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Impacts of solar intermittency on future
photovoltaic reliability
Jun Yin 1, Annalisa Molini 2,3 & Amilcare Porporato 4,5✉

As photovoltaic power is expanding rapidly worldwide, it is imperative to assess its promise

under future climate scenarios. While a great deal of research has been devoted to trends in

mean solar radiation, less attention has been paid to its intermittent character, a key chal-

lenge when compounded with uncertainties related to climate variability. Using both satellite

data and climate model outputs, we characterize solar radiation intermittency to assess

future photovoltaic reliability. We find that the relation between the future power supply and

long-term mean solar radiation trends is spatially heterogeneous, showing power reliability is

more sensitive to the fluctuations of mean solar radiation in hot arid regions. Our results

highlight how reliability analysis must account simultaneously for the mean and intermittency

of solar inputs when assessing the impacts of climate change on photovoltaics.
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Increasing the use of solar energy is widely regarded as one of
the most effective approaches to reduce CO2 emissions, yet the
short-term intermittent nature imposes definite limitations to

its reliability. While this problem may be partially solved by
power storage, geographic dispersion, load control, and radiation
forecasting1–3, it still has significant impacts on the grid inte-
gration of solar energy. For instance, photovoltaic power plants in
Northwestern China (capacity of 43.87 GW in 2019, 1/3 of Chi-
na’s total) were punished for providing intermittent energy to the
Northwest Grid with fines of $28 million US dollars in 2017, $42
million in 2018, and $28 million for the first half of the year 2019,
whereas coal-fired and hydropower plants were rewarded for
their constant and even dispatchable sources of electricity4–6.
Similarly, the example of Kauai island, Hawaii, a world pioneer in
using renewable energy7, currently relies on diesel generators on
overcast days8,9. While the solar radiation varies across a range of
timescales, here we focus on the daily level, which accounts for a
significant portion of the penalty in the case of the Northwestern
China4,5 and is closely related to the power reliability in Kauai,
Hawaii9.

The daily radiation is expected to change in future climates due
to altered cloud and aerosol patterns10–14, presenting additional
challenges for the long-term planning and management of solar
energy. Previous studies have focused mostly on the relative
change of long-term mean radiation input15–19. While mean
metrics are essential, the portion of time with energy supply lower
than the demand, termed loss-of-load probability (LOLP)20,
which is related to the reliability and the market values of power
output, cannot be captured by mean values alone. Power relia-
bility is vital for grid planning and management. For example, the
solar plant from Tesla is expected to provide 52MWh of elec-
tricity every evening to the power grid in Kauai, Hawaii7. Tesla’s
design of 13MW solar array and 52MWh effective battery sto-
rage result in an LOLP of 0.12, possibly maximizing the net profit
while still satisfying the reliability requirement9. In a grid-
connected system, LOLP is directly associated with the operating
cost of the peaking plants (e.g., diesel generators in Kauai,
Hawaii8,9, hydropower stations in Northwest of China21, gas
turbines in the Great Plains, United States22) and thus linked to
the market values of the solar energy.

To investigate the impacts of future climates on LOLP, we
combine here satellite-derived data and climate model outputs. In
particular, we focus on the impact of incident solar irradiance,
one of the dominant factors controlling solar power
generation15,17,18. We show the nonlinear behaviors of LOLP in
response to climate change, pointing towards a tradeoff between
the potential power outputs and the power reliability.

Results
Characterizing solar energy intermittency. We begin our
investigation with an analysis of the clearness index, K, defined as
the ratio between the near-surface global horizontal irradiance
(GHI, including direct and diffuse irradiance) and the corre-
sponding extraterrestrial horizontal irradiance (see “Methods”
section). This index accounts for the scattering, absorption, and
reflection of solar radiation from all optically active constituents
in the atmosphere, such as clouds and aerosols, and is often used
in solar energy industry23–26. For example, we consider South-
eastern Romania’s case, where climate change has shown strong
regional impacts27 and the case of Dubai, UAE, which is pursuing
an ambitious plan to foster solar energy development in the
region28. Romania and UAE, located in the continental and desert
climatic zones, also have two contrasting cloud seasonality (see
Supplementary Fig. 1) and drastically different solar energy
production potentials. We use satellite data from Clouds and the

Earth’s Radiant Energy System (CERES), which are based on
column-model estimates and have been already used for solar
power assessment29,30. Such multi-decadal records allow us to
characterize the empirical distributions of daily K. As can be seen
in Fig. 1, the K distributions for larger mean values (denoted as μ
and also referred to as the mean clearness index) tend to have
longer left tails, which are associated with the weaker solar
radiation and lower power generation.

From the K distribution, the LOLP of a solar power plant
operating at daily basis (e.g., the Tesla’s power plant at Kauai,
Hawaii) can be estimated as the fraction of days with solar
radiation lower than the demand value,

LOLP ¼
Z KD

0
f ðKÞdK; ð1Þ

where f (K) is the probability density function (pdf) of K, and KD

is the value of K that is just sufficient to meet the energy demand
(see “Methods” section). LOLP is, therefore, the cumulative
density function (CDF) of K at KD. This metric has long been
used for designing a stand-alone (off-grid) photovoltaic power
system31–33 and is also a critical reference for evaluating a grid-
connected system20. The constant demand KD in (1) is similar in
spirit to the regulation from Northwest Grid of China, which was
originally issued for coal plants considering their relatively
constant power output but was recently extended to solar and
wind power plants. A thorough characterization of the global
solar power intermittency and its response to climate change
using the LOLP is a fundamental starting point to assess the
future reliability of photovoltaic.

Climate-change impacts on power reliability can be assessed by
considering the change of LOLP during the lifespan of typical
photovoltaic modules. Going back to the case of the Southern
Romania, a solar plant designed under historical climate records
of 2001–2009 is assumed to have a design LOLP, LOLPD, of 0.3.
Over the following nine years (2010–2018), the mean of K
increases in both January (Δμ = 0.015) and July (Δμ = 0.03),
which may be associated with the change of climate seasonality34.
The corresponding values of LOLP drop from the design value of
0.3 to 0.27 in winter (ΔLOLP=−0.03) and to 0.21 in summer
(ΔLOLP=−0.09), respectively (see the hatched and shaded areas
in Fig. 1a, b). For the case in Dubai, aerosol optical depth trends35

may account for the increase of μ in winter, leading to a decrease
of LOLP (Fig. 1c), while the monthly mean clearness index
remains relatively constant in summer (Fig. 1d). The comparisons
between these two periods (2001–2009 and 2010–2018) objec-
tively quantify not only the increase in mean surface solar
radiation, but also the increase in its reliability.

With this methodology, we now move to the future climate
scenarios and use climate model outputs (see “Methods” section)
to calculate the changes of μ and LOLP between 2006–2015 and
2041–2050, consistently with the typical lifespan of photovoltaic
modules. As shown in Fig. 2a, b and in agreement with previous
studies15, the change of solar radiation is evident in some regions
and show marked seasonal variations. The solar radiation in
Europe is projected to decrease in January and increase in July,
which may be associated with the projected changes in rainfall
seasonality and the corresponding cloud variations34. The
decrease in solar radiation in the Middle East may be associated
with large-scale circulation36, cloudiness trends37, or the positive
trends of aerosol optical depth as documented over large parts of
the Middle East for the period 2001–201235.

This redistribution of the Earth’s energy and shifts in climate
seasonality38 have direct impacts on solar power reliability as
quantified by the corresponding variations of LOLP (see Fig. 2c, d).
Although it is apparent that increasing solar radiation (Δμ > 0)
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often leads to more reliable power output (ΔLOLP < 0), this
relationship is clearly nonlinear. For example, the slight decrease of
solar radiation in the Middle East and Northern Africa results in a
significant increase of LOLP; an increase of solar radiation in the
west of Amazon rainfall forest in July leads to a sharp decrease of
LOLP; strong variations in both radiation and power reliability are
shown in the Northern United States in January. In what follows,
we will investigate this nonlinear relationship to quantitatively link
the previous reports on mean solar radiation to one of our major
concerns on power reliability.

Theoretical framework for power reliability. The case studies in
Fig. 1 and geographical patterns in Fig. 2 suggest that LOLP may
be linked to the distribution of K, which in the solar industry is
often associated with the mean clearness index, μ39,40. To sys-
tematically and theoretically assess this linkage, we consider in
detail satellite data as well as climate model outputs under the
historical climate conditions. We obtained the statistics of K from
all regions over the world with μ ranging from 0.3 to 0.7 with a
binning interval of 0.05 (see dark color curves in Fig. 3a and
Supplementary Fig. 7). As can be seen, f(K) tends to be positively
skewed in regions with smaller μ and negatively skewed in regions
with larger μ (see Fig. 3a). Since the diffuse radiation has the largest
variations for moderate K39, which includes direct and diffuse
radiation, it is logical to expect σ first increases and then decreases
with rising μ as presented in Fig. 3b. Overall, such empirical dis-
tributions even under changing climate conditions turn out to be
well described by beta distributions (see “Methods” section).

One may wonder whether these characteristics can vary in
response to changing climates. To address this point, we checked

the statistics of K at different periods (see the light-color curves in
Fig. 3a, Supplementary Figs. 7 and 8). The results show that the
distributions of K appear identical and the μ ~ σ relationships
almost remain unchanged. These behaviors essentially describe
how the intermittency of solar radiation (i.e., σ) will adjust after
the change of mean solar radiation (i.e., μ), providing valuable
information for solar power planning and management.

The invariant characteristics of K allow us to link Δμ/μ to
ΔLOLP between different periods and thus, in turn, to obtain
power-reliability information from previous reports on long-term
mean solar radiation. Operationally, this can be accomplished by
Taylor expanding Eq. (1) to first order as

ΔLOLP � μ
∂LOLP
∂μ|fflfflfflfflffl{zfflfflfflfflffl}
Ls

Δμ

μ
´ 100%

� �
; ð2Þ

where Ls is the sensitivity of LOLP to μ and can be derived
analytically for the beta distribution of K (see “Methods” section),
and the change of μ in percentage format is usually consistent
with other reports. In Eq. (2), the first term evaluates the climate
impacts in terms of LOLP, whereas the term in the bracket
assesses the future solar radiation in the conventional appor-
ach15–19. The relation between the two, ΔLOLP and Δμ/μ, is
clearly associated with the sensitivity parameter Ls, a nonlinear
function of μ and KD (or design LOLP, see Eq. (11) in “Methods”
section). Particularly interesting is the fact that the absolute values
of Ls are larger in sunny regions/seasons with larger μ (see
Fig. 4a). This may be accounted for by the fact that the small
perturbation of μ in sunny regions tends to have larger change in
the variability of solar radiation (i.e., large absolute values of
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Fig. 1 Examples of climate impacts on solar radiation and photovoltaic power reliability. The distribution of clearness index (K) derived from the CERES
data in (a, c) January and (b, d) July during 2001–2009 (blue lines) and during 2010–2018 (red lines) in (a, b) Southern Romania and (c, d) Dubai. The
hatched areas indicate the probability when power generation does not meet the demand, the loss-of-load probability (LOLP). The averages of clearness
index are marked by the vertical dash lines and the values are reported in Supplementary Table 1. Source data are provided as a Source Data file.
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dσ/dμ, see right side of Fig. 3c), which is obviously associated with
the intermittency of solar energy. Since these are also the regions
of the world where the largest solar plants are expected to be
deployed in the future, this fact should be considered with great
attention in reliability analysis.

Climate model outputs corroborate the previous analytical
results. Figure 4d shows Δμ/μ and ΔLOLP between 2006–2015
and 2041–2050 for given values of μ and design LOLP. The slopes
of these two quantities are reported in Fig. 4b, showing similar
patterns as their analytical counterparts (Fig. 4a).

With the obtained nonlinear function of Ls, one can readily
infer the power reliability. To facilitate this, we mapped the
analytical solution of Ls in Fig. 4a to each location over the world
with monthly mean clearness index from CERES data (see Fig. 5
and Supplementary Figs. 9 and 10). These maps could serve as
lookup tables to assess power reliability in future climates. For
example, Fig. 5 shows that Ls is approximately −0.8 in January
and −1.6 in July in Southern Romania for a design LOLP of 0.3.
The mean solar radiation in this region is projected to vary
around −15~0% in winter and around −5~5% in summer toward
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Fig. 2 Variations of solar radiation and solar power reliability predicted from climate models. The color at each grid point represents the ensemble
means of (a, b) the relative change of mean clearness index (Δμ/μ) and (c, d) the change of loss-of-load probability (ΔLOLP) between 2006–2015 and
2041–2050 in the month of (a, c) January and (b, d) July from 11 climate model outputs. The LOLP during 2006–2015 (i.e., design LOLP) is set as 0.3; maps
with other design LOLP show similar patterns (see Supplementary Figs. 2 and 3). The dots show the ensemble mean of the corresponding variables are
statistically different than zero, suggesting consistent variations of solar radiation or reliability from most climate models (t-test, 5% significance level;
statistics of the sign of the changes are given in Supplementary Figs. 4–6). Source data are provided as a Source Data file.
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the end of the century18. Multiplying these variations by Ls, one
can find the impacts of these variations on LOLP (i.e., 0~12% in
winter and −8~8% in summer). While the winter season has
larger variations in solar radiation, it also has a small absolute
value of Ls so that the impacts on future power reliability in
winter are reduced. This analysis is corroborated by the results
from climate-model outputs as shown in Fig. 4c, which suggests
larger spread of ΔLOLP but slightly smaller change of Δμ/μ in
summer in the surrounding of Romania.

Discussion
The heterogeneous distribution of LOLP sensitivity in Fig. 5
essentially stems from the nonlinear relationship between μ and σ,
which remains relatively constant under changing climates.
Lower absolute values of Ls with smaller clearness index suggest
that the solar power in humid subtropics may have lower
potential for large variability in future climates. This is consistent
with the observed σ ~ μ relationship in Fig. 3b, where these slopes
are flatter for smaller μ. Meanwhile, the humid subtropics are
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predicted to have relatively more solar radiation in the future
climate scenarios15,17. The multiplication of small negative Ls
with positive Δμ yields small but negative ΔLOLP, suggesting
slightly higher power reliability. On the other hand, the arid hot
regions are predicted to have less solar radiation but could yield
much lower power reliability due to the strong LOLP sensitivity.

Our proposed framework may be further extended to diagnose
the impacts of power storage, which is regarded as one of the
most important solutions to the intermittency problems. Power
storage smooths the power output to provide reliable energy. In
our analysis, this effect may be considered by reducing the daily
variability of future solar radiation and evaluating its impacts on
LOLP (see “Methods” section). As expected, solar radiation with
reduced variability has smaller LOLP, showing that increased
storage can be used to mitigate the intermittency’s impacts in
most parts of the world. However, this may not be sufficient in a
few regions such as the Middle East (see Supplementary Fig. 11).
When mean solar radiation is significantly reduced as predicted
by climate models, it may require increasing both the power
storage capacity and solar module size.

To investigate more detailed grid operation and conduct cost-
benefit analysis of various mitigation strategies, the proposed
framework may be extended by statistically downscaling the daily
solar radiation to the hourly timescale39,41 and involving multiple
power sectors for power generation, storage, transmission, dis-
tribution, marketing, and technology development1,2. Our fra-
mework could also be used to analyze the temperature impacts on
power reliability (see “Methods” section), although it is argued
that the temperature impacts on photovoltaic power generation
appear much weaker than the solar radiation impacts over the
lifespan of photovoltaic modules36.

In summary, our results have shown how the impacts of this
radiation change on power reliability could be significant due to
the large absolute values of LOLP sensitivity, which had not
emphasized previously. The sensitivity analysis points towards a
tradeoff between the mean solar radiation that quantifies the total
potential solar power and the power reliability, which being
related to intermittency remains a major concern in the absence

of large power storage options. This contrasting behavior between
solar power availability and reliability requires special attention in
assessments of future solar energy scenarios.

Methods
Clearness index (K). The daily clearness index, K, is defined as

K ¼

Z T

0
GHIðtÞdt

Z T

0
EHIðtÞdt

; ð3Þ

where T is the length of 1 day, GHI is the near-surface global horizontal irradiance,
which is the sum of the direct and diffuse irradiance, and EHI the extraterrestrial
horizontal irradiance. Daily GHI are obtained from CERES SYN1deg during
2001–2018 and from 11 climate model outputs (ACCESS1.3, BCC-CSM1.1 m,
CanESM2, CCSM4, CMCC-CMS, CSIRO-Mk3.6.0, EC-EARTH, GFDL-CM3,
INM-CM4, IPSL-CM5A, and MPI-ESM) in “rcp45” experiment during 2006–2015
and 2041–2050. All these data have been used to obtain the empirical distributions
of K for calculating the loss-of-load probability as explained next.

Loss-of-load probability (LOLP). The photovoltaic power output is related to the
incident solar radiation and other factors controlling the solar cell efficiency15.
Each month, the Sun’s declination angle has small variations; the daily incident
solar radiation on a fixed or tracking array can be approximated as a monotonic
function of daily clearness index42. Factors such as soiling and tree shading on solar
modules could have notable impacts on power generation but can be controlled by
regular maintanence. The solar cell efficiency factors such as air temperature and
wind speed usually have only secondary impacts and are discussed in the following
“Methods” section. Regarding climate change impacts, the incident solar radiation
has been identified as the dominant factor for photovoltaic power generation. For
this reason, we model the power output as a monotonic function of the clearness
index, say p= g(K). This function can be used to estimate the LOLP. Similarly to
the off-grid version of a photovoltaic software43,44, LOLP can be defined as the
fraction of days when daily energy supply (p) is lower than the daily demand (pD).
We obtain LOLP as the derived distribution of K,

LOLP ¼ FðpD ¼ gðKDÞÞ ¼ FðKDÞ ¼
Z KD

0
f ðKÞdK; ð4Þ

where KD is the specific value of K that is just enough to generate the demanding
energy pD, f(·) and F(·) are the probability and cumulative density function of K.
These functions are estimated from multi-year historical climate records, and thus
the corresponding LOLP already captures the interannual variability of daily power
generation. Such estimates are referred to as design LOLP, LOLPD. For the lifespan
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Fig. 5 Global maps of LOLP sensitivity (Ls). This sensitivity in (a) January and (b) July is obtained from analytical solutions with design LOLP of 0.3 and
solar radiation climatology from CERES. Source data are provided as a Source Data file.
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of typical photovoltaic modules (20–30 years), one can then quantify the climate
impacts on power reliability as the change of LOLP from its design value.

LOLP sensitivity (Ls). The distributions of K enters the LOLP expression in Eq.
(4). As presented in Fig. 3a, the distribution of K tends to be positively skewed for
smaller mean value of K (denoted as μ) and negatively skewed for larger μ. These
behaviors may be described as beta distributions naturally bounded between 0 and
1. This is confirmed by the results of the Kolmogorov-Smirnov goodness-of-fit tests
over most regions in the world in different climate zones (see Supplementary
Fig. 12 and Supplementary Table 2)

fbðK; β1; β2Þ ¼
Γðβ1 þ β2Þ
Γðβ1ÞΓðβ2Þ

Kβ1�1ð1� KÞβ2�1; ð5Þ

where β1 and β2 are the shape parameters. Note that this beta distribution is a
parsimonious choice which we prefer to other unbounded distributions (e.g.,
Weibull and extreme value distributions) used in the literature45,46. We stress
however that our framework is not limited to the use of beta distributions but can
easily adopt other distributions if they appear more suitable in some regions (e.g.,
Australia and Western Sahara). These shape parameters can be expressed by the
mean (μ) and standard deviation (σ) of the distribution47,

β1 ¼
μðμ� μ2 � σ2Þ

σ2
; ð6Þ

and

β2 ¼
ð1� μÞðμ� μ2 � σ2Þ

σ2
: ð7Þ

As described in Fig. 3b, the standard deviation may be modeled as a function of
mean (e.g., σ ¼ �0:83μ2 þ 0:65μþ 0:03, the best quadratic fit) so that the
distribution of K can be written as

fbðK; β1; β2Þ ¼ fbðK; β1ðμ; σðμÞÞ; β2ðμ; σðμÞÞÞ: ð8Þ
Substituting (8) into (4) and performing a Taylor expansion to first order yields

ΔLOLP � μ
∂LOLP
∂μ|fflfflfflfflffl{zfflfflfflfflffl}
Ls

Δμ

μ
´ 100%

� �
; ð9Þ

where

Ls ¼ μ
∂σ

∂μ

∂β1
∂σ

þ ∂β1
∂μ

� �
∂F
∂β1

����
K¼KD

þμ
∂σ

∂μ

∂β2
∂σ

þ ∂β2
∂μ

� �
∂F
∂β2

����
K¼KD

; ð10Þ

where Fbð�Þ is the cumulative beta distribution and KD is equivalent to design
LOLP,

LOLPD ¼ FbðKDÞ: ð11Þ
The corresponding analytical solutions of Ls (Fig. 4a) are very similar to its

counterpart calculated numerically as ΔLOLP=ðΔμ=μÞ (Fig. 4b). The
approximation of Taylor expansion to the first order is justified by the fact that Ls is
relatively constant for a small perturbation of μ (see Fig. 4a). Clearly, one can insert
other distributions suitable in some specific regions into Eqs. (4) and (9) to obtain
the corresponding analytical expression for the sensitivity of power reliability.

Impacts of temperature change on power reliability. Temperature influences
the energy conversion efficiency and can have significant impacts on power gen-
eration in hot climates48. It is estimated that photovoltaic power output reduces by
0.45% for each degree increase in temperature49,50. Therefore, we may treat the
temperature rising as equivalent to the increase of power requirement in our
original framework and redefine the parameter KD as

KD ¼ ½1þ γT ðT � TrÞ�KD;r ; ð12Þ
where the temperature factor, γT, is about 0.0045/K, Tr is the reference tempera-
ture, and KD,r is the specific value of K that is just enough to generate the
demanding energy at the reference temperature. With this change, the corre-
sponding LOLP becomes,

LOLP ¼
Z ½1þγT ðT�Tr Þ�KD;r

0
f ðKÞdK: ð13Þ

The change of LOLP from current to future climate conditions can be expressed
as

ΔLOLP � μ
∂LOLP
∂μ|fflfflfflfflffl{zfflfflfflfflffl}
Ls

Δμ

μ
´ 100%

� �
þ T

∂LOLP
∂T|fflfflfflfflffl{zfflfflfflfflffl}
LT

ΔT
T

´ 100%
� �

; ð14Þ

where

LT ¼ TKD;rγT f ðKDÞ: ð15Þ
This expression suggests that the change of LOLP has two parts. This first part

is in Eq. (9) and the second part can be obtained analytically by substituting Eq. (5)

into Eq. (15). The sensitivity for temperature, LT, is always positive (see Eq. (15)),
meaning that rising temperature increases the LOLP.

Impact of power storage on power reliability. Power storage at multiday time-
scale, if feasible, would obviously help improve power reliability. To explore this
issue within the scope of the present analysis, as a proof of concept, we simply
smoothed the daily clearness index to roughly estimate the impacts of power
storage on power reliability

Kb ¼ μþ bðK � μÞ; ð16Þ
where the clearness index K is smoothed into Kb. The corresponding standard
deviation becomes

σKb
¼ bσ; ð17Þ

where the coefficient b controls the reduction of the variability. This coefficient b is
set as 0.75 and 0.5 for two future scenarios corresponding to the 25 and 50%
variability mitigation.

We applied Eq. (17) to recalculate the clearness index from 11 climate model
outputs during 2041–2050, which were then used to numerically calculate the
LOLP. We showed the change of LOLP with no variability mitigation, 25%
mitigation, and 50% mitigation in Supplementary Fig. 11. Reducing the variability
leads to a decrease of LOLP and thus more reliable power output as expected. This
is generally sufficient for addressing some of the challenges of intermittent solar
power and the uncertainties related to climate change. In some regions, however,
climate models also predict decreasing trends of mean solar radiation, which may
not be compensated only by the power storage. This is the case of the Middle East,
where solar power is projected to be significantly reduced, so that LOLP increases
even with variability mitigation measures (see Supplementary Fig. 11).

Data accuracy. To provide information regarding the data accuracy, we compared
these satellite data and climate model outputs with the data from National Solar
Radiation Database (NSRDB). The latter are produced by ground observations,
satellite data, and meteorological models and are arguably one of the most reliable
datasets for assessing the long-term spatial and temporal variability of the solar
resource51. It should be noted that validating the global solar irradiance and surface
energy balance is one of the biggest challenges in the climate science community52,53.

Two typical outputs with different assimilation models, METSTAT and SUNY,
are achieved in NSRDB [https://rredc.nrel.gov/solar/old_data/nsrdb/] and both are
recommended by NREL. We compared SUNY and METSTAT during 2001–2010
when both products are available (see Supplementary Fig. 13a, b). Of 1415 sites
over the United States (sites with missing data are excluded), the root mean square
errors (RMSE) between these two outputs are around 0.05, which may be
considered as the systematic biases from NSRDB. When further compared these
measurements with satellite data (CERES SYN) in the same locations during the
same period (see Supplementary Fig. 13c–f), one finds similar ranges of RMSE,
suggesting that the satellite products are as accurate as these reliable data.

We then compared the long-term clearness index from the satellite data and the
climate model outputs during 2006–2015 averaged at 280 km equal-area grids over
the world (see Supplementary Figs. 14, 15, and Supplementary Table 3). The RMSE
for some climate models (e.g., CCSM, GFDL) are similar to these SUNY-
METSTAT differences from NSRDB, while for others the RMSE is at least of the
same order of magnitude.

Besides these data comparison, it is also important to note that aerosol is a key
climate component and future aerosol emissions are usually described as different
scenarios such as Representative Concentration Pathways (RCPs)54. Our results are
from RCP45, which includes the projected decline in aerosols during the 21th
century because of the emission controls55. While the future aerosol emissions are
prescribed, not all models include their indirect effects related to the aerosol-cloud
interaction (see Supplementary Table 4), which could have an impact on cloud
formation and the prediction of solar radiation56. However, these indirect effects
do not seem to have strong impacts on the relationship between the mean and
standard deviation of the radiation (see Supplementary Fig. 8), a key feature in our
analysis of power reliability.

Data availability
The climate model data were downloaded from the fifth phase of the Coupled Model
Intercomparison Project website [http://cmip-pcmdi.llnl.gov]. The satellite data from
CERES were obtained from website [https://ceres.larc.nasa.gov/order_data.php]. Source
data are provided with this paper.

Code availability
Matlab code for calculating the analytical solutions of power reliability sensitivity is
available at [https://github.com/jy8/solar]; other codes are available upon request.
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