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Background: Hematology–oncology patients often become severely thrombocytopenic 

and receive prophylactic platelet transfusions when their platelet count drops below 10×109 

platelets/L. This so-called “platelet count trigger” of 10×109 platelets/L is recommended because 

currently available evidence suggests this is the critical concentration at which bleeding risk 

starts to increase. Yet, exposure time and lag time may have biased the results of studies on the 

association between platelet counts and bleeding risks.

Methods: We performed simulation studies to examine possible effects of exposure time and 

lag time on the findings of both randomized trials and observational data.

Results: Exposure time and lag time reduced or even reversed the association between the risk 

of clinically relevant bleeding and platelet counts. The frequency of platelet count measurements 

influenced the observed bleeding risk at a given platelet count trigger. A transfusion trigger of 

10×109 platelets/L resulted in a severely distorted association, which closely resembled the 

association reported in the literature. At triggers of 0, 5, 10, and 20×109 platelets/L the observed 

percentages of patients experiencing bleeding were 18, 19, 19, and 18%. A trigger of 30×109 

platelets/L showed an observed bleeding risk of 16% and triggers of 40 and 50×109 platelets/L 

both resulted in observed bleeding risks of 13%.

Conclusion: The results from our simulation study show how minimal exposure times and 

lag times may have influenced the results from previous studies on platelet counts, transfusion 

strategies, and bleeding risk and caution against the generally recommended universal trigger 

of 10×109 platelets/L.

Keywords: platelet transfusions, platelet counts, bleeding, simulation study, lag time, exposure 

time

Introduction
Hematology–oncology patients often become thrombocytopenic and dependent on 

platelet transfusions for the prevention of spontaneous bleeding.1,2 Currently, these 

platelet transfusions are given prophylactically, mostly when the patient’s platelet 

count drops below 10×109 platelets/L.2,3

Under the current platelet transfusion policy, half the transfused patients still expe-

rience some bleeding. This bleeding is observed mostly in acute myeloid leukemia 

patients, 6%–7% of whom experience serious to life-threatening bleeding (ie, World 

Health Organization grades 3 and 4; resulting in mortality or lasting morbidity, or 

requiring medical intervention).4–8 It has been suggested that in some clinical cir-

cumstances patients should be transfused at higher platelet count triggers, to prevent 
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bleeding.2,3 Conversely, some studies also suggest that for 

certain patients it might be safe to switch to a therapeutic, 

instead of a prophylactic, transfusion strategy.7,9

Furthermore, both the clinical circumstances dictating 

higher platelet count triggers and the exact triggers to be used 

in these circumstances have been shown to be poorly agreed 

upon.1 Some progress in this field has recently been made. 

Several risk factors for bleeding and their relation to platelet 

counts were investigated using a recurrent-event analysis as 

a secondary (ie, observational) analysis of data from a ran-

domized trial.10 However, much more information is needed 

to reliably identify the few patients who need a much more 

intensive transfusion strategy and to distinguish them from 

the many who need fewer transfusions.

Bleeding is more likely to occur if a patient is exposed 

to low platelet counts.11 However, the precise definition of 

“exposed to low platelet counts” is not straightforward. To 

cause bleeding, platelet counts have to drop below a cer-

tain threshold for longer than a certain minimally required 

time (ie, exposure time; Figure 1).12,13 The importance of 

a minimum exposure time is also supported by the notion 

that there is a “fixed platelet requirement” necessary to 

maintain vascular integrity.14 If platelet counts are too low 

for too long, vascular integrity will gradually diminish and 

bleeding will eventually occur. The absolute requirement 

has been calculated to be around 7×109 platelets/L/d.14 

Popular interpretation of this number is that it reflects an 

estimate of the number of platelets needed in circulation 

(ie, the minimally required platelet count). However, the 

number needed in circulation could conceivably be much 

higher. The calculated requirement reflects the number of 

platelets actually used to maintain vascular integrity, and a 

100% efficient use of all platelets in circulation is exceed-

ingly unlikely to ever be realized. Therefore, the threshold 

below which bleeding risk increases is probably higher, but 

remains a matter of speculation. Assuming the presence of 

such a threshold, to prevent bleeding, patients’ platelet counts 

should never stay below the threshold longer than the mini-

mum exposure time. Achieving this goal with prophylactic 

platelet transfusions would then require first, identification 

of both the threshold and the minimum exposure time (ie, 

identifying the target) and second, setting a transfusion 

strategy that meets this target.

Identification of the target involves answering a com-

plicated etiologic question. Setting an appropriate strategy 

involves prediction of the future course of platelet counts 

and the potential influence of transfusions on those counts. 

Running “trigger trials” (ie, randomized trials comparing 

the effectiveness of different platelet count triggers for pro-

phylactic platelet transfusions in the prevention of bleeding) 

tries to tackle both these problems at once. Furthermore, 

both the required target and the influence of transfusions 

on platelet counts depend on many clinical risk factors.2,3,15 

Therefore, optimal triggers are also likely to be different 

for different patients. Choosing both the trigger to be tested 

and the patients to be included in a trial could be done much 

more efficiently if the relation between platelet counts,   

clinical risk factors, and bleeding was unambiguous.

Major problems in the interpretation of published data on 

this subject, both from randomized trials and observational 

research, stem from the effects of exposure time and lag time 

(ie, the time between completing the necessary exposure 

time and the actual occurrence of identifiable symptoms; 

Figure 2).12,13 These two time intervals can have a significant 

distortive influence on observed associations. Further, the 

frequency of platelet count measurements will influence 

the probability of reaching the minimum exposure time 

 (Figure 1). This frequency is likely to be lower in routine 
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Figure 1 Platelet counts, platelet transfusions, and exposure time intervals in a 
single simulated patient with platelet counts performed every day (A) or every 
other day (B).
Notes: Lines represent platelet counts over time. (A) a scenario using a transfusion 
trigger of 10×109 platelets/L and daily platelet count measurements. This scenario 
will result in transfusions on days 11, 13, 16, and 18. Assuming bleeding will occur 
only after platelets counts have remained below the bleeding trigger (ie, 25×109 
platelets/L) for ≥48 hours (ie, minimum exposure time is 48 hours), there will be 
no bleeding in this scenario. (B) a scenario under the exact same assumptions, but 
with platelet counts performed every other day, instead of daily. The transfusion 
normally given at day 16 will be postponed till day 17, since no platelet count 
measurement will be performed on day 16. This delay will cause the third exposure 
interval (ie, interval below the bleeding trigger) to exceed 48 hours, causing bleeding 
in a susceptible patient.
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clinical practice than it is in randomized trigger trials, thereby 

further complicating the interpretation of results from such 

trials for normal clinical practice.

The exact magnitude and even direction of the effects 

of exposure time and lag time on these associations are 

extremely difficult to understand intuitively. Simulation 

studies can be a powerful tool to explore the possible impact 

of difficult to intuit effects by artificially varying the respon-

sible parameters. For this purpose, the exact values of these 

parameters do not even have to be biologically accurate, as 

long as their interrelatedness is reasonably correctly speci-

fied. We therefore performed simulation studies, based on 

realistic assumptions about the relation between platelet 

counts and bleeding risk, to create examples that illustrate 

the possible implications of these often counterintuitive and 

contradictory effects on data from both randomized trials 

and observational studies.

Methods
Simulation
All simulations were performed in the statistical package R.16

Data from our database of 130 acute myeloid leukemia 

patients, undergoing remission induction treatment, were 

used to estimate realistic values for the gradual decrease of 

platelet counts in patients receiving myeloablative therapy 

and count increments after transfusions, during a 30 day 

admission period, without simulating repopulation. This 

study was approved by the medical ethics committee of the 

Leiden University Medical Center, which waived the need 

for informed consent. Since data would not be linked to 

identifying patient characteristics and data could be gath-

ered without inconveniencing (ie, contacting) the patient, 

obtaining informed consent was considered a greater breach 

of privacy. Data from the literature were used to estimate 

the probability of refractoriness and bleeding.9,11,15,17,18 We 

simulated 10,000 patients, with 30 admission days each for 

each arm of our seven armed “trigger trial” (ie, 2,100,000 

patient-days of platelet count and bleeding data).

Platelet counts and platelet transfusions
Platelet count values were simulated by drawing from a nor-

mal distribution, as were daily decreases in platelet counts 

and the 24-hour count increments observed after platelet 

transfusions.

Mean starting platelet count was set at 246×109 platelets/L, 

with the standard deviation set at 69×109 platelets/L. Platelet 

counts were set to decrease on average by a fraction of 0.22 

per day, until they fell below 7×109 platelets/L, after which 

they were set to decrease with 1.54×109 platelets/L (ie, 

0.22×7×109 platelets/L) per day. The variation in decrease 

of the platelet count was simulated with the standard devia-

tion for the decrease set at 4.3×109 platelets/L, taking the 

absolute of the value drawn from a normal distribution with 

mean 0. Whenever the simulated decrease in platelet count 

was greater than the actual platelet count, the new platelet 

count was set to 1×109 platelets/L.

Platelet transfusions were simulated to occur on the day 

the platelet count dropped below the specified transfusion 

trigger. Simulated platelet concentrations at which patients 

would receive a platelet concentrate transfusion, also 

“transfusion triggers” were 5, 10, 20, 30, 40, and 50×109 

platelets/L. A trigger of 0×109 platelets/L was used to indi-

cate no transfusions were given at any time. The effect of 

platelet transfusions was simulated with the mean increment 

of platelet concentration set at 21×109 platelets/L, with the 

standard deviation set at 12×109 platelets/L.
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Figure 2 Platelet counts, platelet transfusions, and bleeding probability in two 
simulated patients.
Notes: Solid lines represent platelet counts (scale on the left y-axis) over time. 
Dashed lines represent bleeding probability (scale on the right y-axis) over time. (A) 
patient 1 and (B) patient 2. Both patients have daily platelet count measurements 
performed and receive transfusions if counts drop below the trigger of 10×109 
platelets/L. Patient 1 has a low bleeding risk with low susceptibility to low platelet 
counts (eg, autologous transplant patient), but is platelet transfusion refractory. 
Patient 2 has normal increments, but has high susceptibility to low platelet counts (eg,  
acute myeloid leukemia patient receiving remission induction treatment). Note that 
bleeding probability in patient 2 is lagging behind low platelet counts. This patient 
also has good increments and subsequent normal decrease in counts. Therefore, 
bleeding risk is high when platelet counts are high and low when platelet counts 
are low.
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Refractoriness to platelet transfusions
Refractoriness (ie, the failure to show an adequate increase 

in platelet count in response to a platelet transfusion) was 

simulated by drawing from a uniform distribution, based 

on a set probability of 5% per transfusion. For simplicity, 

refractoriness of any etiology was set to be irreversible over 

the relatively short period simulated. This resulted, under 

current transfusion practice (ie, a transfusion trigger of 

10×109 platelets/L), in approximately 25% refractoriness at 

day 20, increasing to 40% after continued transfusions.15 The 

effect of refractoriness was set to be a diminishment of the 

transfusion effectiveness to 1% of the originally simulated 

24-hour count increment.

Bleeding
Bleeding events were simulated by comparing the simulated 

platelet-dependent bleeding probability to a random number 

between 0 and 1. A new random number was drawn from a 

uniform distribution (ie, equal probabilities assigned to all 

possible values) for each patient-day. Bleeding was set to 

have occurred if the platelet-dependent bleeding probability 

was higher than the random number. The random number can 

therefore be thought of as the (inverse of) all patient specific 

bleeding risk (ie, if the random number was high, the patient 

had a low intrinsic bleeding risk and bleeding was unlikely 

to occur, even if the platelet-dependent bleeding probability 

was high). This platelet-dependent bleeding probability was 

simulated to vary from day to day by applying odds ratios 

for bleeding based on the simulated platelet count for that 

and the two previous days and bleeding events simulated to 

have occurred on the previous 2 days.

Odds ratios for bleeding based on platelet counts were 

applied at three different cut-off levels: 15×109, 25×109, 

and 50×109 platelets/L. Platelet counts between the second 

and third cut-off (ie, 25×109 to 50×109 platelets/L), without 

any bleeding during the previous 2 days, were considered 

to represent the baseline risk of bleeding, which was set at 

0.5% per day.

Odds ratios of bleeding on the day the platelet count 

first dropped below the first cut-off (ie, 15×109 platelets/L) 

compared to the baseline risk of 0.5% was 1; the next day it 

was 3 and the second day it was 1. For the second cut-off (ie, 

25×109 platelets/L), these odds ratios were 1, 3, and 5. For 

the third cut-off (ie, 50×109 platelets/L), the risk was reduced 

if platelet counts were above the cut-off and the odds ratios 

were 1, 0.5, and 0.5.

The current and previous 2 days together make up the 

combined exposure and lag times. The time window of 

3 days, the cut-offs, and the odds ratios were all chosen for 

practical reasons, general biological plausibility, previous 

observations of time-varying associations of bleeding risk 

and platelet count (unpublished results), and the ability of 

the simulation to reproduce results from various published 

clinical trials on bleeding risk and platelet counts.7,9–11,15,18–24

All odds ratios were applied using a logistic transforma-

tion, to keep all probabilities between 0 and 1. All odds ratios 

were considered to be multiplicative, for example, odds ratios 

of bleeding were 5 after bleeding on the previous day and 2 

after bleeding 2 days previously. The odds ratio for bleeding 

after bleeding on both of the previous 2 days was therefore 

10 (ie, 5×2).

Bleeding events can be thought of as “clinically relevant,” 

for any given definition of clinically relevant. Different 

definitions would influence the bleeding incidence, but not 

the relation with other parameters. As further described, we 

also performed sensitivity analyses to explore the effect of 

differences in bleeding incidence.

Sensitivity analyses
Some sensitivity analyses were performed to explore the 

sensitivity of our conclusions to deviations from the assump-

tions used for the simulations. We incrementally reduced 

the probability of refractoriness (0.5% instead of 5%), the 

probability of bleeding (0.1% baseline risk, instead of 0.5%), 

and the platelet count below which bleeding risk increased 

(only below 5×109 platelets/L).

Statistical analyses
No statistical tests were applied. In this simulation study, 

the sample size was arbitrarily set at 10,000 patients. 

Presence or absence of statistical significance is wholly 

uninformative in this setting, since the sample size could 

easily be reset at, for example, a hundred-fold higher or 

lower number. To give some indication of precision of our 

estimates, 95% confidence intervals were included in the 

figures.

Results
Simulation of platelet count profiles over 
time
All 10,000 simulated patients had steadily dropping plate-

let counts which were, by definition, never below 1×109 

platelets/L. Whenever their platelet count dropped below 

their prespecified transfusion trigger a simulated platelet 

concentrate transfusion was followed by an increase in plate-

let count. For an example of the first 25 patients simulated 
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without transfusions and the first 25 patients simulated with 

a transfusion trigger of 50×109 platelets/L, see Figure S1.

Exposure time and the frequency of 
platelet count measurements
Figure 1 shows platelet counts for a single simulated patient. 

Bleeding may occur if platelet counts stay below 25×109 

platelets/L for more than 2 days. Each time the platelet count 

drops below 10×109 platelets/L, the patient receives a platelet 

transfusion and platelet counts increase accordingly.

Figure 1A shows the course of events if platelet counts are 

measured daily. This could, for example, represent a random-

ized trial testing the safety of a trigger of 10×109 platelets/L. 

This trigger would be deemed safe, even though the patient 

spends more than half her “transfusion-dependent” period 

below the safe threshold for bleeding (ie, 25×109 platelets/L).

Figure 1B shows the course of events if platelet counts are 

measured every other day. This could, for example, happen if 

we applied the results from the trial depicted in  Figure 1A to 

daily clinical practice. The clinical course remains largely the 

same. However, at day 16, no platelet count will be performed, 

and therefore no transfusion will be given. This causes the 

minimum exposure time to be exceeded and bleeding to occur 

on day 17. The transfusion given on this day will be too late 

to prevent this bleeding.

Also note, due to underappreciation of the role of a mini-

mum exposure time, we are likely to make a false assump-

tion. In this case that the testing of a certain platelet count 

as a trigger for transfusion and determining bleeding risk 

will also provide a test for that particular count as a “trigger 

for bleeding.” This bleeding trigger may actually be higher 

than the investigated transfusion trigger, but we may not 

notice it because they are relatively close together. If these 

triggers are close together and platelet counts are measured 

frequently, patients are likely to receive a transfusion before 

their counts have remained under the bleeding trigger long 

enough to cause bleeding. Although bleeding is then indeed 

prevented, the causal mechanism behind it remains obscured. 

As a result, a seemingly harmless reduction in the frequency 

of count measurements can result in increased bleeding risk 

despite an equal transfusion strategy.

Lag time and platelet counts at time of 
bleeding
Another potential challenge in the interpretation of the 

observed association between platelet counts and bleeding 

risk originates from the presence of lag time (ie, the time 

between completing the necessary exposure time and the 

actual occurrence of identifiable symptoms). Figure 2 shows 

platelet counts and bleeding risk for two very different, both 

commonly encountered, patients. Both patient profiles would 

have a highly distortive influence on the observed association 

between morning platelet counts and bleeding. One patient is 

platelet transfusion refractory, but has a bleeding risk which 

is very insensitive to low platelet counts. The results from 

this patient yield a poor correlation between platelet counts 

and bleeding, because both are always low. The other patient 

has a bleeding risk which is very sensitive to platelet counts, 

but the risk is always lagging behind the platelet counts, due 

to the effect of the lag time. Therefore, as also schematically 

represented in Figure 3, bleeding risk is low when counts 

are low and bleeding risk is high when counts are high. It is 

important to note that, although platelet transfusions in this 

simulation are given “too late to prevent bleeding,” in real 

life they would probably help stop the bleeding or prevent 

future bleeding. This, however, was beyond the scope of the 

current simulation, which, like many clinical studies, primar-

ily considered start of first bleeding.

Morning platelet counts and bleeding
The observed association between morning platelet counts 

and bleeding risks is depicted in Figure 4. This association 

Low platelet count

Platelet transfusion High platelet count

High bleeding risk

Low bleeding risk

Day 1 Day 2 Day 3

Figure 3 Association between high bleeding risk and high platelet count on day 2 is explained by confounding, caused by low platelet count on day 1, with platelet transfusion 
on day 1 as an intermediate.
Notes: Arrows represent causal relationships between two variables. Boxes indicate days. Low platelet counts on day 1 cause both a transfusion on day 1 and high bleeding 
risk on day 2 (ie, due to lag time). The transfusion on day 1 acts as a mediator in the causal chain from low platelet counts on day 1 to high platelet counts on day 2. The 
association we observe on day 2, between high platelet counts and high bleeding risk, is caused by confounding by low platelet counts on day 1.
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is strongly affected by transfusion trigger policy. Figure 4A 

shows the observed association under a policy of no transfu-

sions and a policy of transfusions at a platelet count trigger 

of 10×109 platelets/L. Figure 4B similarly shows the no 

transfusions policy and a policy of a platelet count trigger 

of 50×109 platelets/L. Counterintuitively, a trigger of 50×109 

platelets/L resulted in an association much closer to the one 

observed in the complete absence of transfusions than the 

trigger of 10×109 platelets/L.

The explanation for this counterintuitive finding is that 

a high threshold for giving platelets (ie, a trigger of 50×109 

platelets/L) does not lower bleeding risk at any given plate-

let count. Rather, the prevention of bleeding results from 

far fewer patient-days spent at low platelet counts (in this 

case, below 50×109 platelets/L), where the bleeding risk is 

highest. This lower number of patient-days also explains 

the much wider confidence intervals observed at these low 

platelet counts.

Platelet transfusion triggers and bleeding
As shown in Figure 5, platelet count transfusion triggers 

between 5×109 and 20×109 platelets/L had no effect on 

bleeding risk, compared to a policy of no transfusions. At 

transfusion triggers of 0, 5, 10, and 20×109 platelets/L 18%, 

19%, 19%, and 18% of simulated patients bled, respectively. 

A simulation with a trigger of 30×109 platelets/L resulted 

in 16% of patients bleeding and triggers of 40 and 50×109 

platelets/L both resulted in 13% of patients bleeding.

Sensitivity analyses
Results of our sensitivity analyses are shown in Figures S2 

and S3, corresponding to Figures 4 and 5 from the main text. 

Results were very similar to those from the primary simula-

tions. A different probability of refractoriness had almost no 

effect on the results. Both a lower baseline risk of bleeding 

and a lower bleeding trigger (ie, platelet count threshold for 

increase in bleeding risk) reduced bleeding incidence, but did 

not change the shape of the curves (ie, the relations between 

different parameters).

Discussion
We have reproduced the previously observed lack of associa-

tion of bleeding with morning platelet counts in the range 

from 10×109 to 50×109platelets/L, while also showing a clear 
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Figure 4 Days with bleeding events according to the morning platelet count, for 
different platelet count triggers.
Notes: Markers represent fraction of days, with the indicated morning platelet 
count, at which patients experience bleeding. Error bars represent 95% confidence 
intervals. (A) bleeding frequency at different morning platelet counts without 
transfusions (squares) and with a platelet count trigger of 10×109 platelets/L 
(diamonds). (B) bleeding frequency at different morning platelet counts without 
transfusions (squares) and with a platelet count trigger of 50×109 platelets/L 
(diamonds).
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Figure 5 Patients with bleeding events, according to the platelet count used as a 
trigger for platelet transfusions.
Notes: Markers represent fraction of patients who experience bleeding at any 
time during the 30 day simulation period. Error bars represent 95% confidence 
intervals. The lowest platelet count trigger (ie, 0×109 platelets/L) indicates no 
platelet transfusions were given, since the minimum simulated platelet count was 
109 platelets/L.
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influence of platelet counts in this same range on real bleeding 

risk. This seeming contradiction in observational data was 

explained by the combination of a lag period between low 

platelet count and bleeding complications on the one hand 

and the influence of platelet transfusions, received during 

this lag period, on platelet counts observed on the day of 

bleeding on the other hand.

The prominent effect of platelet transfusions on the 

observed association between morning platelet counts and 

bleeding risk was further illustrated by the counterintuitive 

effect of a very high transfusion trigger on this association. 

At a very high transfusion trigger (ie, 50×109 platelets/L), 

only refractory patients have low counts. All nonrefractory 

patients are kept at platelet counts with almost no bleeding 

risk. Since transfusions have a negligible effect on platelet 

counts in refractory patients, and nonrefractory patients 

experience negligible bleeding risk anyway, the observed 

risk closely mimics that of a policy without transfusions. This 

risk, however, applies to a much smaller group of patients (ie, 

only to the refractory patients). Conversely, the commonly 

used trigger of 10×109 platelets/L distorted the association 

between platelet counts and bleeding risk, and this distorted 

association closely resembled the association previously 

reported in the literature.9,11,18

The main limitation of any simulation study is that it can 

never show which causal relations are present in real life. 

It can only show what observations you could expect under 

certain assumptions. We have therefore shown that our set of 

assumptions is at least one of the possible explanations that 

fit well with all published data on the association between 

platelet counts and bleeding: namely, that the combination 

of a minimal exposure time and a lag time can distort this 

association, obscuring the real platelet count thresholds 

relevant for bleeding risk. Further, through our sensitivity 

analyses, we show that our conclusions are not sensitive to 

quite severe violations of most of our assumptions. Finally, 

since all biological processes take time (ie, have both an 

exposure time and a lag time), we feel that the simulated 

data forms an illustrative example of the currently most 

likely explanation for observed associations of bleeding 

and platelet counts.

A minor limitation is that we lumped all patient related 

risk factors together into one random variable. This leaves 

those risk factors unspecified. This is, however, irrelevant 

to our main purpose of illustrating the effect of a lag period 

on the association between bleeding and platelet counts. We 

did simulate different background risks, against which the 

platelet count related risk operated, for different patients. 

This is sufficient to illustrate some of the counterintuitive 

relations between bleeding and platelet counts, especially in 

the presence of platelet transfusions.

Our primary simulations were based on data from acute 

myeloid leukemia patients undergoing remission induction 

treatment. However, our sensitivity analyses showed, among 

other things, that much lower baseline bleeding risk (ie, as 

observed in autologous transplant patients) did not affect 

our conclusions. Although it logically lowered the overall 

bleeding incidence, the relationships between bleeding and 

platelet counts and platelet transfusions at different triggers 

remained similar (Figure S3).

Platelet transfusions are an accepted treatment modality 

in myelosuppressed thrombocytopenic patients. Therefore, 

the best clinical transfusion strategy is often investigated, 

whether explicitly stated or not, in randomized noninferiority 

trials.6–9,21–25 The rationale for this study design is that giving 

less transfusions is inherently better from a safety and costs 

perspective and a more restrictive strategy with noninferior 

clinical effectiveness is therefore always preferable.26,27 

However, our data suggest these trials could be misleading. 

Trials comparing a trigger of 10×109 to a trigger of 20×109 

platelets/L are likely to show noninferiority, or equivalence, 

simply because both have an equally low average effec-

tiveness at preventing bleeding in a heterogeneous patient 

population. Irrespective of trial size, these trials then have no 

sensitivity to detect clinically relevant differences, because 

the comparator that is necessary to show this difference is 

never included, due to poor average effectiveness of the 

current treatment.

The majority of hemato-oncology patients are likely 

to need less transfusions than they currently receive.7,9 At 

least part of this majority could potentially even be treated 

effectively with therapeutic (ie, bleeding symptom-triggered) 

transfusions, as also suggested by subgroup analyses of a 

randomized trial.7 A small subgroup of patients, however, 

experience severe bleeding, which is not prevented by cur-

rent prophylactic transfusion strategies.5,9,11 This subgroup 

therefore, likely requires a much more intensive transfusion 

strategy. We are currently not able to identify this subgroup 

with any level of certainty.1,9,11 As a result, the average 

effectiveness of prophylactic platelet transfusions is very 

low. Most patients did not need these transfusions in the 

first place and can therefore never experience any benefits 

from them. Conversely, some patients, who could potentially 

experience benefits from an intensive transfusion regimen, 

are probably not receiving enough transfusions to experi-

ence any benefits. Increasing the effectiveness of current 
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treatment will require a much better understanding of the 

causes of bleeding in this patient group and therefore more 

etiologic research.

Correctly specifying a relevant causal contrast, corre-

sponding to a plausible biological mechanism, is crucial to 

all etiologic research.12,13,28–31 However, especially in light of 

the complicated relationship between patient related bleed-

ing risk, lag period, platelet counts, and platelet transfusions, 

we often do not know what the most relevant causal contrast 

is. Therefore, a series of different potential causal contrasts 

should be investigated.13 Given the limited resources and 

time, this endeavor should start with observational research. 

These observational studies, however, will always be at risk 

of confounding (mostly by indication). One possible solu-

tion is to first use observational research to provide us with 

reasonable hypotheses and then define clinically relevant 

causal contrasts and perform a powerful randomized trial, 

comparing the seemingly most appropriate intervention arms. 

To minimize the risk that the hypotheses generated by the 

observational research are invalid, due to confounding, each 

study needs customized methodology. This could, if possible 

in the specific situation under investigation, include powerful 

and innovative approaches like instrumental variable analyses 

and regression discontinuity analyses.32,33 These approaches, 

however, are not always applicable.32–34 Careful consideration 

of the statistical analyses and limitations of the study will 

therefore always be needed. One promising approach could 

be the combined use of prediction modeling and trajectory 

analyses.35 This could identify patient groups which exhibit 

certain platelet count trajectories over time which predispose 

to higher bleeding risks.

Conclusion
The results from our simulation study show how minimal 

exposure times and lag times may have influenced the 

results from previous studies on platelet counts, transfusion 

strategies, and bleeding risk and caution against the gener-

ally recommended universal trigger of 10×109 platelets/L. 

While some patients could likely be switched to a therapeutic 

strategy, others might need more intensive prophylaxis. More 

in-depth understanding of the etiology of bleeding is needed 

to distinguish one from the other.
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Figure S2 Days with bleeding events according to the morning platelet count, for different platelet count triggers and different assumption violations.
Notes: Markers represent fraction of days, with the indicated morning platelet count, at which patients experience bleeding. (A, B, and C) Results for simulations with 
different transfusion triggers. Different lines show different assumptions from the sensitivity analyses. Assumptions were adapted incrementally (ie, previous adaptations 
were maintained, rather than reset, when adding a new adaptation). Circles represent results from the original simulations, squares from simulations with a probability of 
refractoriness of 0.5% (instead of 5%), diamonds of simulations with a bleeding probability of 0.1% (instead of 0.5%), and triangles of simulations in which bleeding risk did not 
increase until platelet counts dropped below 5×109 platelets/L. Lines for original simulations and adapted probability of refractoriness overlap.
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Figure S1 Platelet counts and bleeding events in 25 simulated patients without platelet transfusions (A) or with a transfusion trigger of 50×109 platelets/L (B).
Notes: (A) First 25 patients from the simulation without platelet transfusions. (B) First 25 patients from the simulation with a platelet count trigger of 50×109 platelets/L. 
Each line represents the consecutive morning platelet counts of a single patient. Markers at the upper right represent bleeding events. Each line of markers represents a single 
patient’s days with bleeding events. Lines dropping to the bottom of the graph (B) indicate patients becoming refractory to platelet transfusions and therefore remaining at 
1×109 platelets/L for the remainder of the simulated period.
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Figure S3 Patients with bleeding events, according to the platelet count used as a 
trigger for platelet transfusions and different assumption violations.
Notes: Markers represent fraction of patients who experience bleeding at any 
time during the 30 day simulation period. Error bars represent 95% confidence 
intervals. Different markers show different assumptions from the sensitivity 
analyses. Assumptions were adapted incrementally (i.e. previous adaptations were 
maintained, rather than reset, when adding a new adaptation). Circles (A) represent 
results from the original simulations, squares (A) from simulations with a probability 
of refractoriness of 0.5% (instead of 5%), circles (B) of simulations with a bleeding 
probability of 0.1% (instead of 0.5%), and squares (B) of simulations in which 
bleeding risk didn’t increase until platelet counts dropped below 5¥109 platelets/L.
Note: The lowest platelet count trigger (i.e. 0¥109 platelets/L) indicates no 
platelet transfusions were given, since the minimum simulated platelet count was 
109 platelets/L.
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