both lessens user confusion
while allowing signals to rise organically from the data. Fur-
thermore, the method should be reasonably generalizable or at
least sufficiently flexible to account for unconventional cases.
Because it is unlikely that any single method is applicable to ev-
ery possible combination of highly nuanced biological datasets,
a method should be reconfigurable depending on a biological do-
main of interest to account for such cases. For example, deep
learning models should be designed to be easily re-trainable on
data as long as they are formatted correctly, with possible minor
adjustments to model architecture.

To further maximize efficiency, the model should be as com-
putationally efficient as possible. Many workflows can consume
significant quantities of data storage, memory, and compute
time [96–98], to the extent that handling these issues can require
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a greater resource investment than the actual experiment [99].
In these scenarios, high-performance computing clusters may
be required to implement methods, which may not be easily ac-
cessible to all users.

For easy installation and reproducibility in line with FAIR
(findable, accessible, interoperable, reusable) data principles
[100], the software should contain only required software li-
braries. A lower degree of portability forces a user to unnecessar-
ily invest resources into managing multiple versions of poten-
tially clashing dependencies and sub-dependencies of software.
This is prevalent even among high-quality and widely used pro-
grams, e.g., in the R [101] and Bioconductor [102,103] ecosystem
of biological software. Although virtual environment manage-
ment libraries exist to address this problem [104], they may not
be readily accessible or known to new users. Including this soft-
ware in well-maintained biological software channels with ma-
ture dependency management systems like conda [105] or pro-
viding them as a virtual machine environment such as Docker
[106] or singularity [107] removes a large barrier to user adoption
of software.

3. Interpretability

Results of an ideal universal harmonizer should also be easily
interpretable. For instance, it is more intuitive for a biologist to
understand a method that highlights a gene pathway of inter-
est, instead of a matrix of values that may require additional
processing. Where practical, visualizations should be provided
to assist interpretation and supplement other results, and pre-
sented in easily accessible and portable formats such as an html
report or pdf file [108]. However, objective metrics are equally im-
portant to judge the performance of an algorithm on a dataset,
such as true- and false-positive rate. This protects the user from
jumping to misleading conclusions.

4. Robustness

All methods are vulnerable to technical and biological noise, and
a universal harmonizer should be robust against these. From
a biological perspective, missing values may occur in omics
datasets, which results in data that are difficult to compare di-
rectly without imputation or other rescue steps.

Further complicating this are technical factors such as class
imbalance and sample sizes. An imbalance in sample categories
may limit the effectiveness of biological datasets. We take the
case of a recent SARS-Cov-2 patient study as an example [109]. In
this, 2 imbalanced sample classes were contrasted with a 3-fold
difference in sample representation across classes. While this
was likely unavoidable owing to the disruptive effects of the on-
going COVID-19 (coronavirus disease 2019) pandemic, this may
skew a fragile algorithm towards features in the overrepresented
category. This is especially true in cases where 2 conditions may
be closely related or may have a similar signal fingerprint to
begin with, such as SARS (severe acute respiratory syndrome)
and COVID-19 [110, 111]. Conclusions drawn from such studies
can potentially have global effects on diagnostic tests and health
policies, with downstream effects on public health. Meanwhile,
an insufficient sample size may reduce an algorithm’s effective-
ness or lead to false-positive signals from its limited feature
set. Finally, technical variation in the data has the potential to
significantly contaminate results with non-biological noise and
should be avoided where possible [77]. These 3 technical prob-
lems can be avoided with careful experimental design, but in
some cases this may not be possible, especially in situations

where sample mass is limited or special biological conditions
are under study (e.g., rare phenotypes or geographical, social,
economical, and political barriers). Intra-modality harmoniza-
tion methods can buffer some of this irrelevant variation (Ta-
ble 3) but have their limitations.

5. Applications

There is a wide range of potential applications for a sufficiently
advanced universal harmonizer across all fields of biology. On
a general level, identifying biological pathways contributing to
a phenotype allows a user to establish a molecular fingerprint
for an organism’s phenotype or cell state. Given one piece of
information, the user can then infer the state of the other. In
medicine, applying this technique to a patient will improve the
speed and accuracy of clinical diagnoses.

With this knowledge, an opportunity to achieve an intended
phenotype by targeting the appropriate biomolecular switches
exists. Epigenomic editing is still in its infancy but is an active
area of research with profound clinical implications across all
diseases [112, 113]. CRISPR-Cas9 [114] or small RNA-mediated
methods have potential in treating complex diseases such as
cystic fibrosis by suppressing the mucin production machinery
or by inducing the production of functional CFTR variants [115].
A similar approach reversed an intellectual disability phenotype
in mice [116]. The field of cancer research and treatment is likely
to benefit from this as well because it involves the dysregulation
of many pathways and is challenging to treat with conventional
therapies [113]. From the opposite perspective, it will be possible
to also identify drug adverse effects by examining the biological
pathways they will affect. Clinicians can then design mitigating
strategies.

Overall, knowing the biological pathways involved in a com-
plex phenotype at the very least highlights them for further in-
vestigation. A deeper understanding of biology will result, which
feeds back positively into all possible applications.

Conclusion

To minimize confusion around method scope, we developed a
classification system for data integrative strategies. We define
”data harmonization” as the unification of low-level features
across different data modalities and distinguish this from the
broader, inconsistent usage of ”data integration” in the litera-
ture.

Although substantial barriers to universal multimodal data
harmonization exist, we highlight several points and strategies
of interest, which some existing harmonization methods al-
ready account for and implement. To resolve the heterogene-
ity across different epigenomics datasets, transcriptomics data
are used in all state-of-the-art methods as a reference point be-
cause their properties are relatively well understood and they
are commonly used in experiments. A hypothetical universal
harmonizer can take advantage of this property by making the
reasonable assumption that transcriptomics data will be present
and using this to anchor a method. This can further act as a
bridge between epigenomic and functional omics data, allow-
ing protein and metabolite information to be included. Combin-
ing these epigenomic and functional signatures allows a system-
level view to be obtained.

A fundamental problem in data harmonization is to consis-
tently represent heterogeneous epigenomics datasets. A possi-
ble solution is reformulating data as generic matrices matched
on samples, allowing the use of flexible techniques such as ma-
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trix factorization. In addition, the rising field of deep learn-
ing is capable of resolving non-linear relationships in large
complex datasets and is therefore well suited to this task.
Substantial advancements in multimodal data harmonization
are expected by applying a combination of these strategies,
and applying this to unlock the full power of both exist-
ing and future biological datasets will remove a major bottle-
neck of systems biology, unlocking a new paradigm of medical
applications.
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