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ABSTRACT Serratia marcescens is an opportunistic pathogen that causes respira-
tory, urinary, and digestive tract infections in humans. Here, we describe the annota-
tion of Serratia marcescens myophage MyoSmar. The 68,745-bp genome encodes
105 predicted proteins and is most similar to the genomes of Pseudomonas PB1-like
viruses.

Serratia marcescens is an opportunistic bacterium that causes urinary, respiratory,
and digestive tract infections of humans (1). Many S. marcescens strains have

acquired resistance to critical antibiotics through an extended-spectrum beta-
lactamase (2). Bacteriophage represent a potential alternative therapeutic, and we
describe here the genome of the S. marcescens myophage MyoSmar.

Bacteriophage MyoSmar was isolated from filtered water (pore size, 0.2 �m) col-
lected at a College Station Research Park pond (College Station, TX) by its ability to form
plaques on lawns of S. marcescens D1 cells (catalog number 8887172; Ward’s Science).
Both the host and phage were cultured at 30°C in LB broth and agar (BD) with the soft
agar overlay method described by Adams (3). Crude samples were negatively stained
with 2% (wt/vol) uranyl acetate and then viewed by transmission electron microscopy
at the Texas A&M Microscopy and Imaging Center to determine phage morphology (4).
Genomic DNA was purified using the shotgun library preparation modification of the
Wizard DNA clean-up system (Promega), and a paired-end 250-bp library was prepared
using an Illumina TruSeq Nano low-throughput kit (5). Sequencing occurred on the
Illumina MiSeq platform with v2 500-cycle chemistry. The 417,609 total sequence reads
in the index were quality controlled with FastQC (http://www.bioinformatics.babraham
.ac.uk/projects/fastqc/). Trimming occurred using the FASTX-Toolkit v0.0.14 (http://
hannonlab.cshl.edu/fastx_toolkit/). Finally, a single contig with 632-fold coverage was
assembled using SPAdes v3.5.0 (6). PCR across the contig ends (forward primer,
5=-ATCGCTAACTCTATCGCTTCTATC-3=; reverse primer, 5=-CCTATTCGCCCGACTCAATAA
A-3=) and Sanger sequencing of the resulting product were used to confirm that the
contig sequence was complete and correct. Structural annotations were completed
using ARAGORN v2.36, Glimmer v3.0, and MetaGeneAnnotator v1.0 (7–9). TransTermHP
v2.09 predicted Rho-independent terminators (10). Gene function predictions were
made using primarily InterProScan v5.22-61 and BLAST v2.2.31, but also TMHMM v2.0
(11–13). BLAST was performed against the NCBI nonredundant database and UniProtKB
Swiss-Prot and TrEMBL databases, s with a 0.001 minimum expectation value cutoff
(14). All of the tools listed were used with default parameters and are in the Center for
Phage Technology Galaxy and Web Apollo instances (https://cpt.tamu.edu/galaxy
-pub/) (15, 16).

MyoSmar is a myophage with a 68,745-bp genome. With its 105 predicted protein-
coding regions, of which only 19 were ascribed a putative function, and no tRNAs
detected, MyoSmar has 92.8% coding density and a G�C content of 49%. PhageTerm
predicted 3,559-bp terminal repeats, and the genome was reopened with the repeat at
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the left boundary (17). Based on a genome-wide comparison using progressiveMauve
v.2.4.0, MyoSmar is most closely related to Escherichia phage ECML-117 (GenBank
accession number JX128258), with 17.41% nucleotide identity and 47 similar proteins
(18). Despite lower nucleotide identity, MyoSmar also shares at least 49 proteins with
various Pseudomonas phages, including Pseudomonas phage PB1 (GenBank accession
number EU716414). While the PB1-like viruses primarily infect Pseudomonas species,
the genome organization and size similar to those of the PB1-like viruses indicate that
S. marcescens phage MyoSmar may fit into this group of phages, which are reported to
be isolated from and present within metagenomic data sets from diverse global
environments (19).

Data availability. The genome sequence and associated data for phage MyoSmar

were deposited under GenBank accession number MN062189, BioProject accession
number PRJNA222858, SRA accession number SRR8869239, and BioSample accession
number SAMN11360398.
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