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ABSTRACT: A suite of low-mature crude oils (five high-sulfur oils and six
low-sulfur oils) from the Huanghekou and the Laizhouwan Sags, Bohai Bay
Basin, are analyzed to investigate the fate of the hopanoids. Abundant
hopanes, such as secohopanes, 25-norhopanes, benzohopanes, aromatized
secohopanes, and sulfide hopanes, are identified, and their carbon isotope
compositions are determined. Varying 13C isotope values of C31 hopane
(−38.7−34.0‰) and C29‑30 hopanes (−38.5−31.5‰) suggest different
bacterial sources of these compounds. The presence of 25-norhopanes with
enriched heavy carbon isotopes in severely biodegraded oils suggests that
they are microbially mediated products. The detection of the isotopically
depleted C29 and C30 D-ring-8,14-secohopanes (−45.6−41.2‰) indicates
that secohopanes are from methane-oxidizing bacteria (methanotrophs).
The presence of isorenieratane, lower aryl isoprenoid ratios, and a good
correlation between the sulfur content and the gammacerane index indicate
the presence of green sulfur bacteria (Chlorobiaceae) under photic zone euxinic conditions. Water column stratification results in
good preservation of the organic matter, and it is in favor of diversity of aquatic microorganisms. The ratios of C35/C34 sulfide
hopane, C35 sulfide hopane-2/C35 sulfide hopane-1, and C35/C34 benzohopane are influenced by the reducing environments in this
region. In addition, the D-ring monoaromatized 8,14-secohopanoid/(D-ring monoaromatized 8,14-secohopanoid + benzohopanes)
and C31−C35 secomoretanes/secohopanes are affected by the maturity. We hypothesize that the reducing environments and thermal
effects are important markers for the hopanoid transformation, including the incorporation of inorganic sulfur in substituting
functional groups, cyclizing, aromatizing, and opening ring C of the hopanoids.

1. INTRODUCTION

Hopanoids are ubiquitous in sediments and crude oils and are
an important indicator for bacteria.1−3 Previous research
studies have shown that hopanoids are more resistant to
biodegradation,4−7 natural weathering processes,8,9 and ther-
mal effects10,11 than n-alkanes, isoprenoids, and bicyclic
sequiterpanes. In addition, the spatial configuration of
hopanoids regularly evolutes from the initial biological isomers
to the following geological counterparts.12 Therefore, many
parameters of hopanoids are used to reflect the depositional
environment,13 thermal maturity,14 and degree of biodegrada-
tion.15 Hopanoids have been used as molecular markers for
oil−oil and oil−source rock correlation in petroleum geo-
chemistry. A major source of hopanoids > C30 in sediments is
formed from the cleavage of the extended side chain of C31−
C35 bacteriohopanepolyols in some cyanobacteria and
heterotrophic and methanotrophic bacteria.16−18 The number,
position, and nature of functional groups in the extended side
chain might represent different species of bacteria.19−22 For
example, hopanoids with five functional groups at the side
chain and an additional hydroxyl group at the C30 or C31

position were found in cyanobacteria20 and methanotrophic
bacteria (with an amino group at C35

22). Hopanoids < C30 are
mainly formed from diplopterol and diploptene without a long
side chain at C-22, which can be found in almost all hopanoid-
producing bacteria.23 Because of the comprehensive impact of
the origin, depositional environment, and diagenetic effects,
the hopanoids occur in many novel types with various
structures, such as hopenes,24,25 isohopanes,26,27 rearranged
hopanes,28−32 aromatized hopanes,33,34 sulfur-containing
hopanes,34−40 and nitrogen-containing hopanes.41,42 Intrigu-
ingly, most hopanoid precursors were found in aerobic
bacteria,23 although their biosynthesis does not require oxygen.
However, some hopanoids were also found in anaerobic
bacteria, such as planctomycetes,43 Petrosia sp.,44 Desulfovibrio,45
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and Rhodoplanes spp.46 Many novel hopanoids were reported
following the development of technology. However, the origin
and pathway of the diagenetic evolution of some novel
hopanoids are obscure. Clearly, a deeper understanding of the
fate of hopanoids during diagenesis needs more data from field
and laboratory studies.
Compound-specific isotope analysis is the effective method

to distinguish the organic matter with specific sources
including chlorophyll, cuticular waxes, and bacteria.47−49

Stable carbon isotopic fractionation may be determined by
the origin and fate of some compounds in the sedimentary
environment.50,51 Compound-specific isotope analysis has
been used for oil−oil and oil−source correlations.52,53 The
carbon isotope of an individual hopane has been reported to
have a special origin, including homohopane, homohop-
17(21)-enes, benzohopanes, neohop-13(18)-enes, and arom-
atized hopanoids.14,24,54−56 Thermal maturation, depositional
environment, and mixture of generated hydrocarbons might
stymy the source analysis of petroleum.49 However, the

fractionation effects in diagenetic reactions likely impact the
carbon isotope values of the precursor molecules.51

Abundant hopanoids including hopanes, secohopanes,
benzohopanes, aromatized secohopanes, and sulfide hopanes
were identified in a suite of low-maturity crude oils from the
Huanghekou East Sag and the Laizhouwan Northeastern Sag.
Therefore, the analysis of the evolution of hopanoids under
reducing lacustrine environments is possible in the study area.
The aims of this study are to show the origin of hopanoids in
reservoir oils using compound-specific carbon isotopic analysis
to illustrate the fate of hopanoids sourced from different
depositional environments and to predict the coeval growing
environment of the dominant aquatic microorganism.

2. GEOLOGICAL SETTING

Bohai Bay Basin in East China (Figure 1) is among one of the
most petroliferous basins, with an area of about 4.2 × 104

km2.57,58 The Bohai Bay Basin is an intracratonic rift basin that
has experienced two major tectonic evolution stages including

Figure 1. (a) Regional tectonic units of the Bohai Bay Basin, Huanghekou East Sag, and Laizhouwan Northeast Sag within the Bohai Bay Basin,
structural units of the study area, and location of wells sampled here and (b) generalized lithology, stratigraphy, and depositional environment of
the Bohai Bay Basin.
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the Paleogene syn-rift stage and the Neogene-Quaternary post-
rift stage.59,60 A series of grabens and half-grabens developed
along major NW- and NE-trending fault sets during the syn-rift
stage.61,62 Three sedimentary sequences from bottom to top
include the Paleogene Kongdian Formation (Ek), the Shahejie
Formation (Es), and the Dongying Formation (Ed), which
were deposited in the syn-rift stage (65−24.6 Ma).63,64 During
the post-rift stage, the whole basin experienced a thermal
subsidence, and the sedimentary sequences consist of the
Neogene Guantao Formation (Ng), the Minghuazhen
Formation (Nm), and the Pingyuan Formation (Qp) from
bottom to top.65

The Huanghekou East Sag and the Laizhouwan Northeast-
ern Sag are located in the south area of the Bohai Sea.29,66,67

The two sags are separated by the Laibei low uplift and are
controlled by NNE and NWW-EW striking extension faults.68

The Huanghekou Sag is one of the margin sags in the Bohai
Bay Basin and is a typical fault depression with a north fault
and a south slop, which is bunded by structural units including
the Bonan low uplift to the north, the Miaoxi South Sag, and
the Laibei low uplift to the east and south.69 The west branch
of the Tanlu Fault passes through the middle of the
Huangkekou Sag, separating the sag into the west sag and
the east sag (Figure 1). The Palaeogene and Neogene strata
are composed of the Ek, Es, Ed, Ng, and Nm in younger ages,
of which Es and Ed are excellent-quality source rocks.69 The
good-quality source rocks in the Huanghekou East Sag are
mainly controlled by tectonic, paleo-climate, paleo-productiv-
ity, and preservation condition of the organic matter.69 The
hot and humid climate is interpreted to cause the high level of
productivity of algae and relative high organic contents in the
source rocks in Es3 in a semideep to deep lake environment.
The Es1−2 source rocks are deposited in the environment of
lower temperatures and are associated with algal blooming and
have a high level of paleo-productivity. The EdL source rocks
with mixed sources of organic matter including algal and
terrigenous plant matter are deposited in a warm and
semihumid climate.69 The reducing environments are in
favor of the preservation of organic matter.69 The Laizhouwan
Northeastern Sag is also a typical marginal sag and it is formed
by the uplift during the Ek-Es4 stages.70 The fluctuation of
subsidence and uplift after the Es4 stage results in large
amounts of deposits, including Es3, Es2, Es1, and Ed.70 The
organic sources of the Es3 member are mainly lower aquatic

organisms and prokaryotes. The bottom water conditions
fluctuate among the stratified, anoxic conditions and fresh-
water, weak reducing conditions.71 The organic matter in the
Es2 member is derived from less aquatic organisms in more
saline and anoxic bottom water than that in the Es1 member.71

Shales in the Ed3 member are characterized by abundant
terrigenous organic matter in the less saline and weaker
reducing depositional conditions.71

3. SAMPLES AND METHODS

Full details have been reported elsewhere72 but are
summarized as follows.

3.1. Samples. A suite of 11 crude oils were analyzed in this
study (Table 1). Four samples were from the Laizhouwan
Northeasten Sag and seven samples were from the
Huanghekou East Sag. A detailed analysis of aliphatic
hydrocarbons was presented in the study of Niu et al.72

The samples obtained from the Laizhouwan Northeastern
Sag were slightly biodegraded, corresponding to level 1 based
on the Peters and Moldowan6 biodegradation scale (abbre-
viated as PM 1). The sulfur contents of these oils were lower
than 0.5%. There were five high sulfur oils (HSOs: BZ35-2,
BZ36-1, BZ36-2, PL31-1, and PL31-2) and two low sulfur oils
(LSOs: BZ35-3 and BZ35-4) obtained from the Huanghekou
East Sag (Table 1). The HSOs experienced a slight to heavy
biodegradation with the PM level from 1 to 5, while LSOs
were on PM level 1.
Isorenieratane was identified in HSOs, illustrating a photic

zone euxinic paleoenvironment.73 Meanwhile, the Gammacer-
ane index (0.08−0.23, average 0.16), C35S/C34S hopane
(0.79−1.10, average 0.91), and the ETR index (0.36−0.44,
average 0.40) of HSOs represented brackish and saline water
conditions. Furthermore, the organic matter mainly originated
from algae and bacteria, and the maturity of all samples was in
the low-mature to mature stage according to the identification
of aliphatic biomarkers.72

3.2. Separation of Aliphatic Hopanes, Benzohopanes,
Secohopanes, and Sulfidic Hopanes. The details of the
separation methods of aliphatic hopanes, benzohopanes,
secohopanes, and sulfidic hopanes were described by Cheng
et al.,74 Jiang et al.,75 Wang et al.,76 and Wu et al.,77

respectively. The methods were introduced briefly in the
following.

Table 1. Biodegradation Level and Bulk Geochemistry Characteristics of the Investigated Lacustrine Oils from Bohai Bay
Marginal Sags

fractions content (%)

sample ID depth (m) formation PM level sulfur content (%) bulk oils δ13C (‰) saturates aromatics resins asphaltenes

Laizhouwan Northeastern Depression
KL6-1 1374.5−1440 N1m

L 2 nd −26.3 57.58 26.26 8.85 3.23
KL6-2 2153−2181 E3d2

L 1 0.31 −27.4 60.00 20.26 10.77 2.56
KL6-3 2561−2565 E3s2 1 0.4 −27.3 57.35 20.41 13.47 3.47
KL6-4 2585−2603 E3s2 1 0.52 −27.6 56.30 21.75 13.01 6.10

Huanghekou Eastern Depression
BZ35-2 2685.5−2703.5 E3d3 1 1.4 −26.8 41.75 24.50 15.00 17.25
BZ35-3 2912.2−2930 E3s2 1 nd −26.6 65.15 16.92 7.58 14.65
BZ36-1 1297−1321.5 N1m

L 5 2.95 −26.8 32.38 37.14 14.29 9.52
BZ36-2 1552−1570 N1g 2 2.07 −26.5 37.17 34.87 15.46 7.24
PL31-1 1507−1529.5 N1g 3 1.12 −26.1 46.10 30.50 11.35 4.61
PL31-2 1241.5−1259 N1g 5 1 −26.1 43.62 36.38 14.47 2.77
BZ35-4 2449−2468.5 E3d2

L 1 0.57 −26.2 58.53 24.04 10.46 3.30
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The hopanes were mainly separated from the aliphatic
fractions. First, the asphaltene was precipitated with excess n-
hexane, and then the maltenes were separated into aliphatic
and aromatic fractions and resins by column chromatography
with n-hexane, n-hexane:dichloromethane (1:2, V/V), and
dichloromethane as rinsing solvents, respectively. The column
chromatograph (15 cm length and 6 mm i.d.) was filled with
activated alumina. The alumina (neutral, 100−200 mesh) were
activated at 450 °C for 5h. The saturated fraction was further
separated into purified n-alkanes and branched/cyclic alkanes
by urea adduction. The hopanes were all enriched in the
second fraction for the analysis of individual carbon isotopes.
The benzohopanes and aromatic secohopanes were all

enriched in the monoaromatic fraction. A total of aromatic
hydrocarbons (ca. 1−10 mg) in a minimum volume of n-
hexane were carefully introduced to the top of the prepared
column chromatograph (15 cm length and 6 mm i.d.) over
activated alumina (450 °C for 5h). The sample container was
rinsed three times with 100 μl n-hexane to fully transfer the
aromatic hydrocarbons into the column. Then, n-hexane:di-
chloromethane (99:1, V/V, 5.5mL) was used to elute the
monoaromatic hydrocarbons. Because of the volatility of the
reagents, this experiment was best carried out at a room
temperature of 25 °C.
The sulfide hopanes were separated by the methylation−

demethylation method. Briefly, the crude oils (1 g) were
dissolved in 5 mL of dichloromethane, and silver tetrafluor-
oborate (5 mol equiv) and methyl iodide (5 mol equiv) were
added into the solvent. After that, the solution was stirred in
the dark at room temperature for 24 h. The reaction products
were centrifuged to separate the supernatant and precipitates,
and the precipitates were removed by filtrating and evaporating
dichloromethane using a rotating evaporator. The oily residue
was mixed with 10 mL of n-hexane and kept in a refrigerator.
Sulfonium salts were isolated by decanting the n-hexane
supernatant after precipitation and centrifugation, and this
procedure was repeated three times. The sulfonium salts were
dissolved in 5 mL of acetonitrile and 10 mol equiv of 7-
azaindole was added afterward, and then the solution was
stirred in darkness for 24 h. The thiophenic fraction was
extracted via n-hexane (10 mL, 3 times). 10 mol equiv of 4-
dimethylaminopyridine was added to the residue and refluxed
for 12 h. The sulfidic fraction was extracted by n-hexane (10
mL, 3 times).
3.3. Gas Chromatography−Mass Spectrometry Anal-

ysis. GC was performed on an HP6890 gas chromatograph
equipped with a DP-5 MS-fused silica column (60 × 0.25 m
i.d. and film thickness 0.25 μm) coupled to an HP 5973 mass
selective detector (the ionization source operates at an electron
beam energy of 70 eV). The aliphatic and aromatic fractions
were analyzed in the same program in which the column was
held at 40 °C for 2 min, which was then increased to 310 °C at
4 °C/min, with a final hold of 20 min. The program of sulfidic
fractions was the same as that of saturate fractions, but the final
hold was extended to 40 min. Helium was used as the carrier
gas at a constant flow rate of 1.0 mL/min.
3.4. Gas Chromatography−Isotope Ratio Mass Spec-

trometry. Carbon isotopic analyses of n-alkanes, isoprenoids,
and monoaromatic hydrocarbons were performed on a
Thermo Scientific Delta V Advantage stable isotope ratio
mass spectrometer system interfaced to a Trace Ultra gas
chromatograph (Thermo Scientific; J&W DB-5 fused silica
column: 30 × 0.25 m i.d. and 0.25 μm film thickness). The GC

oven temperature for the analysis of isotopic hydrocarbons was
initially held at 50 °C for 2 min and increased to 310 °C at 1
°C/min, with a hold of 20 min. The GC oven temperature for
the analysis of monoaromatic hydrocarbons was held at 50 °C
for 2 min, increased to 290 °C at 2 °C/min, and then ramped
to 310 °C at 1 °C/min, with a final hold of 20 min. The
temperature of the isotope ratio mass spectrometry oxidation
oven was 1000 °C. A standard mixture of n-alkanes with
known 13C isotope values was analyzed over five samples to
check the accuracy of the instrument. The isotopic
compositions of all samples were relative to VPDB and were
determined at least twice with a standard deviation for n-
alkanes of ±0.8‰.

4. RESULTS
4.1. Hopanes in the Aliphatic Fraction. 4.1.1. Hopanes.

Hopanes are derived from bacterial membrane precursors and
are widely distributed in sediments and petroleum.78−80 The
integrated distribution of hopanes is shown in Figure 2. C30

17α(H), 21β(H) hopane is the dominant compound among
its homologues. Hopanes range from C27 to C35 without C28.
The abundance of C35 hopanes in HSOs is obviously higher
than that of LSOs. Meanwhile, a higher gammacerane index of
HSOs suggests stratification of the sedimentary water body.80

In addition, the abundance of 17α(H)-22,29,30-trinorhopane
(Tm) in all samples is higher than that of 18α(H)-22,29,30-
trinorneohopane (Ts), indicating the low-mature stage of the
samples.
Hopanes are more resistant to biodegradation than n-

alkanes, isoprenoids, and bicyclic sesquiterpanes.74 In heavily
degraded oils, demethylation of hopanes occurs to form 25-
norhopanes.15,81 The 25-norhopanes are identified in the

Figure 2. Representative mass chromatograms (m/z 191 and 177)
showing the distribution of hopanes and 25-norhopanes in BZ35-2
and BZ36-1 samples. Ts: 8α(H)-22,29,30-trinorneohopane; Tm:
17α(H)-22,29,30-trinorhopane; C29−C35: C29−C35 hopanes; D28-D34:
C28−C34 25-norhopanes.
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heavily biodegraded oils including PL31-2 and BZ36-1,
suggesting that 25-norhopanes are formed by microbial
demethylation of hopanes. In this study, a minor peak of C29
25-norhopane (D29) can be observed in the m/z 191 mass
chromatogram, and hopanes could be identified in the m/z 177
mass chromatogram of PL31-2 and BZ36-1, suggesting
incipient biodegradation of hopane compounds.74

In order to determine potential diagenesis relationships, the
13C isotope values of the series of hopanes and 25-norhopanes
are measured (Table 2). The 13C isotope values of C29 and C30
hopanes range from −38 to −31‰, while δ13C values of most
C31 (22S + 22R) hopanes are more depleted than those of C29
and C30 hopanes, with the range of −39 to −33‰. On the
contrary, in PL31-2 and BZ36-1, 13C isotope values of 25-
norhopanes are enriched in 13C isotope values (−35.8 and
−35.7‰, respectively).
4.1.2. 8,14-Secohopane. Isomers of 8,14-secohopanes can

be identified (Figure 3) by comparing the relative retention
time and mass spectra in previous studies.82,83 All of these
marked peaks in these chromatograms represent compounds
with mass spectra containing a base peak of m/z 123 and a
molecular ion appropriate for secohopanes. The C29 and C30
8,14-secohopanes are recognized by the molecular ions at m/z
400 and 414 and m/z 123, 193, and 267 fragment ions. The
mass spectra of C29 and C30 8,14-secohopanes are listed in the
Supporting Information (Figure S1a,b). Furthermore, six
pseudohomologous series extending to C35 are identified
mainly by the molecular ion at m/z 428, 442, 456, 470, and
484 and the base peak at m/z 191. These compounds can be
classified into secohopanes and secomoretanes. Owing to the
ring C opening, some novel 8,14-secohopanes configured at
the C-8, C-14, C-17, and C-21 positions are found. In most
cases, the peaks occur as pairs from C31 to C35 presumably
because of the occurrence of diastereomers due to the chiral
center at C22.

83 Therefore, the abundances of 8α, 14α, 17α,
21β(H)-secohopanes and 8α, 14β, 17β, 21α(H)-secomor-
etanes are higher than other counterparts.
4.2. Hopanes in the Aromatic Hydrocarbon Fraction.

4.2.1. Benzohopanes. Benzohopanes are separated from
monoaromatic fraction, showing a relatively high abundance
(Figure 4). These C32−C35 benzohopanes are suggested to be
formed by the side-chain cyclization at C20, followed by the

aromatization.84,85 They occur widely in high abundances in
sedimentary rocks and crude oils in carbonate-rich and
evaporitic environments.33,84,85 The C32−C35 benzohopanes
with distributions similar to those of C32−C35 hopanes have
the same base peak at m/z 191 with molecular ions at m/z 432,
446, 460, and 474. The mass spectra of benzohopanes are
listed in the Supporting Information (Figure S1c−f). However,
the 13C isotope values of benzohopanes vary from −36 to
−31‰ (Table 2) and are more enriched than hopanes.
Benzohopanes may be ubiquitous components, especially

abundant in confined and reducing environments.86,87 The
predominance of the C34 counterpart among benzohopanes
has been reported in evaporitic rock samples; however, the
carbon isotope depletion of C32 to C35 benzohopanes in oils is
tentatively attributed to migration effects of hydrocarbons.84

4.2.2. D-Ring Monoaromatic SHs, DSHs, and IDs. The
isomers of 8,14-secohopanoids (SHs), D-ring monoaromatic
8,14-Seco-28-nor-hopanoids (DSHs), and indenyldrimanes
(IDs) are identified in the m/z 365, 351, and 363 mass
chromatograms by comparison of the relative retention time
with those in the literature studies.87,88 The m/z 365, 351, and
363 mass chromatograms show the monoaromatic fraction
from the oil sample in well BZ35-2 (Figure 4). SHs have
abundant C29 and C30 compounds, while the abundance of C31
SH is in minute abundance. The 13C isotope values of C29 and
C30 SHs vary from −45 to −41‰ (Table 2), which is more
depleted than that of hopanes and benzohopanes. DSHs are
the demethylated counterparts of regular SHs.87 The C29 DSH
is the dominant constituent in DSHs and the peaks of C28 to
C30 DSHs occur as pairs. IDs at m/z 363 are a series of
aromatic secohopanoids in oils, which are counterparts of the
regular SHs but containing an extra CC bond in the E-
ring.87 The typical mass spectra of SHs, DSHs, and IDs are
listed in the Supporting Information (Figure S1(g−l)).

4.3. Hopanes in Sulfidic Fraction. A homologous series
of hexacyclic sulfides with a 17α, 21β(H) hopane carbon
skeleton ranging from C30 to C35 are identified by Cyr et al.36

in heavy oils of Northern Alberta. Schaeffer et al.37 described
the structural elucidation of sulfide hopanes and separated
them into eight series. By comparing with the relative retention
time and mass spectra,37 the structures of compound-1 and
compound-2 are represented in Figure 5a. The mass spectra

Table 2. Carbon Isotope of Hopanoidsa

sample
ID

C29H
(‰)

C30H
(‰) (22S + 22R) C31H (‰)

D29H
(‰)

C32BH
(‰)

C33BH
(‰)

C34BH
(‰)

C35BH
(‰)

C29SH
(‰)

C30SH
(‰)

Laizhouwan Northeastern Depression
KL6-1 −37.44 −35.21 nd nd nd nd nd nd nd nd
KL6-2 −37.49 −37.74 −38.66 nd −35.27 −36.00 −32.65 −32.15 −44.65 −44.99
KL6-3 −33.90 −34.34 nd nd nd nd nd nd nd nd
KL6-4 −38.05 −38.53 nd nd nd nd nd nd nd nd

Huanghekou Eastern Depression
BZ35-2 −33.93 −36.33 −37.28 nd −32.01 −32.39 −30.96 −35.58 −43.94 −43.26
BZ35-3 −33.38 −31.47 −34.00 nd nd nd nd nd −41.15 −42.27
BZ36-1 −37.44 −37.56 −36.77 −35.71 −31.27 −32.98 −34.22 −35.28 −45.60 −42.77
BZ36-2 −35.41 −35.12 −37.88 −32.41 −32.04 −31.38 −32.80 −44.06 −42.77
PL31-1 −35.06 −35.93 −35.78 −35.79 −31.34 −31.31 −31.31 −30.88 nd nd
PL31-2 −37.59 −36.99 −35.40 nd nd nd nd nd nd nd
BZ35-4 −34.66 −33.88 −36.62 nd −31.80 −31.95 −30.63 −32.18 −43.90 −43.56

aC29H: C29, 17α, 21β (H)-hopane; C30H: C30, 17α, 21β (H)-hopane; (22S + 22R) C31H: (22S + 22R), C31, 17α, 21β (H)-hopane; D29H: C29, 25-
norhopane; C32BH: C32, benzohopane; C33BH: C33, benzohopane; C34BH: C34, benzohopane; C35BH: C35, benzohopane; C29SH: C29, 8,14-D-ring
monoaromatic secohopane; C30SH: C30, 8,14-D-ring monoaromatic secohopane; nd = not determined.
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are listed in the Supporting Information (Figure S1m−p). The
spectra of the sulfides from these compounds show a base peak
at the molecular ion and doublets of fragments at m/z 191 and
m/z 235 (C31 homologue) + 14n due to the cleavage of ring C.
The mass spectra of compound-1 and compound-2 (Figure
S1m-p) show similarities; however, the presence of a fragment
at m/z 122 in compound-2 with a higher intensity than in the
case of compound-1 is a typical feature of these compounds.37

A compound with a base peak at m/z 395 is co-eluted with
compound-1 of C32 sulfide hopane (C32SH-1, Figure 5b),
resulting in a relatively high abundance of C32SH-1. As shown
in the mass spectrum of C32SH-1 (Figure S1o), the fragments
at m/z 395 and the molecular ion (m/z 484) are similar to the
mass spectrum of compound B (Figure 5d), suggesting the co-
elution of C32SH-1 and compound B. The mass spectrum of

C32SH-2 is shown in Figure S1p, suggesting that C32SH-2 is
less influenced.
The mass spectra of compounds A−E are shown in Figure

5c−g. The spectra of these compounds show a base peak at m/
z 395 and fragments at m/z 121, m/z 163, m/z 191, and m/z
75 (compound A homologue) + 14n (0 ≤ n ≤ 4). Compounds
from A to E show molecular ions from M+ 470 to 526. More
details about the structure of these compounds are beyond the
scope of this paper, which needs further study in future studies.

5. DISCUSSION
5.1. Sources of Hopanes. An important source of high-

molecular-weight hopanoids (>C30) is from the diagenetic
transformation of bacteriohopanepolyols in membrane lipids in
a wide range of prokaryotes including cyanobacteria and
heterotrophic and methanotrophic bacteria.18,23,89 In addition,
lower pseudohomologues (C30 or less) may be related to their

Figure 3. Representative mass chromatograms showing the
distribution of 8,14-secohopanes from C29 to C35 in BZ35-2 samples.

Figure 4. Representative mass chromatograms showing the
distribution of benzohopanes (m/z 191), D-ring monoaromatic
8,14-secohooanoids (m/z 365), D-ring monoaromatic 8,14-seco-28-
norhopanoids (m/z 351), and indenyldrimanes (m/z 363) in
aromatic hydrocarbon of BZ35-2 samples.
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C30 precursors such as diplopterol (hopan-22-ol) or diploptene
(hop-22(29)-ene), found in nearly all hopanoid-producing
bacteria.28,33,90,91 Hopanoids were once thought as biomarkers
of aerobic bacteria (Talbot and Farrimond23 and references
therein) even though their biosynthesis does not require O2.
However, the biosynthesis of the hopanoids has now been
reported in a series of anaerobic bacteria.42,92 Therefore,
abundant hopanes found in aliphatic, aromatic, and sulfidic
fractions might imply that their diagenetic environment may be
closely associated with active microbial activities.
The δ13C values of lipid biomarkers are strongly determined

by the isotopic composition of their biosynthetic precursors
and their biosynthesized pathway.33,93 Generally, it is assumed
that the carbon isotopic fractionation in a diagenetic process is
limited.51 The 13C isotope value differences between C31
hopane and C29−C30 hopanes ranging from −3.3 to 2.2‰
(Figure 6) might illustrate different bacterial sources of these
compounds as these differences are larger than those from a
single bacteriohopanepolyol precursor with a specific 13C
isotope value. There are abundant bacteriohopanepolyols with
different chemical functional groups on the side chain, which
are thought as potential indicators of various organisms. The
differences in diagenetic transformation pathways result in the
formation of homohopanes with different distributions.14 The
commonly occurring bacteriohopane-32,33,34,35-tetrol is
ubiquitous in sediments and soils, and it is found in a diverse
suite of microorganisms (Rohmer19 and references therein).
Therefore, it is not diagnostic for a specific bacterial
community. It is ascertained that a wide range of 13C isotope
values between C31 hopane and C29−C30 hopanes represent
the different precursors of these compounds (Figure 6).

Diplopterol (hopan-22-ol) or diploptene (hop-22(29)-ene)
was believed to be one of the precursors of a lower hopanoid
(<C30).

90 The 13C isotope values of C29 and C30 hopanes may
represent a similar origin, with the differences of 13C isotope
values from −0.8 to 0.7‰ in most samples. Oil samples in
wells BZ35-2, BZ35-3, and BZ35-4 have greater differences of
the δ13C values between C29 and C30 hopanes. Sakata et al.

94

measured the carbon isotopic values of the cultured
cyanobacterium Synechocystic UTEX 2470, finding that the

Figure 5. Representative mass chromatograms showing the distribution of sulfide hopanes from C30 to C35 in sulfide fractions of BZ35-2 samples,
Cx-1: compound-1 of Cx sulfide hopane and Cx-2: compound-2 of Cx sulfide hopane (a); mass chromatograms showing the distribution of
compound A to compound E in sulfide fractions of BZ35-2 samples (b); mass spectra of compound A to compound E (c−g).

Figure 6. Distribution of the carbon isotopes of whole oils, hopanes,
benzohopanes, and aromatic 8,14-secohopanes.
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13C isotope values of C30 diplopterol and diploptene are
enriched (0.09−2.3‰) relative to that of bacteriohoptetrol. It
is likely that the relative contribution of bacteriohopanetetrol
and diplopterol (diploptene) leads to the fluctuation of 13C
isotope values between C29 and C30 hopanes in BZ35-2, BZ35-
3, and BZ35-4 samples.
The 25-norhopane series, also named as 10-demethylho-

panes, generally occur in biodegraded oils and are widely used
to assess the biodegradation level.6 The biological source of
25-norhopanes remains obscure. No microorganism is known
to have the ability to biosynthesize 25-norhopanes.15,73,96 The
25-norhopanes and their counterparts mostly in biodegraded
reservoir oils indicate that 25-norhopanes originate directly
from microbial degradation of hopanes.74,81,96 However, the
degradation compounds of hopanes are not only 25-
norhopanes.97,98 Intriguingly, no 25-norhopanes were observed
in enrichment cultures or pure aerobic bacteria.98 Metha-
nogens living in fresh or brackish water were thought to be
probably responsible for the degradation of hopanes to 25-
norhopanes.95,99 The 25-norhopanes were observed only in
biodegraded oils (PL31-2 and BZ36-1 samples). However, no
25-norhopanes were detected in any of the m/z 177 of the
non-biodegraded oils, perhaps indicating a major origin of
microbial degradation. The 13C isotope values of C29 25-
norhopanes in PL31-2 and BZ36-1 are both higher than those
of C30 hopanes, with deviations of 1.1 and 1.8‰, respectively
(Figure 6). It is likely that the 25-norhopanes are the
microbially mediated demethylation products of hopanoids,
which lead to the enrichment of the carbon isotopes.
Dominance of the C29 25-norhopane suggests incipient
biodegradation of hopane compounds.74

Benzohopanes were reported to be the transformation
products of bacteriohopanetetrol.84,85 Benzohopanes and C31
hopane are both products of a transformation of bacter-
iohopanepolyol. Nevertheless, varying differences of 13C
isotope values (1.5−6.5‰) between these two types of
hopanes might represent (1) the mediation of bacterial
activities and (2) the enrichment of the 13C isotope in the
aromatization of these compounds. The δ13C values of
benzohopanes are even isotopically heavier than those of the
C29−C30 hopanes and the C29 25-norhopane. Liao et al.33

found 13C enrichments of 2−4‰ in aromatized hopanes via
diagenetic alteration and successive dehydrogenation from the
D-ring to the A-ring. In our study, the 13C isotope enrichment
of some compounds is even greater than 5‰, suggesting that
the benzohopanes are not only produced by cyclization of
bacteriohopanepolyol, but they are also derived from
heterotrophic or cyanobacteria in the paleo-ecosystem during
deposition of its source rocks.28 However, the cyanobacteria-
derived biomarkers, such as the 2-methylhopanes21 and 7-,8-
monomethyl heptadecanes,100 are absent in the samples,
probably suggesting that cyanobacteria might have a minor
contribution to the benzohopanes, perhaps indirectly indicat-
ing that the heterotrophic bacteria are responsible for the
origin of the benzohopanes.
The D-ring-8,14-secohopanes in sedimentary organic matter

have been reported for decades,83,101−103 which might be
formed in the subsurface from bacterial C35 hopanoid
precursors.84 The heavily depleted 13C isotopes (−45.6−
41.2‰) of C29 and C30 SHs relative to hopanes and
benzohopanes (Figure 6) tentatively suggest the mixed sources
of SHs from methanotrophs and other bacteria.103,104

Methanotrophs utilizing methane as the carbon source that

produced depleted δ13C values have been reported in previous
research studies.103,104 Freeman et al.50 interpreted the heavily
depleted carbon isotopes of hopanes (up to −65‰) as sources
of various amounts of methylotrophs, that is, recycling of
carbon through methanotrophs. Volkman et al.18 reported a
very light carbon isotope of C29 hop-17(21)-ene (avg.
−50.8‰) from an oil shale in the Huadian Basin, which was
attributed to the contribution of methanotrophs. However, the
13C isotopes of C29 SH (−45.6−41.2‰) and C30 SH (−45−
42.2‰) are less depleted than hopanes with a sole
methanotroph contribution, indicating the mixed input of
some unknown bacterial sources and possibly the methano-
trophs.18,25 It is noteworthy that 3-methylhopanes are not the
samples found in this study, which are similar to the
methylhopanoids in the Huadian Basin, probably indicating
that the original methanotrophs do not have the ability to
biosynthesize 3β-methylhopanoids.18

5.2. Diagenetic Factors Determining the Hopanoid
Distributions. The formation of hopanoids is controlled by
multiple factors, such as bacterial degradation, diagenesis,
thermal maturity, and biological precursors.29,106

Abundant sulfide hopanes are detected in HSOs (Figure 5).
Due to the limited sulfur in microorganisms, the sulfur-
containing compounds are thought to be formed by
incorporated sulfur in functionalized hydrocarbons and
carbohydrates under favorable water conditions.107−109 There
are two mechanisms of incorporating an inorganic sulfur
element into organic matter. First, the molecules are
synthesized via intermolecular sulfur bridges to form micro-
molecules, such as kerogen, asphaltenes, and resins.110 Second,
some functional groups in the molecules are added or
substituted by inorganic reducing sulfur to form organic sulfur
compounds with thiane, thiolane, and thiophene rings.111 Cyr
et al.36 suggested that the predominant peaks of sulfide
hopanes at m/z 442, 456, 470, 484, 498, and 512 were derived
from hopanoids bearing either a thiacyclopentane ring between
C16 and C21 or a thiacyclopentane ring between C20 and C21.
The structures of sulfur hopanes are characterized by the
linkage of the C30 and the C16 or the C20 carbon position via a
sulfur bond. In low-maturity samples, the sulfurization is
closely associated with the bacterial sulfate reduction (BSR)
and other reactions in early diagenesis.112

Numerous studies reported the isomerization and formation
processes of hopanes.14,18,25,91,113−117 A common sequence of
reactions is conversion of bacteriohopanepolyol to hopene to
hopane.25 Nevertheless, rearranged hopanes and novel series of
hopanes might have experienced the more complex trans-
formation process under special conditions.91,118 In this study,
there is a dominance of normal hopane distributions. However,
the 8,14-secohopanes occurring in saturated hydrocarbons
might suggest the special generation mechanism for
secohopanes. The 8,14-secohopanes are considered to be
presumably derived from both hopanes and moretanes via ring
C opening during maturation or degradation because the C-
8,14 bond has the lowest energy in the whole hopane
skeleton.119 Wenger and Isaksen103 reported that the 8,14-
secohopanes were formed via a microbial alteration in the
reservoir. Additionally, the compounds were directly formed
during early diagenesis via transformation of bacteriohopane-
polyol precursors,106 with a high resistance to biodegrada-
tion.103,120 The 8,14-secohopanes were recognized in all
samples, including biodegraded and non-biodegraded oils.
Further, the C31−C35 secomoretane/secohopane ratios have
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negative correlations with thermal maturity parameters
including Ts/(Ts + Tm), C29 ββ/(αα + ββ), and C29 20S/
(20S + 20R) (Figure 7), suggesting the influence of maturity.
The benzohopanes are in high abundance in source rocks

and crude oils under a reducing environment.84,85 Besides
cyclization at C20, Schaeffer et al.

121 reported a novel series of
benzohopanes cyclized at the C16 position. These novel
benzohopanes extending from C31 up to C35 and their mass
spectra show a weak fragment at m/z 191 and a more
pronounced m/z 197 + (n × 14). These benzohopanes always
co-occur with the regular benzohopanes in immature sedi-
ments, particularly under carbonate-rich and evaporitic
conditions.33,121 However, benzohopanes in monoaromatic
hydrocarbons have the base peak of m/z 191 with the
corresponding molecular ions and the lack of C31 compounds,
suggesting that the benzohopanes are all regular counterparts.
Regular benzohopanes are usually formed and enriched at the
early diagenesis stage,101,102 suggesting that the formation of
compounds is not only influenced by thermal maturity but
probably formed by the catalysis of the mineral matrix84 or
active microbial activities.33 The enrichment of the 13C isotope

values might partly indicate that the diagenesis of these
compounds is mediated by microbial reactions.
A series of SHs are particularly abundant in a confined

environment84 and are formed from bacteriohopanepolyols.
However, the formation of aromatic 8,14-secohopanoids is
likely to occur in the later stage of maturation.102 Compared to
benzohopanes, the formation of aromatic 8,14-secohopanes
needs aromatization of the D ring and opening the C ring of
original hopanoid molecules, which requires more energy in
the later stage of oil window.101,102 With an increase in
maturity, SHs would convert to DSHs via demethylation and
to IDs by further aromatization.87 Both benzohopanes and
aromatic 8,14-secohopanes are more resistant to biodegrada-
tion.101 In view of the differences of formation and degradation
between benzohopanes and aromatic 8,14-secohopanes, He
and Lu102 proposed a parameter, that is, D-ring monoarom-
atized 8,14-secohopanoids/(D-ring monoaromatized 8,14-
secohopanoids + benzohopanes) (shortly, MAH) to evaluate
the maturity of sediments and oils. It is suggested that the
value of MAH at 0.3 may be the threshold of oil generation.
However, in the low-mature oil samples, the MAHs are in the
range of 0.83−0.94, which corresponds to the mature to high-

Figure 7. Correlations of C31−C35 SM-SAT/SH-SAT vs Ts/(Ts + Tm), C29 αββ/(ααα + αββ), and C29 20S/(20S + 20R). C31−C35 SM-SAT:
C31−C35 8,14-secomoretanes in saturates. C31−C35 SH-SAT: C31−C35 8,14-secohopanes in saturates.
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mature stage based on He and Lu.102 Therefore, the bacterial
reaction of the compounds cannot be excluded. In addition,
the relative distributions of SHs, DSHs and IDs are different
from that reported in Killops et al.87 In comparison with
higher-maturity oils, there are abundant IDs in the relatively
low-mature ones (Figure 8). This likely suggests that the
formation of IDs might be mediated by microorganism
reactions.87,102 The prominent peaks of SHs, DSHs and IDs
are C30SH, C29DSH, and C29ID, respectively (Figure 4). The
distribution of these compounds is similar to that of hopanes.
However, a trace of aromatic 8,14-secohopanes (>C30) is
tentatively assigned in oils together with the depleted δ13C
values of C29 and C30 SHs, indicating the complexity of the
diagenesis process and bacterial input. If methane is the main
carbon source for the bacterial community, the 13C isotope
values of hopanoids and organic matter would be in the range
of −70 to −90‰.122 These results might imply that hopanoids
from methanotrophs may have a contribution of SHs via
microbial reactions during early diagenesis. Then, the C30
precursor hopanoids are altered and formed the dominance of
C30SH in hopanes.
5.3. Depositional Environment. The high sulfur content

and the identified abundant sulfur-containing hopanoids in
HSOs together with isotopically depleted C29 and C30 SHs
indicate that the depositional environment has an active
carbon and sulfur cycle. The HSOs are mostly formed by the
BSR and thermochemical sulfate reduction (TSR). TSR is
proposed as the thermally driven reaction between a
hydrocarbon and hydrogen sulfide.123 The oils originated
from the TSR reaction generally have high maturity and are
rich in aromatic sulfur compounds including dibenzothio-
phenes and their derivatives.124 This is obviously contradicted
by our samples, which have abundant sulfide compounds
formed by BSR in the low-maturity stage. A specific aryl
isoprenoid, that is, isorenieratane, has been identified in the
HSOs, implying the presence of sulfur bacteria in the photic
zone euxinia of the water column.125 Isorenieratane is
exclusively biosynthesized by anaerobic, photosynthetic,
green sulfur bacteria (Chlorobactene) living in organic-rich
photic zones, where hydrogen sulfide is abundant for the

generation of green sulfur bacteria.126,127 The identification of
isorenieratane and abundance of sulfur-containing compounds
suggest the presence of sulfur-reducing bacteria and green
sulfur bacteria (Chlorobactene) (Figure 9). In addition,
abundant aryl isoprenoids are found in HSOs (Figure 9).
Aryl isoprenoids are thought to be formed from the C−C bond
cleavage of isorenieratene and β-isorenieratene with the
isorenieratene from green sulfur bacteria, whereas β-isorenier-
atene was likely to be formed from the ubiquitous β-
carotene.126,128 Schwark and Frimmel129 proposed the aryl
isoprenoid ratio (AIR, ΣC13−17/ΣC18−22) to assess the
persistence of photic zone euxinia. An AIR > 3.0 suggests a
short-term episodic photic zone euxinic condition, while an
AIR < 3.0 indicates persistent photic zone euxinia. Xu et al.127

used isorenieratane/C18 aryl isoprenoid (Iso/C18) to evaluate
the environment perturbations of Es4U member source rocks
in the Dongying Depression. The source rocks in a marine
setting usually have Iso/C18 < 3.0, whereas marine-related
events (such as summer hurricanes or the East Asian
monsoon) may lead to an abrupt increase in the Iso/C18
ratio. The AIR ranges from 0 to 0.8 (lower than 3.0) for HSOs,
which probably implies a photic zone euxinic environment.
This is consistent with the presence of isorenieratane in the
photic zone euxinia of the water column. This hypothesis
needs to be further investigated. Furthermore, the good
correlation (R2 = 0.86) between the sulfur content and the
gammacerane index (Ga/C30H) indicates that the reducing
depositional environment partly results in the incorporation of
an inorganic sulfur element into organic matters (Figure 10).
The sulfur-reducing bacteria can reduce the elemental sulfur

to hydrogen sulfide, and the green sulfur bacteria would utilize
it as an electron donor to oxidize it back to elemental sulfur.130

The living conditions of green sulfur bacteria are an anaerobic
and a transparent water column.131 Isorenieratane is the
diagenetic product of isorenieratene, which originates from
brown pigmented Chorobiaceae.131 Brown-pigmented green
sulfur bacteria can adapt to the low irradiance and blooms of
the bacteria occur at a 2−80 m depth of the water column
(most water depths are less than 17m).73 However, there is a
low abundance of isorenieratane in HSOs. The three possible

Figure 8. Correlations of C29 20S/(20S + 20R) vs IDs/(IDs + SHs + DSHs) (a), SHs/(IDs + SHs + DSHs) (b), DSHs/(IDs + SHs + DSHs) (c),
and ternary diagram of IDs, SHs, and DSHs (d), showing the relative enrichment of IDs in low-mature samples.
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reasons for the presence of low concentrated isorenieratane are
tentatively explained. First, the effects of migration might result

in the loss of some micromolecular biomarkers including
isorenieratane. Second, isorenieratane might be degraded when
the corresponding source rocks experience the diagenesis
process. Third, the high primary productivity at the upper
chemocline might influence the wavelength distribution of
light. Thus, the relative distribution of green sulfur bacteria
might be influenced. Clearly, the occurrence of brown-
pigmented green sulfur bacteria means a reducing water
column. Together with the HSOs and abundance of organic
sulfur compounds, indicating the good preservation of organic
matters. Moreover, the ratio of pristane (Pr) to phytane (Ph) is
quite low (0.85−1.17) among the HSOs in a reducing
sedimentary environment.132 It is worth nothing that
isorenieratane is also identified in the LSOs and the Pr/Ph
ratio is in the range of 1.1−1.3, implying that the paleo-water
column is also under a reducing condition. However, no sulfide
hopanes in biomarkers are identified in LSOs. The BSR
reaction might probably also occur at the corresponding
reducing water column. Nevertheless, hydrogen sulfide may be
preferentially consumed by abundant ferric ions in sediments
to produce early diagenetic pyrite, resulting in a low sulfur
content of organic matter.133

The isotopically depleted 13C isotope values of aromatic
secohopanes in all samples indicate the occurrence of a
methane cycle during the depositional period, suggesting that
methane is used by special microbes as the main carbon source
and energy.122,134 Volkman et al.18 reported that C29 neohop-
13(18)-ene and C30 hop-17(21)-ene had very negative 13C
isotope values (−50.8 and −43.7‰, respectively) in the
Huadian shale under reducing depositional conditions. This is
attributed to the depletion of 13C isotope values to the
contribution of methanotrophs even though 3β-methylhopanes
and other biomarkers indicative for the methanotrophic
bacterial activity were not detected. Similarly, Xie et al.135

found that stable carbon isotopes of C29 and C30 17α, 21β(H)-
hopanes had a range of −45.6 to −61.5‰ in the Lucaogou
formation oil shale from the Junggar Basin, considerably lighter
than the n-alkanes (ca. −34‰), suggesting the contribution of
methanotrophs. The 13C isotope values of C29 secohopanes
(−45.6−41.2‰) and C30 secohopanes (−45−42.3‰) are
very similar to the isotopes’ depleted values of hopanes in
sediments in which methanotrophs use methane as a carbon
source.105 Methane is produced by methanogenic archaea,
which are anaerobic bacteria,136 while free-living aerobic
methanotrophs are often concentrated at the microaerophilic
interface between oxic and anoxic zones (chemocline).137

Probably, the water column stratification might lead to the
coexistence of anaerobic bacteria (methanogenic and sulfur-
reducing bacteria) and aerobic bacteria (methanotrophs). The
gammacerane index of HSOs is in the range of 0.12−0.23,
suggesting the stratification of a water column and possibly the
brackish water conditions.

5.4. Geological Implications of Hopanoids. Besides the
regular parameters of hopanes, secohopanes, aromatic 8,14-
secohopanes, and sulfide hopanes have also been altered
during the diagenetic process.84,102

In our samples, the MAH parameters also have good
correlations (R2 = 0.67 and 0.62, respectively) with maturity
parameters of saturated hydrocarbons including Ts/(Ts + Tm)
and C29 ββ/(αα + ββ), although the MAH parameter is in a
narrow range of 0.83−0.94 (Figure 11). The ratio of
moretane/hopane is the typical parameter to indicate the
maturity of samples because of the transformation of βα-

Figure 9. Representative m/z 133 mass chromatograms, showing the
distributions of monoaryl isoprenoids (C10−C22), paleorenieratane,
isorenieratane, and renieratane (R) which are typical biomarkers for
green sulfur bacteria (Chlorobiaceae). UK: unknown compound.

Figure 10. Cross-plot of the sulfur content vs Ga/C30H, indicating
the positive influence of a reducing environment on the sulfur
content.
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moretane to αβ-hopane under thermal effects.106 However,
only some studies reported the application of 8,14-
secohopanes in saturated hydrocarbons.82,119 The ratios of
C31−C35 secomoretanes/secohopanes all have good negative
correlations with maturity parameters including Ts/(Ts +
Tm), C29 ββ/(αα + ββ), and C29 20S/(20S + 20R) (Figure 7),
suggesting that the distributions of secomoretanes and
secohopanes are also influenced by mature effects in the
studied samples in this region. The complexity of these
compounds might indicate that the distributions are controlled
by comprehensive factors. At least, the thermal effect might
influence the evolution of 8,14-secohopanes in saturated
hydrocarbons.
Aromatic 8,14-secohopanes were thought to be formed via

thermal degradation of hopanes.87,101 The sequence of
formation is SHs to DSHs to IDs.87 In contrast, IDs are
more enriched in lower-maturity samples, while DSHs are
enriched in higher-maturity samples (Figure 8). This suggests
that other reactions might have participated in the formation of
aromatic 8,14-secohopanes except thermal maturity.
Besides the thermal effects on the distribution mode of

hopanoids, the depositional environments also greatly impact
the formation of hopanoids,106 especially the sulfide hopanes.
The decreasing relative abundance from C30 hopane to C35
hopane is normal in oil samples. However, the relative
abundance of C35 hopane in HSOs is higher than in LSOs,
even slightly higher than the C34 hopane in HSOs, suggesting a
reducing depositional environment. However, the relative
abundance of sulfide hopane is completely different from the
distribution of hopanes (Figure 12). The preferential
incorporation of inorganic sulfur into bacteriohopanepolyol
derivates leading to preservation of the intact carbon
skeleton14,37 might result in the dominance of C35 sulfide
hopane (Figure 12). The ratio of C35/C34 sulfide hopane is in
the range of 2.4−2.9, obviously higher than C35/C34 hopane
(0.82−1.00), suggesting that the incorporation of sulfur might
protect the original carbon skeleton of bacteriohopanepolyol.
The co-elution of compound B and C32SH-1 results in the high
abundance of C32 sulfide hopane (Figure 5). The ratio of C35/
C34 sulfide hopane has a good correlation with C35S/C34S
(Figure 13a), indicating that the long side-chain sulfide
hopanes also experience a similar diagenesis evolution of
hopanes in the low-mature to mature stage. Similarly, C35SH-
2/C35SH-1 with the range of 0.90−1.56 has good correlations
(R2 = 0.99 and 0.88, respectively) with C35S/C34S and Ga/
C30H (Figure 13b,c), indicating that this ratio could be
influenced by the reducing depositional environment. The
sulfide hopanes are formed under the sulfur-containing bottom
water column. The redox water environment might influence
the distributions of compounds. Because of the low-mature to
mature stage of the samples, the C35SH-2/C35SH-1 ratio is

mainly affected by the reducing depositional environment. In
addition, the ratio of C35/C34 benzohopane in the range of
0.30−0.94 also has a good correlation (R2 = 0.79) with that of
the C35S/C34S hopane (Figure 13d). It is proposed that the
long side-chain hopanoids in a reducing depositional environ-
ment may have experienced a similar evolution process, leading
to good correlation between C35 and C34 hopanoids, although
the hopanoids have different molecular structures.
Hopanoids are abundant in sediments and crude oils, and

the compounds are very resistant to biodegradation.4,5,7 The
parameters of hopanes can be used as an oil−source
correlation, for maturity evaluation, and for depositional
environment analyses, such as C3122R/C30H, Ts/(Ts + Tm),
C29Ts/(C29H + C29Ts), C35S/C34S, C31/C30H, C29/C30H,
C31−C35 22S/(22S + 22R), and others.106 In addition, the
secohopanes, aromatic 8,14-secohopanes, and sulfide hopanes
are influenced by the thermal effects and depositional
conditions of related source rocks. These compounds can
provide more detailed information for the formation of high-
sulfur crude oils. This knowledge provides a refined possibility
of oil−oil and oil−source correlations. The BSR-derived high-
sulfur crude oils were sourced from the source rocks under
reducing paleo-conditions with water column stratification.
This organic sedimentary environment is in favor of the growth
of diverse microorganisms and preservation of the organic
matter during the diagenetic process, resulting in the influence
of some ratios, including C35/C34 sulfide hopane, C35SH-2/
C35SH-1, and C35/C34 benzohopane. The parameter of C31−

Figure 11. Correlations of MAH vs Ts/(Ts + Tm) (a) and C29 αββ/(ααα + αββ) (b), showing good correlations between two parameters.

Figure 12. Relative distribution of C30−C35 hopanes and sulfide
hopanes.
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C35 secomoretanes/secohopanes is tentatively affected by the
thermal effect in samples in the region.

6. CONCLUSIONS
Abundant hopanoids are identified in oils, including hopanes,
secohopanes, 25-norhopanes, benzohopanes, aromatized seco-
hopanes, and sulfide hopanes. The very depleted 13C isotope
values of C29 and C30 D-ring-monoaromatic-8,14-secohopanes
indicate the presence of methane-oxidating bacteria (meth-
anotrophs). The bacteria sulfate reduction results in the
formation of HSOs. Perhaps, the stratification of the paleo-
water column results in diverse microorganisms living in the
oxic and anoxic environments.
The thermal effects and depositional environments influence

the distributions of the parameters of secohopanes, aromatic
8,14-secohopanes, and sulfide hopanes. The ratios of C31−C35
secomoretanes/secohopanes are mainly controlled by the
maturity in the low-mature to mature stage in the studied
samples in this region, showing the good negative correlations
between C31−C35 secomoretanes/secohopanes and maturity
parameters of the saturates. Long side-chain hopanoids in a
reducing depositional environment may experience a similar
evolution process in the low-mature to mature stage, resulting
in good correlations between C35/C34 sulfide hopane,
compound-2/compound-1 C35 sulfide hopane, C35/C34
benzohopanes, and C35S/C34S hopanes and the gammacerane
index. The hopanoids in the saturates, aromatics, and sulfide
fractions provide comprehensive information for high-sulfur
crude oils, which is suitable for further oil−source rock
correlations and exploration of HSOs in the Huanghekou
Eastern Sag and the Laizhouwan Northeastern Sag..
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