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The importance of cell pyroptosis in immunity regulation is becoming increasingly obvious, especially in diseases of the
cardiovascular system. Nevertheless, it is unknown whether the pyroptosis signalling pathway is involved in the immune
microenvironment regulation of dilated cardiomyopathy (DCM). Therefore, the purpose of the study was to investigate the
influence of pyroptosis on the immune environment in dilated cardiomyopathy. We found that expression of 19 pyrolysis-
related genes (PRGs) in DCM samples was altered compared to healthy samples. Subsequently, based on these 12 hub
pyrolysis-related genes, we developed a classifier that can distinguish between healthy samples and DCM samples. Among the
hub pyrolysis-related genes, RT–PCR analyses demonstrated that five of them exhibited significant differential expression in
DCM. Interestingly, we observed that immune characteristics are correlated with pyroptosis: higher expression of GSDMD is
positively correlated with infiltrating activated pDCs; GSDMD is negatively correlated with Tregs; CASP1 is positively related
to parainflammation; and CASP9 is negatively related to the type II IFN response. In addition, distinct pyroptosis-mediated
patterns were identified, and immune characteristics under distinct patterns were revealed: pattern B mediates an active
immune response, and pattern A leads to a relatively mild immune response to DCM. We also compared the biological
functions between these patterns. Compared with pattern A, pattern B had more abundant pathways, such as the NOTCH
signalling pathway and pentose phosphate pathway. In summary, this study proves the important influence of pyrolysis on the
immune microenvironment of dilated cardiomyopathy and provides new clues for understanding the pathogenesis of dilated
cardiomyopathy.

1. Introduction

Dilated cardiomyopathy (DCM) is a very common myocar-
dial disease, and it is estimated that 1 in 250 people is
affected [1, 2]. Dilated cardiomyopathy (DCM) is character-
ized by an enlargement in either the left or both ventricles,
accompanied by myocardial hypertrophy and decreased
ventricular systolic function that may also include congestive
heart failure [3]. DCM progressively worsens and can easily
develop into heart failure. Death can occur at any stage of
DCM and is the most common indication for heart trans-

plantation. DCM portends a poor prognosis and is one of
the major indications for cardiac transplantation [4]. The
causes of DCM are heterogeneous and can result from idio-
pathic, genetic, viral, immune, or toxic aetiology [1]. DCM is
caused by a combination of genetic and environmental fac-
tors in the myocardium [1, 5]. During the progression of
DCM, immune function often becomes disordered, affecting
both cellular immunity and humoral immunity. Inflamma-
tory endothelial activation is often present in DCM, with
lymphocyte and monocyte infiltration [6–8]. Consequently,
it is important to explore the immune molecular pathways
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of DCM to understand the pathological mechanisms under-
lying it; at the same time, these immune targets may inspire
ideas for the design of therapeutic strategies in DCM.

Classically, there are three mechanisms of cell death:
apoptosis, autophagic cell death, and necrosis. Recent
studies have found that caspase-1 in both humans and
mice, caspase-4/5 in humans, and caspase-11 in mice
mediate a new type of programmed necrosis, pyroptosis
[9, 10]. Under the electron microscope, before rupture of
the cell plasma membrane, pyrolyzed cells can be seen
forming a large number of vesicles, namely, inflamma-
somes. Then, pores are formed in the cell membrane,
which causes subsequent rupture and release of the con-
tents [11]. These are the morphological features of cellular
pyroptosis. Pyroptosis is a form of gasdermin-mediated
programmed cell necrosis [12, 13]. Pyrolysis is an impor-
tant natural immune response in the body that plays a
significant role in the fight against infection [12]. Recently,
extensive findings have indicated that pyroptosis is
involved in various diseases, especially cardiovascular dis-
eases (CVDs) [14, 15]. For instance, in atherosclerosis,
ischaemia–reperfusion injury, myocardial infarction, coro-
nary calcification, and heart failure, related research results
have led to the discovery and application of inhibitors or
drugs targeting proteins involved in pyroptosis [16].

Nevertheless, few studies have focused on the mecha-
nisms and pathways related to cell pyroptosis in dilated
cardiomyopathy (DCM). Zeng et al. [17] demonstrated that
in the mechanism of DCM, the NLRP3 inflammasome plays
a critical role by activating caspase-1 and leading to pyropto-
sis. However, it is unknown whether the pyroptosis pathway
is mechanistically related to the immune microenvironment
in dilated cardiomyopathy.

In this study, pyroptosis patterns in DCM were systema-
tically investigated. We found that pyroptosis-related genes
could differentiate DCM samples from healthy samples.
We found that the abundance of infiltrating immune cells
and the immune response gene set in DCM exhibited linear
pertinence, showing a strong relationship between
pyroptosis-related genes and immune regulation. We ana-
lysed DCM samples based on 12 pyroptosis-related genes,
and 2 distinct pyroptosis patterns were identified. Between
these subtypes, we observed different characteristics in
immune regulation, and biological functions were compared
between these subtypes. In addition, we analysed 2142
pyroptosis-related genes and their biological functions. Our
results suggest that cellular pyroptosis patterns make a criti-
cal contribution to the immune microenvironment in DCM.

2. Materials and Methods

2.1. Data Preprocessing. We downloaded the GSE141910
dataset (http://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE141910) from the Gene Expression Omnibus (GEO)
database, which included 166 healthy samples and 116
DCM samples. All data were preprocessed and obtained
using the R package “GEOquery.” The GPL16791 platform
file was used for annotation. Gene probes were annotated
with gene symbols, and probes that did not match gene sym-

bols or that matched multiple symbols were excluded. We
collected 33 PRGs from previous research [18–21].

2.2. Analysis of Changes in PRGs between DCM and Healthy
Samples. To explore interactions among the 29 PRGs, we
used the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database (http://www.string-db
.org/) to create a protein–protein interaction (PPI) network
of these PRGs. We used Spearman correlation analysis to
evaluate the expression relationships among 29 PRGs in all
samples and specifically in DCM samples, and using the
Wilcoxon test, we compared the expression differences of
29 PRGs between healthy and DCM samples. DCM-related
PRGs were identified using univariate logistic regression,
and the cut-off criterion was a P value < 0.05. Then, we used
least absolute shrinkage and selection operator (LASSO) to
improve the accuracy of the linear regression model. We uti-
lized multivariate logistical regression to build a PRG-related
DCM classifier. To evaluate the potential performance of the
signature, we used receiver operating characteristic (ROC)
curve analysis.

2.3. Correlation Analysis between PRGs and Immune
Characteristics. We used the “GSVA” package to conduct
single-sample gene set enrichment analysis (GSEA) to esti-
mate the scores of infiltrating immune cells and to assess
the activity of immune signalling pathways. We used the
Wilcoxon test to compare enrichment fractions representing
immune cell abundance and immune reactivity in healthy
and DCM samples. Pearson correlation analysis was utilized
to determine the relevance of PRGs with respect to immune
cell components and immune response activity.

2.4. Identification of Pyroptosis Patterns. Based on the
expression of 29 PRGs, we chose to analyse the unsupervised
clustering state to identify disparate pyroptosis patterns. At
the same time, we utilized a consistent clustering algorithm
for the purpose of evaluating the clustering number and
robustness. During the calculation, the R package “Consen-
susClusterPlus” was used to perform iterative calculations.
We calculated one step at a time 1000 times to ensure the
robustness of the classification [20]. Moreover, to verify the
expression pattern of PRGs in various pyroptosis patterns,
we chose to use PCA as an analytic method after full consid-
eration. The Kruskal test is a method that compares the
degree of expression of PRGs, the score in abundance of
infiltrating immunocytes, the score of immune response,
and the degree of gene expression in two pyroptosis patterns,
which differ widely.

2.5. Biological Enrichment Analysis of Distinct Pyroptosis
Modification Patterns. To analyse pyroptosis-related differ-
entially expressed genes, GO (Gene Ontology) functional
enrichment and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway analyses were performed using the
clusterProfiler package in R. Two sets of genes, “c5.go.v7.4.-
symbols” and “C2.cp.kegg.v7.4. symbols,” were used to
reflect changes in biological signalling pathways. Subse-
quently, the expression matrix was transformed into a score
matrix using the GSVA algorithm, and we used the LIMMA
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package to compare scores of biological signalling pathways
between the two groups. The threshold of difference analysis
was ADj. P < 0:05 and | LogFC | 1 or more.

2.6. Identification of Pyroptosis-Mediated Genes. To identify
the genes regulating pyroptosis, we used the empirical Bayes
method to analyse the samples with two different pyroptosis
patterns to identify DEGs between different pyroptosis
patterns. The threshold for determining important DEGs
was an adjusted P value < 0.0001. Using weighted gene coex-
pression network analysis (WGCNA), we obtained the
difference between gene modules and pyroptosis pattern-
related genes.

2.7. Animal Protocol. Male C57BL/6 mice at 10 weeks of age
were obtained from Hubei Provincial Centres for Disease
Control and Prevention. All animal studies were conducted
according to the Animal Care and Use Committee Guide
of Wuhan University, which obeyed the Guide for the Care
and Use of Laboratory Animals of the National Institutes
of Health. To induce DCM, a cumulative dose of 12mg/kg
doxorubicin (DOX) was administered via 3 weekly IP injec-
tions (4mg/kg on days 0, 7, and 14), and follow-up analyses
were conducted 6 weeks after the first injection [17].

2.8. Echocardiography. All animal studies were conducted
according to the Animal Care and Use Committee Guide
of Wuhan University, which obeyed the Guide for the Care
and Use of Laboratory Animals of the National Institutes
of Health. Mice were examined using transthoracic echocar-
diography. Using a Vevo 2100 imaging system equipped
with a 30MHz MS400 linear array, M-mode echocardiogra-
phy was performed to obtain a short-axis view of the heart at
the level of the middle papillary muscle. The left ventricular
systolic inner diameter (LVIDs) and left ventricular diastolic
inner diameter (LVIDd) were measured in awake mice. The
left ventricular ejection fraction (LVEF) was calculated as
%EF = ½ðLVIDd − LVIDsÞ/LVIDd� × 100; and fractional
shortening (FS) was calculated as %FS = ½ðLVIDd − LVIDsÞ
/LVIDd� × 100.

2.9. Histological Analyses. Six weeks after the first injection,
the heart tissue was collected, fixed in 4% paraformaldehyde,
dehydrated, and embedded in paraffin. Four-micrometre
sections were collected and stained using haematoxylin and
eosin (HE) and Masson’s trichrome. Images were captured

using an Aperio VERSA system (Leica Biosystems,
Germany) and analysed using Image-Pro Plus 6.0.

2.10. Real-Time PCR. Total RNA was extracted from apical
tissue using TRIzol and reverse transcribed into cDNA,
and real-time quantitative PCR was performed. All data
are normalized to the GAPDH mRNA level as an internal
reference, and the relative quantification of apical tissue
mRNA expression was determined using the 2-△△CT
method. The primers used are shown in Table 1.

3. Results

3.1. Expression Alterations of PRG in DCM Compared to
Healthy Samples. The expression interactions of PRGs are
shown in a protein–protein network (Figure 1(a)) with 111
edges and 33 nodes as determined using the STRING data-
base. We observed that with a confidence level of 0.700,
apart from PLCG1, GPX4, PRKACA, ELANE, and DFNB89,
the rest of the PRGs were very closely connected. In addi-
tion, the transcriptome relationship was investigated, and
we found that GSDMD and GPX4 were the most relevant
PRG regulators in all samples (r = 0:86) and in DCM sam-
ples (r = 0:89), which may indicate that they work together
(Figure 1(b)). At the same time, differential expression anal-
ysis identified 19 PRGs with altered expression (Figures 1(c)
and 1(d)). Among them, compared to normal myocardial
tissue, the fold change in TNF was the largest and most
significant (Figure 1(e)).

3.2. PRGs Participate in the Process of DCM Generation. To
determine the role of PRGs in the DCM pathogenesis, we
used several common bioinformatics algorithms. To identify
DCM-related PRGs, we used univariate logistic regression,
which showed that 21 PRGs were most closely related to
DCM (Figure 2(a)). Subsequently, LASSO regression was
performed on 21 DCM-related PRGs for feature selection
and dimensionality reduction to exclude unimportant regu-
lators (Figures 2(b) and 2(c)), which ultimately identified 12
hub PRGs. We used multivariate logistic regression for a
classifier to distinguish between normal and DCM samples
(Figure 2(d)). The classifier is composed of hub PRGs, which
can well classify both normal and DCM samples based on
the risk scores. The risk score of DCM was much higher
than that of the normal samples (Figure 2(e)). Moreover,
the ROC curve showed that the 12 PRGs could distinguish

Table 1: Primers used for RT-PCRs.

Target genes Forward primers (5′-3′) Reverse primers (5′-3′)
NLRP1 AGCAAGGGTGGAACAGCATT ATAGCGGGAACCAAGATAAAGAG

TNFα CTCTTCTGTCTACTGAACTTCGGG GGTGGTTTGTGAGTGTGAGGGT

CASP1 GGCTGACAAGATCCTGAGGG TAGGTCCCGTGCCTTGTCC

CASP9 GAGGTGAAGAACGACCTGACTG CTCAATGGACACGGAGCATC

PRKACA ATCGTCCTGACCTTTGAGTATCTG ACAGCCTTGTTGTAGCCTTTGC

GAPDH CCTCGTCCCGTAGACAAAATG TGAGGTCAATGAAGGGGTCGT
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Figure 1: Expression landscape of PRGs in DCM. (a) The protein-protein interactions among PRGs. (b) Interrelationships of the expression of
PRGs for all samples (left) and DCM samples (right). The two most interrelated PRGs shown in the two scatter plots: GSDMD and GPX4. (c)
The box plot shows the expression of 19 PRGs in DCM compared to healthy samples. (d) The heat map shows the expression status of 19 PRGs
in DCM compared to healthy samples. (e) The volcano plot visually shows the expression of PRGs between healthy and DCM samples.
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Figure 2: PRGs can be used to classify normal and DCM samples. (a) Univariate logistic regression was used to study the correlation
between PRGs and DCM (P < 0:05) and uncovered 21 DCM-related PRGs. (b) LASSO coefficient distribution of 21 DCM-related RGs.
(c) In LASSO regression, 10-fold cross-validation was used to fine-tune parameter selection. λ is the adjustment parameter, and the
partial likelihood deviance is plotted according to log (λ). (d) Through multivariate logistic regression, a distinguishing feature with 12
PRGs was developed, and the risk scores of DCM and healthy samples were estimated. (e) The risk profile between DCM and healthy
samples illustrates that the risk score of DCM was higher than that of healthy samples. (f) ROC curves were used to analyse the ability
of 12 PRGs to distinguish between healthy and DCM samples, and the AUC value was used to evaluate the distinction ability.
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Figure 3: Association of PRGs with immune cells and immune response pathways. (a) The dot plot shows the correlation between each
infiltrating cell and each hub PRG in the dysregulated immune microenvironment. The most positive interrelated immune cell-hub PRG
pair was GSDMD-pDCs, and the violin plot on the right shows the expression or fraction status. The most negatively correlated immune
cell-hub PRG pair was GSDMD-Tregs, and the violin plot on the left shows the expression or fraction status. (b) The dot plot shows the
association between each gene set of the immune dysregulation response and the 12 hub PRGs. The most positively correlated pair was
CASP1-parainflammation, and the violin plot in the right shows the expression or activity. The most negative interrelated pair was
CASP9-type_II_IFN_response, and the violin plot on the right shows the expression or activity.
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between normal and DCM samples (AUC = 0:99, Figure 2(f
)). These results show that PRGs play a crucial role in the
development of DCM.

3.3. PRGs Are Related to Immune Characteristics in DCM
Tissue. To investigate the biological behaviours between
PRGs and the immune microenvironment, we analysed
expression of the 12 hub PRGs, infiltrating immunocytes,
and immune-related signalling pathways. Statistical analysis
revealed differences in the abundance of infiltrating immu-
nocytes between healthy and DCM samples (Figure S1A).
Compared to healthy myocardial tissue, most infiltrating
immune cells were altered in DCM. Correlation analysis
revealed that 12 hub PRGs were closely associated with
most immune cells (Figure 3(a)). For example, GSDMD
had the strongest positive correlation with pDC abundance
(r = 0:75) and the strongest negative correlation with Treg
abundance (r = −0:65), which was related to the expression
status of GSDMD, pDCs, and Tregs. The box plot shows
differences in the activity of each immune response
pathway between healthy and DCM samples (Figure S1B).
In addition, we found that CASP1 was positively correlated
with parainflammation (r = 0:73) and that CASP9 was
negatively correlated with the type II IFN response
(r = −0:42) (Figure 3(b)). This indicates that CASP1 and
CASP9 play important roles in parainflammation or type
II IFN response in DCM.

3.4. PRG-Mediated Pyroptosis Patterns in DCM. Based on
the expression of 29 PRGs, we performed unsupervised con-
sensus clustering analysis for DCM samples to investigate
pyroptosis patterns in DCM (Figures 4(a)–4(c)). Two dis-
tinct DCM subtypes were identified. PCA showed that
expression of PRGs was qualitatively different between the
subtypes, including 70 samples in subtype A and 96 samples

in subtype B (Figure 4(d)). In addition, correlation analysis
indicated no significant difference in clinical characteristics
between the different patterns (Figure 4(e)). Except for
CASP6, CASP9, GSDMA, GSDMB, GSDME, IL18, NLRP1,
NLRP2, PJVK, PRKACA, and TNF, expression of the
remaining 19 PRGs in different pyroptosis patterns exhib-
ited obvious differences (Figures 4(f) and 4(g)). Multiple
pyroptosis patterns were verified in DCM.

3.5. Characteristics of the Immune Microenvironment in
Different Pyroptosis Patterns. To identify differences in
immune microenvironmental characteristics between these
different pyroptosis patterns, we evaluated immune cells,
immune response gene sets, and human leukocyte antigen
(HLA) gene expression. Many immune cells were different
between the two patterns (Figure 5(a)). Compared to pattern
B, pattern A had relatively few infiltrated immunocytes. Pat-
tern B displayed higher levels of aDCs, DCs, macrophages,
mast cells, NK cells, T helper cells, Tfhs, and TILs. Of note,
only Treg cells were more enriched in pattern A. In addition,
in terms of immune response, the immune response of pat-
tern B was more active. For instance, the immune response
of MHC class I and HLA was very active in pattern B
(Figure 5(b)). At the same time, we observed a similar trend
in the gene expression of HLA (Figure 5(c)). These results
indicated that pyroptosis pattern B mediates a more active
immune response, while the pyroptosis pattern A-mediated
immune response is relatively mild. These results once again
strongly demonstrated that pyroptosis has an important
regulatory effect on the formation of different immune
microenvironments of DCM

.

3.6. Biological Characteristics of Pyroptosis Patterns. To
investigate the biological response of the pyroptosis patterns,
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Figure 4: Identification two different subtypes of pyroptosis patterns in DCM. (a) A consensus clustering cumulative distribution function
(CDF) with k = 2 − 7 is shown. (b) The relative change in the area under the CDF curve for k = 2 − 7 is shown. (c) Heat map of the matrix of
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GO analysis and KEGG analysis were performed. We
applied GSVA enrichment analysis to estimate the activity
of the biological pathways that were assessed. In the KEGG
pathway analysis, compared to pattern A, pattern B had
more abundant pathways, such as the NOTCH signalling
pathway and pentose phosphate pathway (Figure 6(a), Sup-
plementary File 1). In GO pathway analysis, compared to
pattern A, pattern B also had more abundant pathways, such
as antimicrobial humoral response and other biological pro-
cesses (Figure 6(b), Supplementary File 2). To investigate the
mechanism of genes related to PRG-mediated regulation, we
identified DEGs related to the pyroptosis phenotype. A total
of 2142 common genes were considered to be related to the
pyroptosis phenotype (Figure 7(a)), and GO enrichment
analysis showed that they were primarily involved in
immune processes such as neutrophil activation in the
immune response (Figure 7(b)). In addition, in the KEGG
analysis, the selected biological process of DEG enrichment

was significantly related to biological processes such as cyto-
kine–cytokine receptor interaction (Figure 7(c)). In addition,
we used WGCNA to identify gene–gene modules related to
different modifications (Figures 7(d)–7(f)). We identified
three gene modules where different pyroptosis patterns
matched their related genes (Figure 7(g)); for example,
pyroptosis pattern A was closely related to genes in the
magenta module (Figure 7(h)). The above results could
clarify that pyroptosis patterns mediate the related gene
expression regulation network.

3.7. Validation of the Expression Levels of Five Core PRGs in
DCM. According to the bioinformatics results, we further
validated expression of the five core PRGs (NLRP1, TNFα,
CASP1, CASP9, and PRKACA) in healthy mouse myocar-
dial tissue and Dox-induced DCM myocardial tissue
(Figures 8(a) and 8(b)). The RT–PCR results showed that
the mRNA expression of NLRP1, TNFα, CASP1, CASP9,
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and PRKACA in DCM myocardial tissues was significantly
higher than that in normal myocardial tissues (P < 0:05),
consistent with the results of bioinformatics analysis
(Figure 8(c).

4. Discussion

Dilated cardiomyopathy (DCM) is considered the final com-
mon reaction of the myocardium due to a combination of
genetic and environmental factors. Pyroptosis was initially
found to be a key mechanism for fighting against infection
[22–24]. Recently, extensive findings have indicated that
pyroptosis is involved in various cardiovascular diseases
(CVDs) [15, 25, 26]. However, it is unknown whether the
pyroptosis signalling pathway is involved in the immune
microenvironment regulation of dilated cardiomyopathy.
In this study, pyroptosis patterns were found in the immune
response of DCM. To understand how PRG mediates the
immune response and the alteration of immune cells in
DCM, we used multiple bioinformatics analyses to obtain
these results. First, our results identified 19 PRGs with
altered expression between healthy and DCM samples, indi-
cating that PRGs do indeed participate in the development
of DCM. Based on hub DCM-related PRGs, we developed
a classifier to differentiate between normal samples from
DCM samples. The classifier performed well in distinguish-
ing between healthy and DCM samples, revealing that PRGs
do indeed play a critical role in the development of DCM.
The mRNA expression levels of core PRGs, which are upreg-
ulated in DCM tissues, were indeed higher than that of
healthy tissues. This was verified using qRT–PCR analysis
in mouse myocardial tissue. In addition, our findings
revealed that differences in the abundance of immune cells
do indeed exist in the immune microenvironment between
healthy and DCM samples. CASP1 was positively related
to parainflammation, and CASP9 was negatively related to
the type II IFN response. This indicates that CASP1 and

CASP9 play important roles in parainflammation or the type
II IFN response in DCM. In addition, we found that gasder-
min D (GSDMD) was strongly positively correlated with
pDC abundance. GSDMD was recently identified as the
factor responsible for the inflammatory form of lytic pyrop-
totic cell death, a critical antibacterial innate immune
defence mechanism [27–29]. GSDMD is pleiotropic, exert-
ing both pro- and anti-inflammatory effects, which make it
a potential target for antibacterial and anti-inflammatory
therapies [27, 30]. These findings may indicate the existence
of a PRG immune regulatory mechanism in DCM. To inves-
tigate pyroptosis patterns in DCM, unsupervised consensus
clustering analysis was conducted for DCM samples based
on the expression of 29 PRGs. Two distinct DCM subtypes
were identified. In addition, correlation analysis showed that
there was no significant difference in clinical characteristics
between different pyroptosis patterns. Expression of most
PRGs in different pyroptosis patterns displayed obvious dif-
ferences. It was verified that there were multiple pyroptosis
patterns in DCM. Compared to pattern B, pattern A exhib-
ited relatively few infiltrated immunocytes. Pattern B
presented higher levels of aDCs, DCs, macrophages, mast
cells, NK cells, T helper cells, Tfhs, and TILs, while Tregs
were more highly enriched in pattern A. In addition, the
immune response of pattern B was more active. For instance,
the immune response of MHC class I and HLA is active in
pattern B. We identified a similar trend in HLA gene expres-
sion. These results indicated that pyroptosis pattern B is
characterized by a more active immune response, while
pyroptosis pattern A features are relatively mild immune
response. These results once again strongly demonstrate that
cell pyroptosis exerts an important regulatory effect on the
formation of different immune microenvironments of
DCM. Moreover, compared to pattern A, pattern B con-
tained more abundant pathways, such as the NOTCH
signalling pathway, pentose phosphate pathway, antimicro-
bial humoral response, and other biological processes. These
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Figure 7: Identification and functional analysis of genes involved in the pyroptosis phenotype in DCM. (a) 2142 genes were related to the
pyroptosis phenotype. (b) GO-BP functional enrichment analysis showed the biological features of genes involved in the pyroptosis
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results regarding biological response clarify the gene expres-
sion regulation network mediated by pyroptosis patterns.
This study provides some important findings for the
exploration of cell pyroptosis in DCM to facilitate
characterization of pyroptosis mechanisms and immune
characteristics in DCM by other investigators.

Abundant results were generated that will promote our
understanding of immune mechanisms with respect to
pyroptosis in DCM. In addition, we identified two different
patterns of pyroptosis, and they can help us deepen our
comprehension of pyroptosis in DCM to understand how
it mediates the immune response. According to our infer-

ences, the correlation between cell pyroptosis and the
immune microenvironment is strong and significant.

However, our study still has some limitations that need to
be considered. First, the number of samples included in this
study was limited, so further experiments are needed to con-
firm the results of this study. Second, all data in this study
are based on the expression values of mRNA and do not
directly reflect protein expression levels, which may result in
poor performance in the evaluation of immune signal path-
ways based on protein expression. For instance, inconsistency
between the molecular pathways is directly related to cellular
activities. Although such limitations should not be ignored,
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Figure 8: Validation of the expression levels of NLRP1, TNFα, CASP1, CASP9, and PRKACA in healthy and Dox-induced DCM mouse
myocardial tissues. (a) Representative echocardiographic (echo), HE, and Masson’s trichrome staining images. (b) Cardiac function index
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our results suggest that pyroptosis has a significant influence
on the immune microenvironment in DCM and deepens
our understanding of the potential pathogenesis of DCM.

Our findings systematically revealed the potential
association between cell pyroptosis and the immune micro-
environment in DCM. Through our research, it was
confirmed that pyroptosis is closely related to DCM and that
pyroptosis has a regulatory effect on the immune microenvi-
ronment in DCM. The findings could provide ideas for other
researchers in the field to further investigate the mechanisms
of pyroptosis in DCM. We screened out genes that are
closely related to pyroptosis in DCM. By regulating these
genes to inhibit pyroptosis, these genes are likely to become
potential targets for new therapeutic interventions and play
a role in relieving or treating DCM. In addition, the mecha-
nism of DCM is very complicated, and it is not yet fully
understood. Through studying the relationship between
pyroptosis and the immune environment, we can gain a dee-
per understanding of the immune mechanism of DCM.
Through studying the molecular pathways of pyroptosis in
DCM, these results may offer clues for new therapeutic
strategies for DCM. We believe that the investigation of
pyroptosis in the immune microenvironment in DCM may
be meaningful in the future.

5. Conclusions

In summary, pyroptosis plays a critical role in the immune
regulation of dilated cardiomyopathy. The study demon-
strated that pyroptosis has an important regulatory effect
on the formation of different immune microenvironments
by impacting infiltrating immunocytes. This study offers
novel ideas for understanding the pathogenesis of dilated
cardiomyopathy, which will be very significant in the future.
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