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Background: Antenatal depression (AD) is a major public health issue worldwide and

lacks objective laboratory-based tests to support its diagnosis. Recently, small metabolic

molecules have been found to play a vital role in interpreting the pathogenesis of AD.

Thus, non-target metabolomics was conducted in serum.

Methods: Liquid chromatography—tandemmass spectrometry—based metabolomics

platforms were used to conduct serum metabolic profiling of AD and non-antenatal

depression (NAD). Orthogonal partial least squares discriminant analysis, the

non-parametric Mann–Whitney U test, and Benjamini–Hochberg correction were used

to identify the differential metabolites between AD and NAD groups; Spearman’s

correlation between the key differential metabolites and Edinburgh Postnatal Depression

Scale (EPDS) and the stepwise logistic regression analysis was used to identify

potential biomarkers.

Results: In total, 79 significant differential metabolites between AD and NAD

were identified. These metabolites mainly influence amino acid metabolism and

glycerophospholipid metabolism. Then, PC (16:0/16:0) and betaine were significantly

positively correlated with EPDS. The simplified biomarker panel consisting of

these three metabolites [betaine, PC (16:0/16:0) and succinic acid] has excellent

diagnostic performance (95% confidence interval = 0.911–1.000, specificity = 95%,

sensitivity = 85%) in discriminating AD and NAD.

Conclusion: The results suggested that betaine, PC (16:0/16:0), and succinic acid were

potential biomarker panels, which significantly correlated with depression; and it could

make for developing an objective method in future to diagnose AD.

Keywords: antenatal depression, metabolomics, edinburgh postnatal depression scale, biomarker, amino acid

metabolism, glycerophospholipid metabolism
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INTRODUCTION

Antenatal depression (AD), defined as depression during
pregnancy up to the point of birth, is one of the most widespread
psychiatric disorders and produces harmful effect on the mother
and the infant’s health (1, 2). Systematic reviews determined that
the prevalence of antenatal had a significant increasing trend in
the last decade and varied in different countries and regions, such
as 19.7% in mainland China, 50% in Nepal, and 30–40% in South
Africa (3–5). Women with AD are more likely to develop several
complications, including an increased risk of nausea, vomiting,
miscarriage, and poor cognitive and fetal growth, which even
develop into postpartum depression (6). For offspring, AD not
only results in prematurity to the fetus or in low birth weight,
but also has a steady adverse effect on their brain, behavior,
immune function, and hypothalamic–pituitary–adrenal (HPA)
function (3, 7, 8). Therefore, AD is a still major public health
issue worldwide, and it is very important to find better measures
to prevent and treat AD.

As it is well-known, depression disorder is greatly influenced
by genetics and environmental factors, as well as their
interactions (9, 10). AD is accompanied by physiological and
psychological changes, which results in alteration of hormones,
inflammatory cytokines, HPA axis (11–14). Christian et al.
have reported that depressive symptoms of AD are associated
with elevated serum pro-inflammatory cytokines [interleukin 6
(IL-6) and tumor necrosis factor α] among pregnant women
(15). Similarly, higher cerebrospinal fluid IL-1β, IL-23, and IL-
33 concentrations were significantly associated with increased
odds of perinatal depression (16). However, there are still
no empirical laboratory methods to diagnose antepartum
depression. Currently, AD diagnosis heavily depends on clinical
features and syndrome, identified by experienced psychiatrists
(17). As a result, many patients could be misdiagnosed or never
diagnosed for the high heterogeneity of depressive symptoms
(17–19). Thus, an effective diagnostic method for AD would be
of considerable clinical significance.

Metabolomics, a promising tool in non-invasive biomarkers
for diagnosis, has been widely used to identify global or targeted
endogenous metabolites by detecting various biosamples, such as
urine and plasma (20, 21). Currently, liquid chromatography–
mass spectrometry (LC-MS), nuclear magnetic resonance
spectroscopy, and gas chromatography–MS are the three main
analytical techniques of metabolomics and are suitable for
non-targeted metabonomic mapping (22).However, LC-MS was
generally employed in both metabolomic and proteomic research
to identify novel biomarkers for depression, characterized
by high sensitivity, high resolution, and wide coverage of
metabolites and peptides (23–25). There are a few studies
of plasma metabolomics in AD to screen and identify
some biomarkers (26, 27). Wu et al. have found that PC
(18:2(2E,4E)/0:0) and cholesterol sulfate were increased in the

plasma of AD and significantly associated with AD (26). Mitro
et al. (27) reported that triacylglycerol metabolites and betaine

were related with the incidence of antepartum depression;

C48:5 triacylglycerol and C50:6 triacylglycerol were related
with higher odds of AD, whereas betaine was associated

with lower percentage of AD. However, no study has yet
explored changes to metabolomes in late-pregnancy women with
depression symptoms.

Thus, a serum metabonomic method in the diagnosis of AD
was evaluated. LC-MS–based serummetabolomic platforms were
conducted to distinguish metabolic profiling of AD and non-
antenatal depression (NAD). Besides, orthogonal partial least
squares discriminant analysis was used to identify the differential
metabolites between the two groups; Spearman’s correlation
between key differential metabolites and Edinburgh Postnatal
Depression Scale (EPDS), and the stepwise logistic regression
analysis was used to identify potential biomarkers.

MATERIALS AND METHODS

Subject Recruitment
The protocols of this research were reviewed and approved
by the Medical Ethics Committee of The Affiliated Hospital
of Guizhou Medical University. All participants were asked
to sign informed consent before sample collection; also, all
procedures were conducted according to the principles expressed
in the Declaration of Helsinki. In present study, 60 subjects
were recruited from the psychiatry department of the Affiliated
Hospital of Guizhou Medical University from September 2015 to
September 2016. All singleton-pregnancy subjects were screened
by licensed obstetricians and psychiatrists. The inclusion criteria
were as follows: (1) late pregnancy (gestational weeks ≥28);
(2) parity ≤4; (3) between the ages of 22 and 40 years; (4)
body mass index (BMI) at prepregnancy >18.5 and <30 kg/m2;
(5) complete clinical data; and (6) no history of mental or
cognitive illness before pregnancy. The exclusion criteria were as
follows: (1) educational level<9 years; (2) history of psychoactive
substance abuse; (3) with severe systemic diseases such as
metabolic encephalopathy and liver or kidney disease; and (4)
complications associated with pregnancy.

The diagnosis of perinatal depression (AD) was implemented
based on a renowned approach as described in the previous
studies (17, 26). All subjects need to fill out the assessment
scale, named EPDS, and EPDS is a self-administered instrument
that includes 10 statements, scored from 0 to 3, rendering a
maximum score of 30. Subjects with an EPDS-10 ≥10 were
defined as AD subjects, whereas the NAD group subjects with
EPDS-10 <10 (17).

Sample Collection and Preparation
The fasting blood was collected from the elbow vein of subjects
in the morning using 5-mL Vacutainer tubes. Then, the blood
was allowed to static 30min at room temperature and followed
by centrifugation at 3,000 revolutions/min (rpm) for 15min.
Each aliquot (150 µL) of the plasma sample was stored at
−80◦C until further analyses. The sample extraction protocol
was based on previously published literature (28). Briefly, 50-µL
sample and 150 µL of extract solution [acetonitrile: methanol =
50:50 (vol/vol), containing isotopically-labeled internal standard
mixture], were taken to an Eppendorf tube (1.5mL), vortexed
the samples for 30 s, and sonicated for 15min. Then, these
were centrifuged at 12,000 rpm for 15min at 4◦C followed by
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incubation for 60min at−40◦C (29). Finally, the supernatant was
collected and transferred to a new sample vial for LC-MS/MS
analysis. Quality control samples were prepared by pooling the
equivalent supernatants of all samples.

LC-MS/MS Analysis
The VanquishTM UHPLC system (Thermo Fisher Scientific,
Waltham, MA, USA) with a Waters ACQUITY UPLC BEH
Amide column (2.1 × 100mm, 1.7µm) was used to separate
the metabolites, respectively. The temperature of column and
autosampler was set at 25◦C and 4◦C, respectively, and the
volume of injection was 3 µL The mobile phase (A) was prepared
by dissolving 25 mmol/L ammonium acetate and ammonia
hydroxide in water and adjusted the pH of solution to 9.75, and
the mobile phase (B) consisted of 100% acetonitrile. The analysis
was carried out with elution gradient as follows: 0–0.5min, 5% A;
0.5–7.0min, 5–35% B; 7.0–8.0min,35–60% A; 8.0–9.0min, 60%
A; 9.0–9.1min, 60–5% A; 9.1–12.0min, 5% A (30).

The Q Exactive HFX mass spectrometer (Orbitrap MS,
Thermo Fisher Scientific) system and MS/MS data acquisition
control were performed by acquisition software (XcaliburTM 4.0
software, Thermo). Specification of the ESI source was set as
follows (30): (1) the flow rate of sheath gas and Aux gas flow
rate were 50 and 10 Arb; (2) the capillary temperature was
320◦C; (3) full MS resolution and MS/MS resolution of 60,000
and 7,500, respectively; (4) collision energy of 10/30/60 in NCE
mode; and (5) spray voltage of 3.5 kV (positive) or −3.2 kV
(negative), respectively.

Statistical and Bioinformatics Analysis
The raw data from metabolites were converted to the mzML
format using Proteo Wizard MS converter and processed with
an in-house program, which was developed using R and based on
XCMS, for peak detection, extraction, alignment, and integration.
Internal standard normalization was employed to linearly shift
the RT across the entire run for metabolite analysis (31). Then,
peak annotation was processed by an in-house MS/MS database.
Subsequently, the data matrix was imported into SIMCA-P
V16.0.2 software (Umetrics, Umea, Sweden) for multivariable
statistical analysis. Then, the orthogonal projection to latent
structures–discriminant analyses (OPLS-DA) model was applied
to visualize the discrimination between the AD and NAD groups
in both positive and negative models. The variable importance in
the projection (VIP) value was obtained from each variable in the
OPLS-DA model and validation by 7-fold cross-validation and
200 permutation tests. Meanwhile, the non-parametric Mann–
Whitney U test was conducted to analyze the metabolites,
and multiple test corrections using the Benjamini–Hochberg
correction were applied to valuate statistical significance. The
metabolites with VIP values >1.0 and Q value < 0.05 were
considered to be statistically significant, whereas variables that
were not significantly changed were discarded (32, 33). The
metabolites identified were mapped byMS/MS spectral similarity
with score ≥0.8 based on an in-house database (34). In addition,
the differential metabolites were mapped into their biochemical
pathways through metabolic pathway enrichment and pathway
analysis based onMetaboAnalyst 5.0 (http://www.metaboanalyst.

TABLE 1 | Demographic and clinical characteristics of the antenatal depression

and non-antenatal depression.

Characteristics AD group (n = 20) NAD group (n = 40) p

Age in years,a median

(IQR)

28.50 (27.00–32.5) 28.5 (27.00–32.5) 0.552

Prepregnancy BMI,b

median (IQR)

20.35 (18.75–23.38) 28.5 (27.00–32.5) 0.730

Pregnancy BMI,b

median (IQR)

25.76 (24.97–27.55) 28.5 (27.00–32.5) 0.832

Gestational weeks,b

median (IQR)

35.00 (34.00–36.00) 28.5 (27.00–32.5) 0.110

University education,b

n (%)

16 (80%) 37 (92.5%) 0.159

EPDSb 12.40 ± 1.60 4.93 ± 2.03 <0.001

Data presented as mean ± SD, median (IQR), or n (%). AD antenatal depression, NAD

non-antenatal depression, IQR interquartile range, BMI bodymass index, EPDS Edinburgh

Postnatal depression Scale, SD standard deviation.
aAnalyzed by the Student t test.
bAnalyzed by the Mann–Whitney U test.

ca), which uses the high-quality Kyoto Encyclopedia of Genes
and Genomes metabolic pathways as the backend knowledge
base (34, 35), and a pathway with p < 0.05 was considered to be
significant (36).

All data analyses were conducted using SPSS 22.0 (IBM
Corp., Armonk, NY, USA) or RStudio version 1.2.1335-2009-
2019 (RStudio, Inc.) software. Data were assessed for normality
of distribution using the Shapiro–Wilk test first. The two-tailed
Student t test or Mann–Whitney U test was used to analyze
clinical characteristics (age, BMI, gestational weeks, education
level, and EPDS). Heatmap and Spearman’s rank correlation
analysis of key differential metabolites were conducted using
RStudio. Then, the stepwise binary logistic regression analysis
and receiver operating characteristic (ROC) curve analysis were
performed to explore biomarkers for distinguishing NAD from
AD. The area under the curve (AUC) was used to assess the
accuracy of diagnostic accuracy, such as 0.8 < AUC < 0.9 as
good and 0.9 < AUC ≤ 1.0 as excellent (35). p < 0.05 was
considered significant.

RESULTS

Participant Characteristics
The clinical and anthropometric characteristics of all the
participants included in the study are summarized in Table 1. A
total of 20 patients with AD and 40 with NAD were recruited
for this study. There were no significant differences (p > 0.05) in
age, BMI of pre-pregnancy and pregnancy, gestational weeks, or
education level between the two groups.

LC-MS/MS Metabolomics Analysis
LC-MS/MS metabolomic platform was used to assess the
contributions of serum metabolome. After data normalization,
the OPLS-DA model revealed that the AD and NAD patients
could be significantly separated with little overlap in the negative
mode (R2X = 0.187, R2Y = 0.812, Q2 = 0.326, Figure 1A)
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FIGURE 1 | Multivariate statistical analysis. An OPLS-DA model showed that the AD patients (red circle) could be separated from the NAD (blue square) with little

overlap in the negative mode (A) and positive (B). Validation of the OPLS-DA model by the 200-time permutation test suggested that the original model was valid and

not overfitted in negative mode (C) and positive (D).

FIGURE 2 | Volcano plot representing the significant variables in the discrimination between AD and NAD groups in the negative mode (A) and positive (B). The

non-significant and the significant up-regulation and down-regulation variables are represented in gray, red, and blue [q < 0.05 and fold change (AD/NAD) >1]. VIP,

variable importance in the projection.
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TABLE 2 | Differential metabolites in the serum between the antenatal depression (AD) and antenatal depression (NAD) groups.

Metabolites name HMDB Class RT VIP Q FC ESI+/−

l-Glutamic acid HMDB0000148 Amino acids 418.1460 1.71 2.85E-03 0.36 –

l-Phenylalanine HMDB0000159 Amino acids 277.3210 1.65 7.01E-03 0.65 –

l-Serine HMDB0000187 Amino acids 392.1675 1.05 3.62E-03 0.56 +

N-acetyl-l-phenylalanine HMDB0000512 Amino acids 209.5230 1.34 1.23E-02 0.65 –

Phenylacetylglycine HMDB0000821 Amino acids 207.9650 1.28 1.51E-02 0.60 –

l-Norleucine HMDB0001645 Amino acids 283.8880 1.21 1.17E-02 0.76 –

4-Guanidinobutanoic acid HMDB0003464 Amino acids 375.5550 1.50 4.25E-03 0.68 +

Arginyl–valine HMDB0028722 Amino acids 372.8890 1.39 2.68E-02 1.71 +

Asparaginyl–arginine HMDB0028725 Amino acids 442.1130 1.13 1.13E-02 0.04 +

Glycyl–histidine HMDB0028843 Amino acids 378.3465 1.48 2.01E-03 0.56 +

Glycyl–valine HMDB0028854 Amino acids 325.7460 1.66 1.97E-03 0.05 +

Histidinyl–serine HMDB0028894 Amino acids 381.3160 1.88 3.29E-03 0.14 +

Isoleucyl–leucine HMDB0028911 Amino acids 212.4180 1.52 1.06E-02 0.10 +

Isoleucyl–phenylalanine HMDB0028914 Amino acids 201.7700 1.33 2.61E-02 0.59 +

Phenylalanyl–threonine HMDB0029005 Amino acids 249.9295 1.15 1.45E-02 0.18 +

Ustiloxin D HMDB0041054 Amino acids 287.7010 1.56 1.82E-03 0.18 +

Apo-[3-methylcrotonoyl-CoA:carbon-dioxide

ligase (ADP-forming)]

HMDB0059607 Amino acids 330.6840 1.15 1.84E-02 0.66 +

L-Hexanoylcarnitine HMDB0000756 Fatty acids 245.3005 1.81 3.74E-02 1.75 +

Valeric acid HMDB0000892 Fatty acids 101.1280 2.19 8.27E-03 0.02 –

Leukotriene B4 HMDB0001085 Fatty acids 130.4530 1.75 1.76E-02 0.04 –

2-Ethyl-2-hydroxybutyric acid HMDB0001975 Fatty acids 60.9493 1.03 1.79E-03 0.15 +

Prostaglandin F3a HMDB0002122 Fatty acids 94.5208 1.57 1.47E-02 0.09 –

Dodecanoylcarnitine HMDB0002250 Fatty acids 207.0170 1.84 3.04E-02 1.79 +

2-Hydroxymyristic acid HMDB0002261 Fatty acids 96.1171 1.26 2.46E-02 0.59 –

2,3-Dinor-6-keto-prostaglandin F1 a HMDB0002277 Fatty acids 93.0783 1.99 7.58E-03 0.26 –

Prostaglandin A2 HMDB0002752 Fatty acids 95.3174 1.72 9.05E-03 0.18 –

9-OxoODE HMDB0004669 Fatty acids 50.8466 1.31 1.30E-02 0.21 –

Lipoxin B4 HMDB0005082 Fatty acids 76.4873 1.62 1.53E-02 0.02 –

2,6 Dimethylheptanoyl carnitine HMDB0006320 Fatty acids 218.7390 1.55 1.11E-02 1.51 +

5-HETE HMDB0011134 Fatty acids 66.1814 1.50 7.89E-03 0.03 –

Aeglin HMDB0041415 Fatty acids 287.5830 1.62 1.82E-03 0.14 +

Glycerol tripropanoate HMDB0032857 Complex lipids 62.0970 1.16 1.76E-03 0.19 +

Glycerophosphocholine HMDB0000086 Complex lipids 403.3310 1.14 6.96E-03 0.44 +

PC (16:0/16:0) HMDB0000564 Complex lipids 167.0810 2.68 6.33E-06 1.50 +

LysoPC [P-18:1(9Z)] HMDB0010408 Complex lipids 207.1765 1.17 7.86E-03 0.53 +

2-Ketobutyric acid HMDB0000005 Compounds 245.6895 1.71 7.64E-03 0.61 –

Betaine HMDB0000043 Compounds 291.2530 1.25 3.18E-02 1.18 +

Citric acid HMDB0000094 Compounds 276.0380 1.31 2.58E-03 0.64 +

Choline HMDB0000097 Compounds 263.6560 1.08 9.27E-03 0.61 +

Hypoxanthine HMDB0000157 Compounds 182.1340 1.01 2.50E-02 0.67 +

Succinic acid HMDB0000254 Compounds 411.6870 1.50 1.17E-02 0.80 –

Uridine HMDB0000296 Compounds 172.8320 1.42 2.22E-02 0.82 –

3-Methyl-2-oxovaleric acid HMDB0000491 Compounds 41.3037 1.12 3.24E-02 0.77 –

Hydroxypyruvic acid HMDB0001352 Compounds 417.1300 1.72 1.17E-02 0.76 –

Calcitriol HMDB0001903 Compounds 33.4882 1.05 1.76E-03 0.27 +

Formylanthranilic acid HMDB0004089 Compounds 92.6308 1.64 8.80E-03 0.17 –

Nivalenol HMDB0004304 Compounds 283.5380 1.35 2.52E-03 0.40 +

20-Hydroxyeicosatetraenoic acid HMDB0005998 Compounds 52.5070 1.20 1.75E-02 0.15 –

Disialosyl galactosyl globoside HMDB0006588 Compounds 506.8550 1.25 3.27E-03 0.35 +

1-Pyrroline-2-carboxylic acid HMDB0006875 Compounds 339.6700 1.23 4.04E-03 0.52 +

(Continued)
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TABLE 2 | Continued

Metabolites name HMDB Class RT VIP Q FC ESI+/−

1-Pyrroline HMDB0012497 Compounds 330.0500 1.07 2.69E-02 0.87 +

Bortezomib HMDB0014334 Compounds 287.3350 1.48 3.15E-03 0.25 –

Mitomycin HMDB0014450 Compounds 189.6270 1.24 1.17E-02 0.56 +

Tamsulosin HMDB0014844 Compounds 76.5542 1.54 1.75E-03 0.05 +

Fludarabine HMDB0015206 Compounds 201.1370 1.44 2.28E-02 0.96 +

3-Feruloyl-1,5-quinolactone HMDB0029289 Compounds 189.9265 1.35 4.78E-03 0.41 +

Ceanothine E HMDB0029342 Compounds 105.3030 1.53 1.80E-03 0.01 +

1-Methyl-1,3-cyclohexadiene HMDB0031532 Compounds 31.8345 1.10 1.56E-02 0.76 +

Acrylic acid HMDB0031647 Compounds 72.0964 1.94 1.45E-02 0.65 –

1,9-Nonanedithiol HMDB0031710 Compounds 249.6605 1.29 3.97E-02 1.13 +

d-2,3-Dihydroxypropanoic acid HMDB0031818 Compounds 328.6070 1.86 2.52E-03 0.51 –

3-(1,1-Dimethylallyl)scopoletin 7-glucoside HMDB0032853 Compounds 286.8130 1.41 1.92E-03 0.26 +

Honyucitrin HMDB0033536 Compounds 286.8160 1.19 2.00E-03 0.32 +

Ssioriside HMDB0038934 Compounds 287.6650 1.38 2.33E-03 0.06 +

2-(3,4-Dihydroxyphenylethyl)-6-epi-elenaiate HMDB0039137 Compounds 285.0410 1.03 2.47E-03 0.33 +

Kanzonol I HMDB0040606 Compounds 82.8688 1.25 1.73E-03 0.04 +

1-O-2
′

-Hydroxy-4
′

-methoxycinnamoyl-b-d-

glucose

HMDB0040866 Compounds 190.0090 1.68 2.66E-03 0.50 +

Foeniculoside VII HMDB0041546 Compounds 71.7108 1.15 1.74E-03 0.13 +

Sofalcone HMDB0042013 Compounds 287.6165 1.39 1.82E-03 0.24 +

Acetone cyanohydrin HMDB0060427 Compounds 375.5790 1.50 2.28E-03 0.75 +

N-acetylmuramoyl-ala HMDB0060494 Compounds 71.9356 1.24 1.84E-03 0.09 +

α-Hydroxytamoxifen HMDB0060585 Compounds 424.0660 1.70 2.11E-02 1.94 +

Diethyl phthalic acid HMDB0094660 Compounds 69.2197 1.79 1.78E-02 0.07 –

Cholesterol HMDB0000067 Steroids 30.9224 1.03 1.58E-03 0.15 +

Cholesta-4,6-dien-3-one HMDB0002394 Steroids 31.8528 1.49 1.44E-03 0.43 +

Tetrahydroaldosterone-3-glucuronide HMDB0010357 Steroids 96.0803 1.16 1.74E-03 0.02 +

Betamethasone HMDB0014586 Steroids 77.2825 1.25 1.75E-03 0.05 +

Fluocinolone acetonide HMDB0014729 Steroids 82.5630 1.30 1.79E-03 0.03 +

Desglucocheirotoxin HMDB0034362 Steroids 433.7785 1.71 8.73E-03 1.76 +

aMetabolites with VIP >1.0 and Q < 0.05 were deemed statistically different. The q value column was based on non-parametric Mann–Whitney U test and Benjamini–Hochberg

correction of the normalized MS data.
bThe FC was calculated by the average mass response (area) ratio (FC = AD/NAD).

ESI, electrospray ionization; VIP, importance in the projection; FC, fold change; Rt, retention time.

and positive mode (R2X = 0.264, R2Y = 0. 766, Q2 = 0.452,
Figure 1B). Moreover, the 200-permutation test and a typical 7-
fold cross-validation were performed, and the results showed that
the built model was valid and not over-fitted in the negative mode
(R2Y= 0.73, Q2=−0.65, Figure 1C) and positive (R2Y= 0. 60,
Q2=−0.78, Figure 1D).

Screening of Differential Metabolites
Significantly different metabolites were visualized as a volcano
plot by plotting the –log10 q value (y axis) against the
corresponding log2 fold change (AD/NAD) (x axis), and the
differential metabolites were screened according to the set criteria
(VIP > 1 and Q < 0.05). The volcano plot represents the
significant variables in the discrimination between AD and NAD
groups in the negative (Figure 2A) and positive (Figure 2B)
mode. Then, all the different metabolites were identified and
matched by MS/MS spectra based on an in-house database and

found that 79 metabolites were significantly different between
two groups (Table 2), mainly related to lipid and amino acids.

Functional and Pathway Analysis of
Differential Serum Metabolites
All the differential metabolites were mapped into their
biochemical pathways through metabolic enrichment and
pathway analysis based on the database MetaboAnalyst 5.0,
the overview of pathway enrichment and analysis is shown in
Figures 3A,B. It revealed evident disorders in five differential
metabolic pathways that emerged with pathway impact >0 and p
< 0.05 (Table 3), including glycerophospholipid metabolism (p
= 0.0123) and amino acid metabolism, such as glycine, serine,
and threonine metabolism (p = 0.0001) and Alanine, aspartate,
and glutamate metabolism (p= 0.0334).

Then, the heatmap plotted to visualize the key differential
metabolomes, which revealed that the whole metabolome
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FIGURE 3 | Functional and pathway analysis of differential serum metabolites. Pathway enrichment (A) and pathway analysis (B) of differential metabolites using

MetaboAnalyst 5.0. The x axis (pathway impact values) and y axis [the –log10 (p value)] represent the influencing factor of a topological analysis and the p value of the

pathway enrichment analysis. The size of the nodes reveals the influence factor of a topological analysis, whereas the color of the nodes indicates the p value of the

enrichment analysis. The vital metabolic pathways were defined as having p < 0.05 and impact value > 0.

TABLE 3 | The top five metabolic pathways analysis via MetaboAnalyst based on all identified differential metabolites.

No. Pathway name Compound hits p value Pathway impact Metabolites

1 Glycine, serine, and threonine metabolism 6/33 0.0001 0.34 Choline, betaine, l-serine, hydroxypyruvate, 2-ketobutyric

acid, d-2,3-dihydroxypropanoic acid

2 Glyoxylate and dicarboxylate metabolism 5/32 0.0011 0.37 l-Serine, hydroxypyruvate, citric acid,

d-2,3-dihydroxypropanoic acid

3 Arachidonic acid metabolism 4/36 0.0123 0.02 20-Hydroxyeicosatetraenoic acid, 5-HETE, leukotriene

B4, PC (16:0/16:0)

4 Glycerophospholipid metabolism 4/36 0.0123 0.19 Choline, PC (16:0/16:0), glycerophosphocholine,

LysoPC [P-18:1(9Z)]

5 Alanine, aspartate and glutamate metabolism 3/28 0.0334 0.20 Citric acid, l-glutamic acid, succinic acid

significantly changed in both groups (Figure 4A). The
Spearman’s correlation was evaluated among the 15 key
differential metabolites, and almost all of them are negatively
correlated with depression symptom (EPDS), except that PC
(16:0/16:0) (r = 0.537, p < 0.001) and betaine (r = 0.329, p =

0.010) were significantly positive correlated with EPDS, and
L-serine (r = 0.198, p= 0.129) was not (Figure 4B).

The stepwise binary logistic regression analysis of the
whole differential metabolites to predicted probability and
the ROC analysis to build a curve using the obtained
probabilities showed that the identified simplified biomarker
panel [betaine, PC (16:0/16:0) and succinic acid] could yield
an AUC of 0.960 (95% confidence interval = 0.911–1.000,
specificity = 95%, sensitivity = 85%) (Figure 4C). These results
demonstrated that this simplified biomarker panel had an
excellent diagnostic performance in discriminating AD from
NAD. Finally, the molecular interactions related to amino acids
and glycerophospholipid metabolism were investigated. The

results showed the key metabolites were mainly mapped into
the “glycerophospholipid metabolism,” “alanine, aspartate, and
glutamate metabolism and glycine,” and “serine and threonine
metabolism.” The majority of metabolites of these pathways were
decreased in the AD group relative to the NAD group (Figure 5).

DISCUSSION

To our knowledge, this is the first study to use LC-MS/MS
platform to evaluate serummetabolites in late-pregnancy women
with and without depression symptoms. In the overall analysis,
79 metabolites were significant different between AD and NAD,
which were related to amino acids and lipids (mainly about
fatty acid and glycerophosphocholines). Specifically, we found
that most of the key metabolites were related to “amino
acid metabolism” including “glycine, serine, and threonine
metabolism,” “alanine, aspartate and glutamate metabolism,” and
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FIGURE 4 | Systems analysis of key differential metabolites. The heatmap visualization of key differential metabolites from the differential pathway (A), Spearman’s

correlation was conducted between key differential metabolites and EPDS (B), and ROC curve (C) of the whole differential metabolites. A significant (p < 0.05)

positive and negative correlation is indicated with a red and blue color, whereas a non-significant correlation is indicated with blank. EPDS, Edinburgh Postnatal

Depression Scale.

“glycerophospholipid metabolism.” Furthermore, correlation
analysis revealed that PC (16:0/16:0) and betaine were associated
with higher AD risk. Finally, a potential biomarker panel
consisting of three serum metabolite biomarkers [betaine, PC
(16:0/16:0) and succinic acid] was identified. This panel could
discriminate pregnant women with AD from those with NAD
with AUC of 0.960.

Depression is a heterogeneous and multifactorial disorder,
while the molecular mechanisms that underlie depression
remain unclear. Recently, a growing body of evidence suggests
that lipid metabolism plays a vital role in the pathological of
depression (22, 37–39). Lipids are a fundamental constituent of
cellular and subcellular membranes and perform diverse roles
in biological functions, such as regulating receptor-mediated
signaling processes and transmembrane transport (40). Liu
et al. have found that lysophosphatidylcholine (LysoPC),
phosphatidylcholine (PC), triacylglycerol (TG), etc., remarkably

increased in the plasma of depression patients and showed a
significantly positive correlation with depression severity (41).
PC is the most abundant phospholipid of all mammalian cell
types and subcellular organelles, accounting for 40–50% of
total cellular phospholipids (22, 37). LysoPC, an intermediate
of PC metabolism, is produced by the cleavage of PC by
phospholipase A2 (PLA2) (42), and LysoPC is converted back
to PC via lysophosphatidylcholine acyltransferase (43). Then,
LysoPC is orderly deacylated to glycerol–phosphocholine and
choline by lysophospholipase I and glycerol–phosphocholine
phosphodiesterase via glycerophospholipid metabolism pathway
(44). In our study, we found that PC (16:0/16:0), choline,
LysoPC [P-18:1(9Z)], and glycerol–phosphocholine are related
to glycerophospholipid metabolism. PC (16:0/16:0) is up-
regulated in the AD compared with those of healthy mothers
during pregnancy, whereas LysoPC [P-18:1(9Z)], glycerol–
phosphocholine, and choline were down-regulated. The
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FIGURE 5 | Disturbance of amino acid and glycerophospholipid metabolism in the antenatal depression woman. The key differential metabolites were mainly mapped

into the “glycerophospholipid metabolism,” “alanine, aspartate and glutamate metabolism,” and “glycine, serine, and threonine metabolism.” The majority of

metabolites of pathways were decreased in the AD group relative to the NAD group. AD, antenatal depression; NAD, non-antenatal depression; PC,

phosphatidylcholine; LysoPC, lysophosphatidylcholine. The solid lines show molecular interaction or relation, whereas the dotted lines show indirect or unknown links.

Student t test; *p < 0.05, **p < 0.01, ***p < 0.001, ⋆, no significance; ◦, not detected.

results may be caused by the dysfunction of PC synthesis and
metabolism. PC, including PC (16:0/16:0), is primarily made
in mammalian cells from choline through the CDP–choline
pathway, which accounts for 95% of the total choline pool in
mammalian tissue (45), and PC is also metabolized to LysoPC,
glycerophospholipid, and choline via glycerophospholipid
metabolism pathway (46), in line with previous findings
that the levels of PC (16:0/16:0) were obviously increased in
the plasma of the AD group (26) and choline and glycerol–
phosphocholine were significantly decreased in the urine of
patients with moderate depression (Hamilton Depression Scale
score ranged from 18 to 24) (47). Masataka et al. suggested that
glycerol–phosphocholine can prevent the aging-related decline
in cognitive function, which plays a vital role in sustaining
structural and functional integrity of cellular membranes
including neuronal membranes (48). In addition, Zheng
et al. have also found that the metabolites in hippocampal
depressive macaques were significantly different from those of
controls, which were mainly enriched in glycerophospholipid
metabolism (49). Given that the changes of PC (16:0/16:0),
choline, LysoPC [P-18:1(9Z)], and glycerol–phosphocholine are
inconsistent, alterations of any of them would cause disturbance
of glycerophospholipid metabolism. Thus, the disturbance of
glycerophospholipid metabolism is associated with depression.

Depression, a serious mental illness, is influenced by genes
and the environment. It has reported that the environmental
factors regulated the gene expression and function of neuronal
membrane via epigenetic mechanisms (50). Choline is a
necessary nutrient and acts as an indirect methyl donor, which is
required for normal brain growth and development (51). Choline
was also a precursor of the neurotransmitter acetylcholine, PC,
and betaine, involved in several critical physiological functions
(52), such as modulation of gene expression, synaptic plasticity,
and cholinergic signaling (50, 51). Betaine is a direct methyl
donor, which can be obtained from diet or transformed from
choline (53). A recent study revealed that the concentrations of
choline and betaine were significantly positive and a trending
positive correlation with depression scores (EPDS), respectively
(54), and betaine was associated with the severity of depression of
psychiatric patients, who were diagnosed with major depressive
disorder (MDD) or bipolar disorder (55). Thus, the levels of
choline and betaine are associated with the clinical status of
depression. In the present study, the choline was an intermediate
between disturbance of glycerophospholipid metabolism and
glycine, serine, and threonine metabolism, and the choline is
distinctly lower in AD women than the controls; betaine is
observed to be increased in the AD group and involved in
disturbance of glycine, serine, and threonine metabolism. In line
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with previous findings, the levels of betaine increased in urine
samples from subjects with bipolar disorders; choline was down-
regulated in the plasma of depressed patients and reversed to the
normal levels after Xiaoyaosan treatment (56). The results may
explain the oxidization of choline into betaine (57). In addition,
total choline and betaine significantly decreased in the AD group,
compared with those from the NAD group. Both choline and
betaine are involved in one-carbon metabolism, including folate
and methionine cycles (58). Choline can indirectly donate its
methyl groups and participate in folate-mediated one-carbon
metabolism via its oxidation to betaine by choline oxidase (50),
while betaine is an essential methyl donor for the methionine–
homocysteine cycle. Based on the above evidence, the change
in choline and betaine disturbs the one-carbon metabolism
and influences the expression of pivotal genes via epigenetic
mechanisms, and these genes were related to memory, learning,
and cognitive functions.

Accumulating evidence supports that amino acid metabolism
and glutamatergic system are involved in the pathogenesis of
depression (21, 59). A vast evidence proved that the glutamatergic
system can be a novel therapeutic target of MDD, particularly
via N-methyl-D-aspartate receptors (NMDARs) (60), such as
NMDAR antagonist ketamine (61). In this study, we found that
L-glutamic acid (Glu), succinic acid, and citric acid decreased
in the serum of pregnant women with depression, which was
related to alanine, aspartate, and glutamate metabolism pathway.
In line with previous studies, Glu decreased in the dorsolateral
prefrontal cortex of individuals with depression, as well as in the
anterior cingulate cortex (62). In addition, succinate and citrate
are important for the tricarboxylic acid (TCA) cycle. TCA cycle
is the final common oxidative pathway and most effective energy
metabolism pathway. Succinate is an important intermediate of
the TCA cycle, and it also interacts with the metabolism of the
Glu–γ-aminobutyric acid–glutamine pathway (63). Glu also can
be a substrate for the TCA cycle, as it can be converted to α-
ketoglutarate by transaminases or glutamate dehydrogenase (64).
It is the main excitatory neurotransmitter released by synapses
in the central nervous system and regulates synaptic plasticity,
cognitive processes, and reward and emotional processes (65).
Therefore, Glu signaling is at the crossroad of multiple metabolic
pathways and, accordingly, including the influence of TCA cycle
and the “alanine, aspartate, and glutamate metabolism” pathway.
The dysfunction of TCA may play a role in the pathophysiology
of depression.

LIMITATIONS

Some limitations need to be addressed. First, relatively small
sample size and late-pregnancy subjects were enrolled in this
study; future studies with large-scale samples are still needed
to validate our study. Second, all subjects were from the same
location and might share the same dietary habits, which may
restrict the generalization of the findings. Third, only serum
metabolites were studied, and further studies should collect
other biological samples from the same subjects. Fourth, the

number of differential metabolites might be not enough to
obtain the robust results of pathway analysis and enrichment
analysis; thus, future studies are still needed to validate and
support these results. Therefore, these findings shed new light to
further elucidate the molecular mechanism of depression. And
our preliminary investigation found that studies on potential
biomarkers for AD and key metabolic pathways are needed for
further validation.

CONCLUSION

In summary, 79 significant differential metabolites between AD
and NAD were identified by LC-MS/MS. We also found that
these metabolites mainly influenced “amino acids metabolism”
and “glycerophospholipid metabolism.” Meanwhile, potential
serum diagnostic metabolite panels [betaine, PC (16:0/16:0)
and succinic acid] clearly discriminated AD from NAD with
excellent accuracy. These findings may aid in uncovering
the molecular pathogenesis of AD and then prompting
the development of diagnostic and prognostic tests for
the disorder.
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