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SUMMARY

Drugs that interact with multiple therapeutic targets are potential high-value products in polypharmacol-
ogy-based drug discovery, but the rational design remains a formidable challenge. Here, we present
artificial intelligence (AI)-based methods to design the chemical structures of compounds that interact
with multiple therapeutic target proteins. The molecular structure generation is performed by a frag-
ment-based approach using a genetic algorithm with chemical substructures and a deep learning
approach using reinforcement learning with stochastic policy gradients in the framework of generative
adversarial networks. Using the proposed methods, we designed the chemical structures of compounds
that would interact with two therapeutic targets of bronchial asthma, i.e., adenosine A2a receptor
(ADORA2A) and phosphodiesterase 4D (PDE4D). We then synthesized 10 compounds and evaluated
their bioactivities via the binding assays of 39 target human proteins, including ADORA2A and PDE4D.
Three of the 10 synthesized compounds successfully interacted with ADORA2A and PDE4D with high
specificity.

INTRODUCTION

The development of drugs is hampered by enormous cost and

time requirements. The typical period between discovery and

launch of a drug on the market exceeds 10 years, incurring bil-

lions of dollars.1 Discovering compounds with the desired bioac-

tivities within the vast chemical space (theoretically comprising

1060 compounds2) is challenging as it requires screening to iden-

tify a small fraction of such compounds with the desired pheno-

types. Moreover, experimentally verifying the bioactivities of all

compounds in such a large chemical space is impossible unless

the efficiency of identifying compounds with the desired bioac-

tivities can be improved.

The de novo design of drug candidate compounds is expected

to yield chemical structures without depending on existing com-

pound libraries.3 A structure generator algorithm can automati-

cally output a chemical structure based on the initial conditions.

Various structure generators using deep generative models,

such as the variational autoencoder,4–6 generative adversarial

network (GAN),7–10 and transformer,11–13 have been recently re-

ported.14 The generated structures maximize the lipid solubility

of the drug (logP) or a quantitative estimate of drug likeness.

Most previously reported methods have focused on a single

chemical property or the bioactivity of a single therapeutic

protein.

Cocktail therapy, which exploits the synergistic effects of

multiple drug combinations, is a potentially effective treatment

for multifactorial diseases.15 The simultaneous regulation of

multiple therapeutic targets by several drugs in the cocktail

yields synergistic effects. However, harmful side effects can

arise from the blind combination of multiple drugs, and simulta-

neous treatment with multiple drugs can be burdensome for

patients. Ideally, one drug that simultaneously acts on multiple

therapeutic targets will provide synergistic effects, lessen the

side effects, and reduce the cost of cocktail therapies.15–19

Although the potential of such polypharmacology has been

long recognized, the difficulty in rationally designing multitarget

compounds has limited its progress.15,18–21 A computational

method for designing compounds that bind to two target pro-

teins was proposed, but the method is applicable only to pro-

teins with known three-dimensional structures and ligand-bind-

ing pockets.19

In this study, we propose an artificial intelligence (AI)-based

method for generating multitarget compounds. To this end, we
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develop fragment- and deep learning-based structure genera-

tors for designing the chemical structures of compounds that

can likely interact with two therapeutic targets. The usefulness

of the method is demonstrated in a case study involving dual-

target compounds for two therapeutic targets of bronchial

asthma. This proposed method can open avenues for polyphar-

macology-based drug discovery.

RESULTS

Overview of the proposed method for designing dual-
target compounds
Figure 1 overviews the proposed method for generating dual-

target compounds. The proposed method comprises dual-

target bioactivity prediction models and dual-target structure

generators.

The dual-target bioactivity prediction models (constructed

first) calculate the bioactivity scores of a compound based on

its structure for both therapeutic targets (Figure 1A). For each

therapeutic target, we constructed the quantitative structure-ac-

tivity relationship (QSAR) model using random forest regressor,

which inputs the chemical structure of each compound and out-

puts its bioactivity (pIC50 value). These pIC50 values are aver-

aged to obtain the objective function of the dual-target structure

generator.

The dual-target structure generators design the chemical

structures of dual-target compounds (Figures 1B and 1C). The

first generator is a fragment-based structure generator and opti-

mizer, namely DualFASMIFRA (Figure 1B). The structures are

generated by a genetic algorithm (GA) that assembles active

compound fragments against the target proteins. The GA is a

conservative but pragmatic structure generator. The second

generator, a deep learning-based structure generator, namely

Figure 1. Overview of the proposed method

for generating dual-target compounds

(A) Construction of quantitative structure-activity

relationship (QSAR) models for predicting the

compound bioactivities on different therapeutic

targets and generating dual-target compound

candidates. Incorporation of bioactivity-value

prediction models into (B) the fragment-based

structure generator DualFASMIFRA and (C) the

deep learning-based structure generator Dual-

TransORGAN.

DualTransORGAN (Figure 1C), is a deep

generative model based on a GAN with

a transformer encoder and decoder.

DualTransORGAN generates plausible

structures that capture the semantic

features of a compound via reinforce-

ment learning using stochastic policy

gradients. The proposed algorithms are

detailed in the "method details" section.

As a case study, we generated com-

pounds that interact with two therapeu-

tic targets of bronchial asthma: adeno-

sine A2a receptor (ADORA2A) and phosphodiesterase 4D

(PDE4D).

Generation of dual-target compounds using the
proposed structure generators
The chemical structures of compounds for dual targets,

ADORA2A and PDE4D, were generated using DualFASMIFRA.

These structures were optimized by combining three tech-

niques: (1) calculation of a scoring function using the

QSAR model (2) molecular generation, and (3) optimization.

The affinities of the generated compounds to the therapeutic

targets were estimated using a scoring function, and

the overall optimization process was driven by the GA.

Adhering to the best practices in software design, these

three techniques were maintained separately to ensure

that any component could be changed independently of the

others.

The generated chemical structures of the high-scoring dual-

target compounds are shown in Figure S1. DualFASMIFRA

generated diverse molecular scaffolds with different arrange-

ments of rings and types of atoms, including structures contain-

ing fluorene, piperazine, and fused rings with multiple substruc-

tures of nitrogen atoms. Additionally, most compounds were

expected to be highly planar because they did not have a chiral

center and contained only a small proportion of sp carbons.

Thus, they can be synthesized via cross-coupling reactions

and other techniques.

Figures 2A and 2B) show the scatterplots of the predicted

versus observed pIC50 values for ADORA2A and PDE4D,

respectively. These values were highly correlated for both tar-

gets, verifying the optimal performance of the QSAR models.

Figure 2C shows the data statistics after one iteration of the

GA, including the ratios of elite high-scoring compounds
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predicted by the QSARmodels, randomly selected diverse com-

pounds, and mutant compounds.

In the application of an elitist GA, most (80%) of the generated

molecules for the next iteration were high scoring (elite), whereas

19% were selected randomly (the ‘‘diverse’’ population) to

ensure chemical diversity in themolecular population (Figure 2C).

The optional 1% of ‘‘mutant’’ molecules allowed for mutations of

randomly selectedmolecules from the previous population using

a medicinal chemistry technique called positional analog scan-

ning.22 Figure 2D shows the optimization trajectories of the

objective functions in the structure generator. The predicted

average, maximum, and minimum pIC50 values for ADORA2A

andPDE4D plateaued after approximately 20 iterations. The pro-

portions in the GA (i.e., 80%, 19%, and 1%) were determined via

trial and error in several optimization experiments. Other propor-

tions in the GA are possible, but they may exhibit different

convergence behavior.

Subsequently, dual-target compounds for ADORA2A and

PDE4D were generated using DualTransORGAN. We analyzed

Figure 2. Molecular generation by the pro-

posed structure generators

(A and B) Scatterplots of the predicted versus

observed pIC50 values using the QSAR models for

(A) ADORA2A and (B) PDE4D.

(C) Ratios of elite compounds with high

scores in the QSAR models, diverse (randomly

selected) compounds, and mutant compounds

(positional scan analogs of the merged set of

elite and random molecular population) after

one iteration of the genetic algorithm in Dual-

FASMIFRA.

(D) Optimization trajectories of the objective

functions in DualFASMIFRA. The horizontal axis

indicates the generation number of the genetic

algorithm, and the vertical axis indicates the

predicted molecular weight invariant, pIC50

(averaged between the results of ADORA2A and

PDE4D).

(E) Distributions of molecular weights of the

generated compounds (green) and compounds

in the training dataset (gray) applied to

DualTransORGAN. The horizontal and vertical

axes indicate the molecular weights of the

compounds and the densities of the compounds

with the corresponding molecular weights,

respectively.

(F) Optimization trajectories of the objective

functions in DualTransORGAN. The maximum

(max), average (avg), and minimum (min) values

are shown.

50 compounds with the highest sums

of their two bioactivity values and

confirmed that the generated structures

did not have the same structures as

the compounds in the training set.

The chemical structures generated

by DualTransORGAN were structurally

diverse and contained fluorine and

sulfur atoms as well as polar functional

groups such as hydroxy, carboxy, and cyano groups.

The generated structures were rich in steric properties.

Moreover, ring structures such as cyclopropane and structures

containing chiral carbons were generated. The chemical

structures generated by DualFASMIFRA had fewer polar func-

tional groups and larger conjugated systems than those gener-

ated by DualTransORGAN. The generated high-scoring chemi-

cal structures of the dual-target compounds are shown in

Figure S2.

We investigated the distributions of the compounds

generated by DualTransORGAN. Figure 2E compares the

distributions of molecular weights of these compounds to

those in the training dataset. The compounds’ molecular

weight distributions were almost identical, indicating that

DualTransORGAN can reproduce relatively small compounds

similar to those in the training dataset in terms of molecular

weights. DualTransORGAN generated compounds with

molecular weights below 500, consistent with those in the

training dataset. Figure 2F shows the optimization trajectories
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of the objective functions in the structure generator. The

objective function in DualTransORGAN did not change mark-

edly as the epochs increased. The predicted average,

maximum, and minimum pIC50 values for ADORA2A and

Figure 3. Synthesis of the AI-generated

compounds

(A) Computationally generated compounds 5, 9,

13, and 16 are predicted to interact with both

ADORA2A and PDE4D. Schemes A, B, C, and D

show the synthesis routes of compounds 5, 9, 13,

and 16, respectively. Compound 6 is a derivative

of 5.

(B) The chemical structures of the synthesized 10

compounds and the corresponding compound

numbers in (A) are shown.

PDE4D remained stable across all itera-

tions, implying that the structures of

the generated compounds converged

along with the convergence of the

objective functions. Other parameters

in the GAN model are possible, but

they may yield different convergence

behavior.

Chemical synthesis of selected AI-
generated compounds
Among all the AI-generated compounds,

we selected the easily synthesizable

compounds. Based on the computation-

ally generated chemical structures, we

synthesized the 10 compounds shown

in Figure 3. Compounds 5, 9, 13, and

16 were anticipated to interact with

ADORA2A and PDE4D. Compound

5 was prepared from 1,3-indanedione

(1), guanidine hydrochloride (2), and

arylaldehyde in the presence of a base

in an ethanol/water mixture.23 The

4-phenyl compound (6) was synthesized

along with the 2-furyl compound (5) via

Scheme A in Figure 3A. The synthesis of

9 is described in Scheme B in Figure 3A.

3-Amino-5-phenyl-1,2,4-triazine (7) was

prepared as described in a previous

study,24 and 8 was formed via bromina-

tion at the C6 position of 7. 9 was

obtained via Suzuki-Miyaura cross-

coupling of 8 with 4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl) pyridine. 13 was

synthesized by treating commercially

available 2-chlorobenzimidazole (10)

with N-boc-protected piperazine. The re-

sulting product 11 was treated with ethyl

bromide and subsequently deprotected

to obtain 13 (Scheme C in Figure 3A).

Compound 16 was obtained by N-alkyl-

ation of commercially available 2-amino benzimidazole (14)

with n-propyl bromide, followed by condensation with 2-furoyl

chloride (Scheme D in Figure 3A). The chemical structures of

the 10 synthesized compounds are shown in Figure 3B.

4 iScience 28, 111526, January 17, 2025

iScience
Article

ll
OPEN ACCESS



Biological evaluation of the synthesized compounds
To validate the computationally predicted results, the bioactiv-

ities of the 10 synthesized compounds were evaluated by per-

forming binding assays for ADORA2A andPDE4D. To investigate

the binding specificity to ADORA2A and PDE4D, we performed

additional binding assays for 39 target human proteins. From

the drug safety and pharmacological point of view, the target

protein set comprised 24 G-protein-coupled receptors

(GPCRs), 3 transporters, 3 ion channels, 1 kinase, 2 nuclear re-

ceptors, and 6 nonkinase enzymes (Figure 4A).

Figure 4 shows the list of 39 target human proteins and the dis-

tribution of hit compounds for 39 target human proteins in terms

of inhibition scores based on the binding assays. As shown in

Figure 4B, the predicted and synthesized compounds using

the proposed methods exhibited highly specific binding for a

limited number of proteins. For example, compounds 5, 6, and

9 showed more than 100% binding inhibition of ADORA2A

and more than 80% that of PDE4D. For compounds 7 and 8,

only ADORA2A had >90% inhibition activity. Meanwhile, com-

Figure 4. List of target proteins in the bind-

ing assays and hit distributions of synthe-

sized compounds for the target human pro-

teins

39 human target proteins including 24 GPCRs, 3

transporters, 3 ion channels, 1 kinase, 2 nuclear

receptors, and 6 nonkinase enzymes from the

viewpoints of drug safety and pharmacological

actions are selected (A). The binding activities of

the synthesized compounds 5, 6, 7, 8, 9, 11, 12,

13, 15, and 16 are evaluated on this list including

ADORA2A and PDE4D (B). The rows and columns

in the heatmap indicate human target proteins and

synthesized compounds, respectively. The cells

are indicated by the percent inhibition colors of

each compound for the 39 proteins. Cells with

>100% inhibition scores are highlighted in the

darkest red, those with ‘‘90% % 3 < 100%’’ in-

hibition in orange, ‘‘80%% 3 < 90%’’ inhibition in

yellow, ‘‘70% % 3 < 80%’’ inhibition in yellow-

green, ‘‘60% % 3 < 70%’’ in green, ‘‘50% % 3

< 60%’’ inhibition in light blue, and ‘‘< 50%’’ inhi-

bition in white.

pounds 11, 12, 13, and 15 showed no

binding inhibition of <50% for either

ADORA2A or PDE4D. Compound 16

showed >90% binding inhibition against

ADORA2A. Moreover, compounds 15

and 16 had >50% inhibitory activity

against five proteins. Figure S3 shows a

detailed heatmap of the original percent-

age inhibition scores of the 10 synthe-

sized compounds in the 39 protein bind-

ing assays.

The bioactivities and chemical
structures of the synthesized
compounds
Figure 5 shows the chemical structures of

the 10 synthesized compounds and the percentage inhibition

values for 39 target proteins in the binding assays. The enlarged

results of the binding assays of compounds 5, 6, 7, 8, 9, 11, 12,

13, 15, and 16 are shown in Figures S4–S13, respectively.

Compounds 11–13 and 15 interacted with different target pro-

teins, but compounds 5, 6 (a derivative of 5), and 9 interacted

with both ADORA2A and PDE4D. Compound 5 more selectively

bound to both proteins than compound 6, implying that the aryl

group at C4 promotes its protein selectivity. The aryl moiety can

be easily replaced by an aldehyde with an aryl group of interest,

facilitating the synthesis of more selective compounds. In addi-

tion, the synthetic intermediates of compound 9, i.e., compounds

7 and 8, bound only to ADORA2A, suggesting that the aryl group

at the C6 position of compound 9 facilitated its binding to PDE4D.

As the aryl group at C6 was introduced via Suzuki-Miyaura cross-

coupling at a later stage of synthesis, the derivatives of compound

9 with various aryl groups could be easily prepared.

The hit compounds with desired activities were synthesized

from four AI-generated compounds. The generated structures

iScience 28, 111526, January 17, 2025 5

iScience
Article

ll
OPEN ACCESS



(legend on next page)

6 iScience 28, 111526, January 17, 2025

iScience
Article

ll
OPEN ACCESS



of compound 9 and 3-amino-5,6-diaryl-1,2,4-triazine derivatives

corresponded to known ADORA2A ligands.25 This implies that

the proposed method successfully reproduced known ligands

that were absent from the learning dataset. The maximum com-

mon substructures26 of compound 9 and 3-amino-5,6-diaryl-

1,2,4-triazine derivatives with the known ADORA2A ligand are

shown in Figure S14. The other synthesized hit compounds

were not previously reported as ADORA2A and PDE4D ligands.

Based on these findings, we concluded that the proposed AI-

based methods can accelerate the development of multitarget

drugs with desired activities.

DISCUSSION

Summary
In this paper, we developed AI-based methods to generate dual-

target compounds against two therapeutic targets, where two

bioactivity prediction models were incorporated into structure

generators and the combination of fragment- and deep

learning-based generators. Using the proposed method, the

chemical structures of compounds that will likely interact with

any two therapeutic targets can be automatically designed.

The proposed method was applied to two therapeutic targets,

namely ADORA2A and PDE4D. Then, the AI-generated com-

pounds were synthesized and in vitro binding assays were per-

formed. We confirmed that the synthesized compounds suc-

cessfully bound to ADORA2A and PDE4D. As the proposed

method is (in principle) applicable to any combination of thera-

peutic targets, it is expected to promote further advancements

in polypharmacology-based drug discovery.

DualTransORGAN is a generator that learns structural features

at the simplified molecular-input line-entry system (SMILES)

string level by incorporating a transformer into GAN, enabling

the generation of structures with desired chemical properties

through reinforcement learning using a stochastic policy

gradient. Its main advantage is promoting diversity in the gener-

ated structures. In contrast, DualFASMIFRA uses high-speed

assembly of substructure fragments based on a GA. Its primary

advantage is generating only effective molecules consisting of

highly frequent substructures. We believe using both generators

together will yield more effective and diverse molecules, which is

why we adopted both methods.

By incorporating a bioactivity predictive model for each thera-

peutic target, the proposed method can generate various com-

pounds thatwill probably bind to both targets.Herein, random for-

est was used as the machine learning method for the bioactivity

predictive model. However, other machine learning methods

such as gradient boosting, logistic regression, kernel regression,

and deep neural networks can also be used for the proposed

method. An ensemble approach with multiple machine learning

models would combine the individual strengths of its constituent

models to improve the stability and reliability of the prediction

results.

Limitations of the study
The proposed method has some limitations. Here, it was

applied to small-molecule substances, but many recent drug

modalities include small-, middle-, and macro-molecule sub-

stances. Whether the proposed method can usefully predict

middle- and macro-molecule substances is unclear. The devel-

opment of molecular selection criteria for these additional drug

modalities is an important research direction. The experimental

validation of the generated compounds is another limitation.

Herein, the predicted chemical structures were validated only

via binding assays. In future work, we would like to work on

experimental validations from other viewpoints such as doses

and toxicity.
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Figure 5. Experimental validation of synthesized compounds using binding assays of 39 target human proteins

The bioactivities of the 10 synthesized compounds were evaluated on 39 human target proteins, including ADORA2A and PDE4D. (A–J) are the binding assay

results of synthesized compounds 5, 6, 7, 8, 9, 11, 12, 13, 15, and 16, respectively. The bar plots show the percentage inhibition scores of each compound for the

39 proteins. The red bars highlight the proteins with significant responses (>50% inhibition in the binding assay). The associated inhibition scores are also shown.
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KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Synthesis of compounds
Unless otherwise stated, all reactants or reagents, including dry solvents, were obtained from commercial suppliers and used as

received. 2,2-dimorpholino-1-phenylethan-1-one was prepared according to previous report.23 All reactions were performed using

dry solvents under a nitrogen atmosphere in dried glassware using standard vacuum-line techniques. All preparatory and purification

procedures were carried out with reagent-grade solvents under air.

Analytical thin-layer chromatography was performed using Merck silica gel 60 F254 precoated plates (0.25 mm). The developed

chromatograms were analyzed using an untra violet (UV) lamp (254 or 365 nm). Flash column chromatography was performed

with KANTO Silica Gel 60N (spherical, neutral, 40–100 mm) or Biotage Isolera equipped with Biotage SNAP Cartridge KP-Sil columns.

Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (0.75 mm) prepared in our

laboratory. High-resolution mass spectra (HRMS) were obtained from a Thermo Fisher Scientific Exactive (atmospheric pressure

chemical ionization, electrospray ionization, ESI). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-

ECA-500 (H 500MHz) and JEOL ECS-600 (H 600MHz, C 150MHz) spectrometers. Chemical shifts for H NMR are expressed in parts

per million (ppm) relative to CD3OD (3.31 ppm), d-DMSO (2.50 ppm), CD2Cl2 (5.32 ppm), or CDCl3 (7.26 ppm). Chemical shifts for C

NMR are expressed in ppm relative to CD3OD (49.00 ppm), CD2Cl2 (53.84 ppm), or CDCl3 (77.16 ppm). Data are reported as follows:

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sext = sextet, m = multiplet), coupling constant (Hz), and

integration.

Synthesis of 2-amino-4-(furan-2-yl)-5H-indeno[1,2-day]pyrimidin-5-one (5)
To a 50-mL three-neck round bottom flask containing a magnetic stirring bar were added furan-2-carbaldehyde (3) (1.5 mL,

18.1 mmol), 1,3-indanedione (1) (2.58 g, 17.7 mmol), NaOH (146 g, 36.5 mmol), ethanol (50 mL) and water (50 mL), and the mixture

was stirred for 30 min at room temperature. After guanidine hydrochloride (2) (2.56 g, 26.8 mmol) was added, the resulting mixture

was heated at 90�C for 32 h. The reaction mixture was poured onto crushed ice. A precipitate was collected by filtration and washed

with cold water, dried and purified by flash column chromatography using Isolera (chloroform/MeOH = 10:0 to 10:1) and PTLC (chlo-

roform/EtOAc = 2:1) to afford 5 as a yellow solid (74.6 mg, 2% yield).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (DualFASMIFRA) Version

3.9.13

https://www.python.org/downloads/

Python (DualTransORGAN) Version 3.6.10 https://www.python.org/downloads/

RDKit (DualFASMIFRA) Version

2024.03.5

https://www.rdkit.org

RDkit (DualTransORGAN) Version 2020.09.1.0 https://www.rdkit.org

PyTorch (DualTransORGAN) Version 3.6.10 https://pytorch.org

Data

Compound structures ChEMBL https://www.ebi.ac.uk/chembl/

(https://doi.org/10.1093/nar/gky1075)

Bioactivity data for ADORA2A ChEMBL https://www.ebi.ac.uk/chembl/target_

report_card/CHEMBL251/

Bioactivity data for PDE4D ChEMBL https://www.ebi.ac.uk/chembl/target_

report_card/CHEMBL288/

Other

DualFASMIFRA This study https://github.com/UnixJunkie/FASMIFRA/

(https://doi.org/10.1186/s13321-021-00566-4)

DualTransORGAN This study https://yamanishi.cs.i.nagoya-u.ac.jp/dualtarget/
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2-Amino-4-(furan-2-yl)-5H-indeno[1,2-day]pyrimidin-5-one (5)
HNMR (600MHz, CDCl3) d 8.61 (d, J = 3.4 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.72–7.71 (m, 1H), 7.61 (td, J = 7.4,

1.3 Hz, 1H), 7.57 (td, J = 7.3, 1.1 Hz, 1H), 6.67 (dd, J = 3.6, 1.8 Hz, 1H), 5.82 (s, 2H); C NMR (150 MHz, CDCl3) d 188.3, 176.9, 164.8,

153.1, 149.6, 146.1, 140.0, 136.8, 134.1, 133.0, 123.7, 121.4, 120.8, 113.0, 110.7.

HRMS (ESI) m/z calcd for C15H9N3O2Na [M+Na]+: 286.0587, found 286.0586.

Synthesis of 2-amino-4-phenyl-5H-indeno[1,2-day]pyrimidin-5-one (6)
Compound 6 was synthesized according to procedures reported in the literature.23 To a Schlenk tube containing a magnetic stirring

bar were added benzaldehyde (4) (0.11 mL, 1.09 mmol), 1,3-indanedione (1) (147 mg, 1.01 mmol), NaOH (81 mg, 1.09 mmol), ethanol

(1.5 mL) and water (1.5 mL), and the mixture was stirred for 10 min at room temperature. After guanidine hydrochloride (2) (143 mg,

1.50 mmol) was added, the resulting mixture was stirred at 90�C for 11 h. The reaction mixture was poured onto crushed ice. A pre-

cipitate was collected by filtration, washed with cold water, and recrystallized from hexane/MeOH to afford 6 as a yellow solid

(25.4 mg, 9% yield).

2-Amino-4-phenyl-5H-indeno[1,2-day]pyrimidin-5-one (6)
H NMR (600 MHz, CDCl3) d 8.08–8.06 (m, 2H), 7.86–7.85 (m, 1H), 7.75–7.74 (m, 1H), 7.62 (td, J = 7.5, 1.1 Hz, 1H), 7.57 (td, J = 7.5,

1.1 Hz, 1H), 7.54–7.51 (m, 3H), 5.69 (s, 2H); C NMR (150 MHz, CDCl3) d 188.6, 176.9, 165.9, 164.7, 140.0, 136.7, 135.5, 134.2, 133.0,

131.4, 129.8, 128.2, 123.8, 121.4, 113.2.

HRMS (ESI) m/z calcd for C17H11N3ONa [M+Na]+: 296.0794, found 286.0797.

Synthesis of 5-phenyl-1,2,4-triazin-3-amine (7)
Compound 7 was synthesized according to procedures reported in the literature.24 To a 100-mL two-neck round bottom flask con-

taining a magnetic stirring bar were added 2,2-dimorpholino-1-phenylethan-1-one (S1) (7.30 g, 24.4 mmol), aminoguanidine bicar-

bonate (S2) (3.32 g, 24.4mmol) andMeOH (35mL), followed by slow addition of AcOH (4.2mL, 73.4mmol). The resultingmixture was

stirred at room temperature for 10 min, and then heated 65�C for 21 h. After cooling, the resulting suspension was concentrated to

about half its volume, and cooled to 0�C. The resulting solid was filtered and washed with cold MeOH/H2O (4:1). The collected solid

was dried in vacuo to afford 7 as an orange solid (2.23 g, 53% yield).

5-Phenyl-1,2,4-triazin-3-amine (7)
H NMR (600 MHz, d-DMSO) d 9.23 (s, 1H), 8.17 (dt, J = 6.5, 1.6 Hz, 2H), 7.60–7.55 (m, 3H), 7.25 (s, 2H); C NMR (150 MHz, CD3OD)

d 164.7, 158.6, 138.2, 135.3, 133.3, 130.2, 128.6.

HRMS (ESI) m/z calcd for C9H8N4Na [M+Na]+: 195.0641, found 195.0641.

The H-NMR spectrum was identical to that reported in the literature.24

Synthesis of 6-bromo-5-phenyl-1,2,4-triazin-3-amine (8)
Compound 8 was synthesized according to procedures reported in the literature.25 To a 100-mL two-neck round bottom flask con-

taining a magnetic stirring bar were added 5-phenyl-1,2,4-triazin-3-amine (7) (2.10 mg, 12.2 mmol) and DMF (20 mL). The resulting

mixture was cooled to �25�C and a solution of N-bromosuccinimide (6.52 g, 36.6 mmol) in DMF (15 mL) was added dropwise. The

reaction mixture was stirred at room temperature for 18 h. After completion of the reaction, the mixture was poured into sat. NaHCO3

aq. and extracted with diethyl ether. The organic layer was washed with water and brine, and dried over Na2SO4. After filtration, the

solvent was removed by evaporation. The resulting residue was purified by flash column chromatography using Isolera (hexane/

EtOAc = 8:2 to 1:1) to afford 8 as a yellow solid (1.05 g, 34% yield).

6-Bromo-5-phenyl-1,2,4-triazin-3-amine (8)
HNMR (600MHz, d-DMSO) d 7.74 (dt, J = 6.4, 1.7 Hz, 2H), 7.57–7.52 (m, 5H); C NMR (150MHz, CD3OD) d 163.9, 161.0, 136.6, 135.8,

132.0, 130.5, 129.3.

HRMS (ESI) m/z calcd for C9H7N4BrNa [M+Na]+: 272.9746, found 272.9747.

The H-NMR spectrum was identical to that reported in the literature.25

Synthesis of 5-phenyl-6-(pyridin-4-yl)-1,2,4-triazin-3-amine (9)
To a 50-mL three-neck round bottom flask containing amagnetic stirring bar were added 6-bromo-5-phenyl-1,2,4-triazin-3-amine (8)

(104.4 mg, 0.42 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (S3) (96.2 mg, 0.45 mmol), K2CO3 (171.2 mg,

1.24 mmol) and 1,4-dioxane (3.0 mL). The resulting mixture was diluted with water (1.6 mL), treated with Pd(PPh3)4 (25 mg,

0.023 mmol), and stirred at 100�C for 19 h. Then, the mixture was poured into water and extracted with EtOAc. The organic layer

was washed with water and brine, and dried over Na2SO4. After filtration, the solvent was removed by evaporation. The resulting res-

idue was purified by PTLC (CHCl3/MeOH = 10:1) and recrystallized from CHCl3/hexane to afford 9 as a yellow solid (24.4 mg, 7%

yield).
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5-Phenyl-6-(pyridin-4-yl)-1,2,4-triazin-3-amine (9)
H NMR (600 MHz, CD2Cl2) d 8.54 (dd, J = 4.5, 1.4 Hz, 2H), 7.48–7.45 (m, 3H), 7.37–7.33 (m, 4H), 5.58 (s, 2H); C NMR (150 MHz,

CDCl3) d 161.3, 157.6, 149.9, 148.3, 143.9, 135.2, 130.9, 129.4, 128.7, 123.5.

HRMS (ESI) m/z calcd for C14H12N5 [M + H]+: 250.1087, found 250.1086.

Synthesis of tert-butyl 4-(1H-benzo[d]imidazol-2-yl)piperazine-1-carboxylate (11)
Compound 11 was synthesized according to procedures reported in the literature.27 To a 200-mL three-neck round bottom flask

containing a magnetic stirring bar were added 2-chlorobenzimidazole (10) (3.00 g, 19.7 mmol), N-tert-butoxycarbonyl piperazine

(S4) (3.70 g, 19.9 mmol), and 1-butanol (40 mL). The resulting mixture was refluxed for 3 h. Then, the precipitate was collected

and rinsed with diethyl ether and dried over in vacuo to afford 11 as a white solid (5.7 g, 96% yield).

tert-butyl 4-(1H-benzo[d]imidazol-2-yl)piperazine-1-carboxylate (11)
H NMR (600 MHz, CD3OD) d 7.42 (dd, J = 5.7, 3.3 Hz, 2H), 7.32 (dd, J = 5.1, 3.0 Hz, 2H), 3.68 (s, 8H), 1.50 (s, 9H); C NMR (150 MHz,

CD3OD) d 156.0, 151.8, 131.4, 125.1, 112.5, 82.1, 47.2, 28.6 (missing one peak).

HRMS (ESI) m/z calcd for C16H23N4O2 [M + H]+: 303.1816, found 303.1819.

The H-NMR spectrum was identical to that reported in the literature.27

Synthesis of tert-butyl 4-(1-ethyl-1H-benzo[d]imidazol-2-yl)piperazine-1-carboxylate (12)
To a Schlenk tube containing a magnetic stirring bar were added tert-butyl 4-(1H-benzo[d]imidazol-2-yl)piperazine-1-carbox-

ylate (11) (1.00 g, 3.31 mmol), ethyl bromide (0.39 mL, 5.01 mmol), KOH (378.0 mg, 6.74 mmol) and acetone (6.6 mL). The re-

sulting mixture was stirred at 40�C for 19 h. Then, the mixture was poured into sat. NH4Cl aq. and extracted with chloroform.

The organic layer was dried over Na2SO4. After filtration, the solvent was removed by evaporation. The resulting residue was

purified by flash column chromatography by Isolera (hexeane/EtOAc = 1:1 to 2:8) to afford 12 as a white solid (801 mg, 73%

yield).

tert-butyl 4-(1-ethyl-1H-benzo[d]imidazol-2-yl)piperazine-1-carboxylate (12)

H NMR (600 MHz, CD3OD) d 7.50–7.47 (m, 1H), 7.41–7.39 (m, 1H), 7.21–7.16 (m, 2H), 4.18 (q, J = 7.3 Hz, 2H), 3.65 (s, 4H), 3.23 (t, J =

5.1 Hz, 4H), 1.50 (s, 9H), 1.44 (t, J = 7.1 Hz, 3H); C NMR (150 MHz, CD3OD) d 158.3, 156.4, 141.7, 135.4, 123.1, 123.1, 118.3, 110.8,

81.6, 51.9, 39.9, 28.6, 14.5 (missing one peak).

HRMS (ESI) m/z calcd for C18H26N4O2Na [M+Na]+: 353.1948, found 353.1943.

Synthesis of 1-ethyl-2-(piperazin-1-yl)-1H-benzo[d]imidazole hydrochloride (13)
To a screw test tube containing a magnetic stirring bar were added tert-butyl 4-(1-ethyl-1H-benzo[d]imidazol-2-yl)piperazine-1-

carboxylate (12) (53.0 mg, 0.16 mmol), trifluoroacetic acid (TFA: 0.2 mL) and CH2Cl2 (1.8 mL). The resulting mixture was stirred at

room temperature for 1 h. After addition of toluene (10 mL), the solvent was removed by evaporation to afford the product as a

TFA salt. To a 30-mL flask were added the resulting residue and 4MHCl/1,4-dioxane (2.0mL), and the solvent was removed by evap-

oration. This procedure was repeated four times in total, and the resulting residue was washed with hexane to afford 13 as a white

solid (38.1 mg, 89% yield).

1-Ethyl-2-(piperazin-1-yl)-1H-benzo[d]imidazole hydrochloride (13)
HNMR (500MHz,CD3OD) d 7.74–7.72 (m, 1H), 7.62–7.60 (m, 1H), 7.52–7.50 (m, 2H), 4.35 (q, J = 7.3Hz, 2H), 3.88 (t, J= 5.2Hz, 4H), 3.56

(t, J = 5.0 Hz, 4H), 1.59 (t, J = 7.3 Hz, 3H); C NMR (150 MHz, CD3OD) d 152.4, 132.5, 130.2, 126.7, 126.4, 113.9, 113.0, 47.9, 44.1,

42.3, 14.1.

HRMS (ESI) m/z calcd for C13H19N4 [M + H]+: 231.1604, found 231.1601.

Synthesis of 1-propyl-1H-benzo[d]imidazol-2-amine (15)
To a Schlenk tube containing a magnetic stirring bar were added 2-aminobenzimidazole (14) (508 mg, 3.82 mmol), KOH (432.0 mg,

7.70 mmol) and acetone (6.6 mL). After addition of propyl bromide (0.51 mL, 5.63 mmol), the resulting mixture was stirred at room

temperature for 3 h. Then, the mixture was poured into sat. NH4Cl aq. and extracted with chloroform. The organic layer was dried

over Na2SO4. After filtration, solvent was removed by evaporation. The resulting residue was purified by PTLC (chloroform/

MeOH = 3:1 containing 1% Et3N) to afford 15 as a white solid (323 mg, 48% yield).

1-Propyl-1H-benzo[d]imidazol-2-amine (15)
HNMR (600MHz, CD3OD) d 7.22 (d, J = 7.6 Hz, 1H), 7.15 (d, J = 6.9 Hz, 1H), 7.02 (td, J = 7.6, 1.4 Hz, 1H), 6.99 (td, J = 7.6, 1.4 Hz, 1H),

3.97 (t, J = 7.2 Hz, 2H), 1.79 (sext, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); C NMR (150 MHz, CD3OD) d 156.1, 142.5, 135.3, 122.2,

120.5, 115.8, 109.0, 44.6, 23.1, 11.4.

HRMS (ESI) m/z calcd for C10H14N3 [M + H]+: 176.1182, found 176.1180.
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Synthesis of N-(1-propyl-1H-benzo[d]imidazol-2-yl)furan-2-carboxamide (16)
To a 30-mL two-neck round bottom flask containing a magnetic stirring bar was added furan-2-carboxylic acid (S4) (96.0 mg,

0.86mmol) and SOCl2 (2.0 mL, 28.5 mmol). The resulting mixture was stirred at 80�C for 1 h. Then, the solvent was removed by evap-

oration. To the resulting residue were added 1-propyl-1H-benzo[d]imidazol-2-amine (15) (101.0 mg, 0.57 mmol), Et3N (0.60 mL,

4.0 mmol) and CH2Cl2 (2.0 mL). The resulting mixture was stirred at 80�C for 3 h. Then the solvent was removed by evaporation.

The resulting residue was purified by flash column chromatography using Isolera (chloroform/MeOH = 95:5 to 85:15) and PTLC (chlo-

roform/MeOH = 50:1) to afford 16 as an orange solid (19.0 mg, 12% yield).

N-(1-propyl-1H-benzo[d]imidazol-2-yl)furan-2-carboxamide (16)
H NMR (600 MHz, CD3OD) d 7.68 (s, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.31–7.25 (m, 2H), 7.22 (d, J = 2.7 Hz, 1H),

6.57–6.57 (m, 1H), 4.26 (t, J = 7.2 Hz, 2H), 1.90 (sext, J = 7.3 Hz, 2H), 0.99 (t, J = 7.6 Hz, 3H); C NMR (150MHz, CD3OD) d 168.5, 153.7,

153.5, 146.3, 131.0, 130.4, 124.3, 124.2, 116.1, 112.9, 112.7, 110.8, 44.7, 22.9, 11.5.

HRMS (ESI) m/z calcd for C15H15N3O2Na [M+Na]+: 292.1056, found 292.1053.

Binding assays
The interactions between AI-generated compounds and proteins were verified via in vitro binding assays. To investigate binding

specificity, we performed binding assays for 39 human proteins, including ADORA2A and PDE4D. The 39 human proteins used in

binding studies were molecular targets (24 GPCRs, 3 transporters, 3 ion channels, 1 kinase, 2 nuclear receptors and 6 other non-ki-

nase enzymes) expressed in the central nervous, cardiovascular, respiratory, digestive, and excretory systems; namely, ADORA2A,

ADRA1A, ADRA2A, ADRB1, ADRB2, CNR1, CNR2, CCKAR, DRD1, DRD2, EDNRA, HRH1, HRH2, CHRM1, CHRM2, CHRM3,

OPRD1, OPRK1, OPRM1, HTR1A, HTR1B, HTR2A, HTR2B, AVPR1A, SLC6A3, SLC6A2, SLC6A4, CHRNA4, KCNH2, HTR3A,

LCK, AR, NR3C1, PTGS1, PTGS2, ACHE, MAOA, PDE3A and PDE4D.

The binding assay was performed using radioligand binding, spectrofluorimetry, enzymatic activity, or spectrophotometry (see

Supplementary Binding Assay section). After measuring the degree to which the added compound sample inhibited the specific

binding of the original ligand to the protein, the inhibition rate (%Inh) was calculated. The GPCR binding assay for ADORA2A was

performed as follows.28 ADORA2A expressed in human HEK-293 cells were used in modified Tris-HCl buffer pH 7.4. A15-mg aliquot

was incubated with 50-nM [H] CGS-21680 for 90 min at 25�C. Nonspecific binding was estimated in the presence of 50-mM NECA

(50-N-ethylcarboxamidoadenosine). Receptors were filtered and washed before counting to determine the specifically bound [H]

CGS-21680. Compounds were screened at 10 mM. The enzymatic activity for PDE4D was as follows.29,30 Human-recombinant

PDE4D expressed in Sf9 insect cells was used. Test compound and/or vehicle was preincubated with 5-ng/mL enzyme in Tris-

HCl buffer pH 7.2 for 15 min at 25�C. The reaction was initiated by adding 100-nM fluorescein-labeled cAMP for another 15 min

of incubation and terminated by adding the immobilized metal affinity for phosphochemical (IMAP) binding solution. IMAP forms a

complex with phosphate groups on nucleotide monophosphate generated from cyclic nucleotides via PDE activity. The amount

of complex formed was determined via spectrofluorimetry at 470/525 nm. Compounds were screened at 10 mM. The detailed exper-

imental methods for the remaining 37 proteins are shown in the Supplementary Binding Assay section. All target proteins in the panel

target list are given in Table S1.

Binding assays for GPCRs, ionic channels, and enzymes, transporters
Assay no. 1: Human adenosine A2a receptor (ADORA2A)

Human recombinant adenosine A2a receptors expressed in human HEK-293 cells were used in modified Tris-HCl buffer pH 7.4.28

A15 mg aliquot was incubated with 50 nM [3H] CGS-21680 for 90 min at 25�C. Non-specific binding was estimated in the presence of

50 mM NECA. Receptors were filtered and washed, before counting to determine the specifically bound [3H] CGS- 21680. Com-

pounds were screened at 10 mM.

Assay no. 2: Human adrenoceptor alpha 1A (ADRA1A)

Human recombinant adrenoceptors alpha 1A expressed in human Chem-1 cells was used in modified HEPES buffer pH 7.4.31,32 A

2 mg aliquot was incubatedwith 0.6 nM [3H] Prazosin for 60min at 25�C.Non-specific bindingwas estimated in the presence of 10 mM

phentolamine. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Prazosin. Compounds

were screened at 10 mM.

Assay no. 3: Human adrenoceptor alpha 2A (ADRA2A)

Human recombinant adrenoceptor alpha 2A expressed in CHO-K1 cells was used in modified Tris-HCl buffer pH 7.4.33,34 A 2 mg

aliquot was incubated with 1.5 nM [3H] Rauwolscine for 60 min at 25�C. Non-specific binding was estimated in the presence of

10 mMWB-4101. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Rauwolscine. Com-

pounds were screened at 10 mM.

Assay no. 4: Human adrenoceptor beta 1 (ADRB1)

Human recombinant adrenoceptor beta 1 expressed in CHO-K1 cells was used in modified Tris-HCl buffer pH 7.4. A 25 mg aliquot

was incubated with 0.03 nM [125I] Cyanopindolol for 120min at 25�C.35 Non-specific binding as estimated in the presence of 100 mM

S (�)-Propranolol. Receptors were filtered and washed, before counting to determine the specifically bound [125I] Cyanopindolol.

Compounds were screened at 10 mM.
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Assay no. 5: Human adrenoceptor beta 2 (ADRB2)

Human recombinant adrenoceptor beta 2 expressed in CHO cells was used in modified Tris-HCl buffer pH 7.4.36 A 50 mg aliquot was

incubated with 0.2 nM [3H] CGP-12177 for 60min at 25�C. Non-specific binding was estimated in the presence of 10 mM ICI-118551.

Receptors were filtered and washed, before counting to determine the specifically bound [3H] CGP-12177. Compounds were

screened at 10 mM.

Assay no. 6: Human cannabinoid receptor 1 (CNR1)

Human recombinant cannabinoid receptor 1 expressed in rat hematopoietic Chem-1 cells was used in modified HEPES buffer pH

7.4.37,38 A 5 mg aliquot of membrane was incubated with 2 nM [3H]SR141716A for 60 min at 37�C. Non-specific binding was esti-

mated in the presence of 10 mM CP 55,940. Membranes were filtered and washed, before counting to determine the specifically

bound [3H] SR141716A. Compounds were screened at 10 mM.

Assay no. 7: Human cannabinoid receptor 2 (CNR2)

Human recombinant cannabinoid receptor 2 (CNR2) expressed in CHO-K1 cells was used in modified HEPES buffer pH 7.0.39 A

30 mg aliquot was incubated with 2.4 nM [3H] WIN-55,212-2 for 90 min at 37�C. Non-specific binding was estimated in the presence

of 10 mM R (+)-WIN-55,212-2. Membranes were filtered and washed, before counting to determine the specifically bound [3H] WIN-

55,212-2. Compounds were screened at 10 mM.

Assay no. 8: Human cholecystokinin A receptor (CCKAR)

1321-N1 (human astrocytoma) stably transfected with a plasmid encoding the human recombinant cholecystokinin A receptors was

used to prepare membranes in modified HEPES buffer pH 7.4.40,41 A 5 mg aliquot of membrane was incubated with 0.11 nM [125I]

CCK-8 for 180 min at 25�C. Non-specific binding was estimated in the presence of 1 mM L364,718 (devazepide). Membranes were

filtered and washed, before counting to determine the specifically bound [125I] CCK-8. Compounds were screened at 10 mM.

Assay no. 9: Human dopamine receptor D1 (DRD1)

Human recombinant dopamine receptor D1 expressed in CHO cells was used in modified Tris-HCl buffer pH 7.4.42,43 A 20 mg aliquot

was incubatedwith 1.4 nM [3H] SCH-23390 for 120min at 37�C. Non-specific binding was estimated in the presence of 10 mM (+)-bu-

taclamol. Receptors were filtered and washed, before counting to determine the specifically bound [3H] SCH-23390. Compounds

were screened at 10 mM.

Assay no. 10: Human dopamine receptor D2 (DRD2)

Human recombinant dopamine receptor D2 expressed in CHO cells was used in modified Tris-HCl buffer pH 7.4.44,45 A 15 mg aliquot

was incubated with 0.16 nM [3H] Spiperone for 120 min at 25�C. Non-specific binding was estimated in the presence of 10 mM halo-

peridol. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Spiperone. Compounds were

screened at 10 mM.

Assay no. 11: Human endothelin receptor type A (EDNRA)

Human recombinant endothelin receptor type A expressed in CHO-S1 cells are used in modified Tris-HCl buffer pH 7.4.46 A 0.5 mg

aliquot was incubated with 0.03 nM [125I] Endothelin-1 for 120 min at 37�C. Non-specific binding was estimated in the presence of

0.1 mM endothelin-1. Receptors were filtered and washed, before counting to determine the specifically bound [125I] Endothelin-1.

Compounds were screened at 10 mM.

Assay no. 12: Human histamine receptor H1(HRH1)

Human recombinant histamine receptor H1 expressed in CHO-K1 cells was used inmodified Tris-HCl buffer pH 7.4.47 A 10 mg aliquot

was incubated with 1.2 nM [3H] Pyrilamine for 180 min at 25�C. Non-specific binding was estimated in the presence of 1 mM pyril-

amine. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Pyrilamine. Compounds were

screened at 10 mM.

Assay no. 13: Human histamine receptor H2 (HRH2)

Human recombinant histamine receptor H2 expressed in CHO-K1 cells as prepared in K-Na phosphate buffer pH 7.4.48 A 2 mg aliquot

was incubated with 0.1 nM [125I] Aminopotentidine for 120 min at 25�C. Non-specific binding was estimated in the presence of 3 mM

Tiotidine. Receptors were filtered and washed, before counting to determine the specifically bound [125I] Aminopotentidine. Com-

pounds were screened at 10 mM.

Assay no. 14: Human cholinergic receptor muscarinic 1 (CHRM1)

Human recombinant cholinergic receptormuscarinic 1 expressed in CHO-K1 cells was used inmodified Tris-HCl buffer pH 7.4.49,50 A

16 mg aliquot was incubated with 0.8 nM [3H] N-Methylscopolamine for 120 min at 25�C. Non-specific binding was estimated in the

presence of 1 mM Atropine. Receptors were filtered and washed, before counting to determine the specifically bound [3H]

N-Methylscopolamine. Compounds were screened at 10 mM.

Assay no. 15: Human cholinergic receptor muscarinic 2 (CHRM2)

Human recombinant cholinergic receptormuscarinic 2 expressed in CHO-K1 cells was used inmodified Tris-HCl buffer pH 7.4.49,50 A

8 mg aliquot was incubated with 0.8 nM [3H] N-Methylscopolamine for 120 min at 25�C. Non-specific binding was estimated in the

presence of 1 mM atropine. Receptors were filtered and washed, before counting to determine the specifically bound [3H] N- Meth-

ylscopolamine. Compounds were screened at 10 mM.

Assay No.16: Human cholinergic receptor muscarinic 3 (CHRM3)

Human recombinant cholinergic receptormuscarinic 3 expressed in CHO-K1 cells was used inmodified Tris-HCl buffer pH 7.4.49,50 A

12 mg aliquot was incubated with 0.8 nM [3H] N-Methylscopolamine for 120 min at 25�C. Non-specific binding was estimated in the
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presence of 1 mM atropine. Receptors were filtered and washed, before counting to determine the specifically bound [3H] N- Meth-

ylscopolamine. Compounds were screened at 10 mM.

Assay no. 17: Human opioid receptor delta 1 (OPRD1)

Human recombinant opioid receptor delta 1 expressed in HEK293 cells was used in modified Tris-HCl buffer pH 7.4.51,52 A 9 mg

aliquot was incubated with 1.3 nM [3H] Naltrindole for 60 min at 25�C. Non-specific binding was estimated in the presence of

1 mM Naltrindole. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Naltrindole. Com-

pounds were screened at 10 mM.

Assay no. 18: Human opioid receptor kappa 1 (OPRK1)

Human recombinant opioid receptor kappa 1 expressed in human HEK-293 cells was used in modified Tris-HCl buffer pH 7.4.53,54 A

30 mg aliquot was incubated with 0.6 nM [3H] Diprenorphine for 60 min at 25�C. Non-specific binding was estimated in the presence

of 10 mM naloxone. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Diprenorphine.

Compounds were screened at 10 mM.

Assay no. 19: Human opioid receptor mu 1 (OPRM1)

Human recombinant opioid receptor mu 1 expressed in CHO-K1 cells was used in modified Tris-HCl buffer pH 7.4.55 A 11 mg aliquot

was incubated with 0.6 nM [3H] Diprenorphine for 60 min at 25�C. Non-specific binding was estimated in the presence of 10 mM

naloxone. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Diprenorphine. Compounds

were screened at 10 mM.

Assay no. 20: Human 5-hydroxytryptamine receptor 1A (HTR1A)

Human recombinant 5-hydroxytryptamine receptor 1A expressed in CHO-K1 cells was used in modified Tris-HCl buffer pH 7.4.56,57

An 8 mg aliquot was incubated with 1.5 nM [3H]8-OH-DPAT for 60 min at 25�C. Non-specific binding as estimated in the presence of

10 mMmetergoline. Receptors were filtered andwashed, before counting to determine the specifically bound [3H]8-OH-DPAT. Com-

pounds were screened at 10 mM.

Assay no. 21: Human 5-hydroxytryptamine receptor 1B (HTR1B)

Human recombinant 5-hydroxytryptamine receptor 1B expressed in Chem-1 cells was used inmodified Tris-HCl buffer pH 7.4.58,59 A

2 mg aliquot of membrane was incubated with 1 nM [3H]GR125743 for 90 min at 37�C. Non-specific binding was estimated in the

presence of 10 mM 5-HT. Membranes were filtered and washed, before counting to determine the specifically bound [3H]

GR125743. Compounds were screened at 10 mM.

Assay no. 22: Human 5-hydroxytryptamine receptor 2A (HTR2A)

Human recombinant 5-hydroxytryptamine receptor 2A expressed in CHO-K1 cells was used inmodified Tris-HCl buffer pH 7.4.60,61 A

30 mg aliquot was incubated with 0.5 nM [3H]Ketanserin for 60 min at 25�C. Non-specific binding was estimated in the presence of

1 mM Mianserin. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Ketanserin. Com-

pounds were screened at 10 mM.

Assay no. 23: Human 5-hydroxytryptamine receptor 2B (HTR2B)

Human recombinant 5-hydroxytryptamine receptor 2B expressed in CHO-K1 cells was used to preparemembranes in modified Tris-

HCl buffer pH 7.4.60 A 30 mg aliquot of membrane protein was incubated with 1.2 nM [3H] LSD for 60 min at 37�C. Non-specific bind-

ing was estimated in the presence of 10 mM serotonin. Membranes were filtered and washed, before counting to determine the spe-

cifically bound [3H] LSD. Compounds were screened at 10 mM.

Assay no. 24: Human arginine vasopressin receptor 1 (AVPR1A)

Human recombinant arginine vasopressin receptor 1 expressed in HEK-293 cells was used in modified Tris-HCl buffer pH 7.4.62 A

0.26 mg aliquot was incubated with 0.03 nM [125I] Phenylacetyl-D-Tyr(Me)-Phe-Gln-Asn-Arg- Pro-Arg-Tyr-NH2 for 120 min at 25�C.
Non-specific binding was estimated in the presence of 1 mM [Arg8] Vasopressin. Receptors were filtered and washed, before count-

ing to determine the specifically bound [125I] Phenylacetyl-D-Tyr (Me)-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2. Compounds were

screened at 10 mM.

Assay no. 25: Human solute carrier family 6 member 3 (SLC6A3)

Human recombinant SLC6A3 expressed in CHO-S cells was used in modified Tris-HCl buffer pH 7.4.63,64 A 0.4 mg aliquot was incu-

bated with 0.15 nM [125I] RTI-55 for 3 h at 4�C. Non-specific binding was estimated in the presence of 10 mM nomifensine. Trans-

porters were filtered and washed, before counting to determine specifically bound [125I] RTI-55. Compounds were screened

at 10 mM.

Assay no. 26: Human solute carrier family 6 member 2 (SLC6A2)

Human recombinant SLC6A2 expressed in dog kidneyMDCK cells was used inmodified Tris-HCl buffer pH 7.4.65 A 40 mg aliquot was

incubated with 0.2 nM [125I] RTI-55 for 3 h at 4�C. Non-specific binding was estimated in the presence of 10 mMdesipramine. Trans-

porters were filtered and washed, before counting to determine specifically bound [125I] RTI-55. Compounds were screened

at 10 mM.

Assay no. 27: Human solute carrier family 6 member 4 (SLC6A4)

Human recombinant SLC6A4 expressed in human HEK-293 cell was used in modified Tris-HCl buffer pH 7.4.66,67 A 9 mg aliquot was

incubated with 0.4 nM [3H] Paroxetine for 60 min at 25�C. Non-specific binding was estimated in the presence of 10 mM imipramine.

Transporters were filtered and washed, before counting to determine specifically bound [3H] Paroxetine. Compounds were screened

at 10 mM.
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Assay no. 28: Human cholinergic receptor nicotinic alpha 4 subunit (CHRNA4)

Human recombinant cholinergic receptor nicotinic alpha 4 subunit expressed in SHSY5Y cells was used in modified Tris-HCl buffer

pH 7.4.68 A 30 mg aliquot incubated with 0.6 nM [H] Cytisine for 120min at 4�C. Non-specific binding was estimated in the presence of

10 mM nicotine. Membranes were filtered and washed, before counting to determine the specifically bound [3H] Cytisine. Com-

pounds were screened at 10 mM.

Assay no. 29: Human potassium voltage-gated channel subfamily H member 2 (KCNH2)

Human recombinant potassium voltage-gated channel subfamily Hmember 2 expressed in human HEK- 293 cells was used inmodi-

fied Tris-HCl buffer pH 7.4.69–71 A 7.5 mg aliquot is incubated with 3 nM [3H]Dofetilide for 60 min at 25�C. Non-specific binding was

estimated in the presence of 10 mM Dofetilide. Channel proteins were filtered and washed, before counting to determine the specif-

ically bound [3H] Dofetilide. Compounds were screened at 10 mM.

Assay no. 30: Human 5-hydroxytryptamine receptor 3A (HTR3A)

Human recombinant 5-hydroxytryptamine receptor 3A expressed in human HEK-293 cells was used in modified Tris-HCl buffer pH

7.4.72,73 A 3.2 mg aliquot was incubated with 0.69 nM [3H]GR-65630 for 60 min at 25�C. Non-specific binding was estimated in the

presence of 10 mM MDL-72222. Receptors were filtered and washed, before counting to determine the specifically bound [3H]GR-

65630. Compounds were screened at 10 mM.

Assay no. 31: Human LCK proto-oncogene, Src family tyrosine kinase (LCK)

Human recombinant protein kinase LCK expressed in insect cells was used. Test compound and/or vehicle as preincubated with

0.4 mg/mL enzyme in modified HEPES buffer pH 7.4 for 15 min at 37�C.74 The reaction was initiated by addition of 0.2 mg/mL poly

(Glu:Tyr), 10 mMATP, and 0.25 mCi [g32P]ATP for another 30min incubation and terminated by further addition of 3%H3PO4. An aliquot

was removed and counted to determine the amount of [32P] Poly (Glu:Tyr) formed. Compounds were screened at 10 mM.

Assay no. 32: Human androgen receptor (AR)

Human androgen receptors obtained from human LNCaP cells were used in modified HEPES buffer pH 7.4.75 A 70 mg aliquot was

incubated with 0.5 nM [3H] Methyltrienolone for 20 h at 4�C. Non-specific binding was estimated in the presence of 1 mM testos-

terone. Receptors were filtered and washed, before counting to determine the specifically bound [3H] Methyltrienolone. Compounds

were screened at 10 mM.

Assay no. 33: Human nuclear receptor subfamily 3 group C member 1 (NR3C1)

Human recombinant glucocorticoid receptor expressed in insect cells was used in modified potassium phosphate buffer pH 7.4.76,77

A 10 mg aliquot was incubated with 5 nM [3H] Dexamethasone, 2 mg anti-GST antibody, and 0.2 mg SPA beads for 24 h at 4�C. Non-
specific binding was estimated in the presence of 10 mM Dexamethasone. Receptors were counted to determine the specifically

bound [3H] Dexamethasone. Compounds were screened at 10 mM.

Assay no. 34: Human prostaglandin-endoperoxide synthase 1 (PTGS1)

Human recombinant prostaglandin-endoperoxide synthase 1 expressed in baculovirus infected Sf9 cells were used.78,79 Test com-

pound and/or vehicle is incubated with 0.44 mg/mL enzyme in modified Tris-HCl buffer pH 8.0 for 15 min at 25�C. The reaction was

initiated by addition of 3 mM arachidonic acid and 100 mM Ampliflu Red for another 3 min incubation. Determination of the amount of

Resorufin formed through spectrofluorimetry at 535/590 nm. Compounds were screened at 10 mM.

Assay no. 35: Human prostaglandin-endoperoxide synthase 2 (PTGS2)

Human recombinant prostaglandin-endoperoxide synthase 2 expressed in insect Sf21 cells was used.80,81 Test compound and/or

vehicle was preincubated with 34 U/mL enzyme in modified Tris-HCl buffer pH 8.0 for 15 min at 25�C. The reaction was initiated by

addition of 3 mM arachidonic acid and 100 mM Ampliflu Red for another 3 min incubation. Determination of the amount of Resorufin

formed formed through spectrofluorimetry at 535/590 nm. Compounds were screened at 10 mM.

Assay no. 36: Human acetylcholinesterase (ACHE)

Human recombinant acetylcholinesterase expressed in HEK-293 cells (Sigma, C-1682) was used.82,83 Test compound and/or vehicle

was preincubated with 4.1 ng/mL of enzyme for 15 min at 25�C in phosphate buffer pH 7.4. The reaction was initiated by addition of

0.7 mM acetylthiocholine iodide and 0.5 mM 5,5-dithiobis-2-nitrobenzoic acid for another 20 min incubation. The thiocholine gener-

ated reacts continuously with dithiobisnitrobenzoic acid to produce 5-thio-2-nitro-benzoic acid; its spectrophotometric absorbance

was read at 405 nm. Compounds were screened at 10 mM.

Assay no. 37: Human monoamine oxidase A (MAOA)

Human recombinant MAOA expressed in insect cells was used.84,85 Test compound and/or vehicle was preincubated with 4.2 mg/mL

enzyme in phosphate buffer pH 7.4 for 15 min at 37�C. The reaction as initiated by addition of 50 mM Kynuramine for another 60 min

incubation and terminated by further addition of 1.2 N NaOH. Determination of the amount of 4-hydroxyquinoline formed through

spectrofluorimetry at 325/465 nm. Compounds were screened at 10 mM.

Assay no. 38: Human phosphodiesterase 3A (PDE3A)

Human recombinant PDE3A expressed in insect Sf9 cells was used.86,87 Test compound and/or vehicle was preincubated with

20 ng/mL enzyme in Tris- HCl buffer pH 7.2 for 15 min at 25�C. The reaction was initiated by addition of 100 nM fluorescein lableled

cAMP for another 30min incubation and terminated by addition of IMAPbinding solution. IMAP complexeswith phosphate groups on

nucleotide monophosphate generated from cyclic nucleotides through PDE activity. Determination of the amount of complex formed

through spectrofluorimetry at 470/525 nm. Compounds were screened at 10 mM.
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Assay no. 39: Human phosphodiesterase 4D (PDE4D)

Human recombinant PDE4D expressed in insect Sf9 cells was used.29,30 Test compound and/or vehicle was preincubated with 5 ng/

mL enzyme in Tris-HCl buffer pH 7.2 for 15min at 25�C. The reaction was initiated by addition of 100 nM fluorescein lableled cAMP for

another 15 min incubation and terminated by addition of IMAP binding solution. IMAP makes a complex with phosphate groups on

nucleotidemonophosphate generated from cyclic nucleotides through PDE activity. Determination of the amount of complex formed

through spectrofluorimetry at 470/525 nm. Compounds were screened at 10 mM.

METHOD DETAILS

Therapeutic targets
We focused on two therapeutic targets, ADORA2A and PDE4D, associated with bronchial asthma. It is an allergic reaction to

inhaled allergens that causes airflow obstruction, bronchial hyper-responsiveness, and airway inflammation.88 Bronchial asthma

is currently alleviated using two types of bronchodilators: b2 stimulants and anticholinergics. ADRB2 increases the cyclic adeno-

sine monophosphate (cAMP) levels and relaxes the bronchial smooth muscle. Anticholinergic drugs increase the intracellular Ca+

concentration and inhibit bronchial smooth muscle contraction by inhibiting binding to CHRM3. However, long-term use of b2
stimulants increases the risk of arrhythmia and cardiac arrest, whereas anticholinergic drugs have a slow activity onset and

weak action. Therefore, targeting ADORA2A and PDE4D associated with bronchodilation might be more effective than targeting

ADRB2 or CHRM3 alone. Compounds that interact with both these targets can potentially delay the progression and treat the

symptoms of the disease. As PDE4D inhibits cAMP degradation, it allows intracellular cAMP accumulation and relaxes the bron-

chial smooth muscle.89 PDE4D also inhibits bronchial smooth muscle contraction by increasing the intracellular cAMP concentra-

tion by targeting ADORA2A.90

Algorithm of the dual-target fragment-based structure generator (DualFASMIFRA)
DualFASMIFRA is a dual-target extension of the Fast Assembly of simplified molecular-input line-entry system (SMILES) Fragments

(FASMIFRA).91 The compound structures and their bioactivities for ADORA2A and PDE4D were obtained from the ChEMBL data-

base, where CHEMBL251 corresponded to ADORA2A and CHEMBL288 corresponded to PDE4D. The chemical structures were en-

coded using a molecular encoding procedure called unfolded-counted atom pairs.92 The algorithm in DualFASMIFRA is a published

method.91

After molecular standardization, any duplicate compounds were grouped and their median pIC50 value was calculated. Activity

values were assigned to 4780 compounds for ADORA2A and 981 compounds for PDE4D. Optimization was performed using the

L2-regularized support vector regressor from LIBLINEAR,93 which can be easily trained and provides fast predictions. The C param-

eter was optimized over the exponential range [0.001, 0.002, 0.005,., 50], whereas epsilon was fixed to zero (its default value). The

dependent variable in the model was the molecular weight invariant (MWI) pIC50 (similar to the ligand efficiency94 but divided by the

molecular weight instead of the number of heavy atoms). The MWI pIC50 is sometimes easier to model than pIC50 because the MWI

transform does not truncate the modeled variable distribution. To simplify the interpretation of the predicted affinities, some random

forest regressors were trained to directly predict the pIC50 values (Figures 2A and 2B); 100 trees, maximizing only the mtry param-

eter). We evaluated the model using R, RMSE, and MAE after 5-fold cross validation. The QSAR model for ADORA2A had an R of

0.66, RMSE of 0.68, and MAE of 0.52. The QSAR model for PDE4D had an R of 0.73, RMSE of 0.75, and MAE of 0.55. Both R scores

were >0.65, indicating acceptable quality. The errors were less than 10% in terms of RMSE and MAE. The maximum pIC50 value for

the test data was 9.92 for both ADORA2A and PDE4D.

In addition, fragments should lie within the applicability domain. In other words, compounds containing the fragments possess

known activity against the protein target(s) of interest. Here, the compounds were fragmented and assembled at a high frequency

using FASMIFRA in each GA iteration.

The targeted chemical space was constrained using property filters. Compounds passing the lead-like filter95 should allow

space for future medicinal and chemical optimization if required (MolW %460 Da, �4.0 % cLogP %4.2, rotB %10, nRing %4,

HBD %5, HBA %9). To retain only the compounds predicted as orally available, we trained a classifier on the dataset published

in a previous study.96

Compounds containing known reactive functional groups were filtered out. To ensure an easy synthesis, we admitted only com-

pounds with an Ertl and Schffenhauer’s synthetic accessibility score97 of 2.75 or lower. Figure 2 (c) shows ratios of elite compounds

with high scores in the QSAR models, diverse (randomly selected) compounds, and mutant compounds (positional scan analogs of

the merged set of elite and random molecular population) after one iteration of the genetic algorithm in DualFASMIFRA. Figure 2D

shows an example of the optimization process, and Figure S1 shows some of the generated compounds.

Algorithm of the dual-target deep learning structure generator (DualTransORGAN)

DualTransORGAN is a GAN-based deep generative model, which is a dual-target extension of TransORGAN.98 It utilizes a trans-

former architecture as its generator and employs a stochastic policy gradient reinforcement learning algorithm99 to designmolecules

with the bioactivity (pIC50) as the target chemical property.

Specifically, the generatorGq employs a transformer encoder–decoder architecture for end-to-end learning of SMILES strings. The

transformer encoder uses the self-attention mechanism to extract features from a variant SMILES string, whereas the transformer
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decoder decodes these features back into the canonical string. Formally, the generator calculates the attention score A within an

SMILES string as follows:

AðQ;K;VÞ = softmax

�
QKTffiffiffiffiffi
dk

p
�
V ; (Equation 1)

where Q, K, and V represent the queries, keys, and values with corresponding dimensions of dk for queries and keys, and dv for

values. Then, the generator jointly attends to the features of the different SMILES strings with h projections of multi-head attention

(MHA), as calculated by:

MHAðQ;K;VÞ = Concatðhead1;.; headhÞW; (Equation 2)

headi = A
�
QWQ

i ;KW
K
i ;VW

V
i

�
; (Equation 3)

where W, WQ
i , W

K
i , and WV

i denote weight matrices.

The discriminator Df is implemented as a convolution neural network (CNN) tasked with distinguishing between the generated

SMILES-like strings and raw SMILES strings. Formally, let x1:Tx
= ½x1; x2;.; xTx

� represent an SMILES string with a maximum length

of Tx from the real dataset, and y1:Ty
= ½y1; y2;.; yTy

� represent a generated SMILES-like string with a maximum length of Ty from the

generated dataset, respectively. Then, the source and target matrices can be denoted by:

X1:Tx = x14.4xTx ;Y1:Ty = y14.4yTy : (Equation 4)

Here,4 denotes the concatenation operation. Given a window size of t tokens, the feature map of the convolution operation cij can

be calculated as follows:

cij = ReLuðuj 1Xi:i+t� 1 + bÞ; (Equation 5)

where uj signifies the j-th kernel,1 denotes element-wise summation of the products, and b corresponds to the bias of the convolu-

tional layer. Then, the max-pooling operator is used to select the maximum value bcj in each pooling region. Finally, the probability of

the input string being recognized as true can be determined using a fully connected layer discriminator. To address the training insta-

bility and mode collapse challenges often faced in traditional GANs, the Wasserstein distance100 is employed as the output of the

discriminator. This implementation is as follows:

WDf
ðPr ;PqÞ =

sup

jjf jjL %1
Ex1:Tx�Pr ½fðx1:Tx Þ� � Ey1:Ty�Pq

h
f
�
y1:Ty

�i
; (Equation 6)

where Pr represents the real SMILES distribution and Pq is the distribution output of the generator. EPr
and EPq

represent the ex-

pected values of distributionsPr andPq respectively, for the function f. The upper limit (sup) of the difference between each expected

value was then obtained.

Due to the discrete nature of SMILES strings, distinguishing samples directly poses a challenge for GANs. To address this non-

differentiability issue, a solution is provided through the application of the policy gradient reinforcement learning algorithm. The

objective function is shown as follows:

JðqÞ =
X
Y1:Ty

Gq

�
Y1:Ty

		X1:Tx

�
R
��
X1:Tx ;Y1:Ty � 1

�
;YTy

�
; (Equation 7)

where Rðs0; aÞ represents the expected reward for taking action a starting from the state s0. The expected reward score is a trade-off

among the Wasserstein distance of the discriminator (DfðY1:Ty
Þ), the target chemical property of pIC50 (O(Y1:Ty

Þ) and the penalty

score for mode collapse (P (Y1:Ty
)). The calculation is as follows:

R
��
X1:Tx ;Y1:Ty � 1

�
;YTy

�
= lDf

�
Y1:Ty

�
+ ð1 � lÞ O�

Y1:Ty

�
P
�
Y1:Ty

�
(Equation 8)

where l controls the trade-off among the three rewards. O(Y1:Ty
Þ denotes the pIC50 score of Y1:Ty , and P (Y1:Ty

) represents the penalty

for generating duplicate SMILES strings ofY1:Ty
. This penalty is calculated as the ratio of the number of SMILES strings to the product

of the total number of SMILES strings and the number of duplicate strings. All the rewards range from 0 to 1. To improve the stability of

the GAN training process, we perform Monte Carlo (MC) tree search N times on the policy Gq as follows:

MCGq
ððX1:Tx ;Y1:tÞ;NÞ =

n
Y1

1:Ty
;Y2

1:Ty
; :::;YN

1:Ty

o
: (Equation 9)

Then, the mean reward of the MC tree search for N times R is

RððX1:Tx ;Y1:t� 1Þ;Y tÞ =
1

N

XN
n = 1

R
��

X1:Tx ;Y
n
1:Ty � 1

�
;YTy

�
;Yn

1:Ty
˛MCGq

ððX1:Tx ;Y1:tÞ;NÞ if t < Ty ; (Equation 10)
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RððX1:Tx ;Y1:t� 1Þ;Y tÞ = R
��

X1:Tx ;Y
n
1:Ty � 1

�
;YTy

�
; if t = Ty : (Equation 11)

Finally, the policy gradient of the generator is computed as

VJðqÞ =
1

Ty

XTy
t = 1

X
Y t

RððX1:Tx ;Y1:t� 1Þ;Y tÞVq log GqðY tjX1:Tx ;Y1:t� 1Þ; (Equation 12)

q) q+VJðqÞ: (Equation 13)

The DualTransORGAN was trained in Python 3.6.10 environment under Anaconda 4.10.3 (https://www.anaconda.com [accessed

2023-01-26]) using the deep learning library, PyTorch 1.8.1 (https://pytorch.org [accessed 2023-01-26]).101 The token vector dimen-

sion (ds) andmaximum number of tokens (T) of the SMILES input to the generator were set to 128 and 77, respectively. To classify the

SMILES tokens, the number of token types and dropout rates were set to 81 and 0.2, respectively. The transformer comprised four

encoder and four decoder layers, and the number of heads in multihead attention was set to 4. First, the generator and discriminator

were pretrained. The generator was pretrained on 500,000 SMILES strings to learn their semantic and syntactic features. These fea-

tures underwent pretraining for 250 epochs using an ADAM optimizer102 with an initial learning rate of 0.001. The discriminator was

pretrained for 10 epochs using the previously pretrained generator and 500,000 generated SMILES strings. The initial learning rate

was set to 0.001.

After pretraining, the generator was trained using the bioactivity prediction model. First, SMILES strings with structures were

generated using the generators that previously relearned the structure characteristics. The activity of each generated structure

was predicted using the established bioactivity predictionmodel, and the existence probability of the structure was determined using

the discriminator. The predicted activity and existence probability of the structure were returned as rewards to the generator. The

generator then relearned the characteristics and attempted to generate a structure that maximized its reward, i.e., a structure

with a higher existence probability and bioactivity than the previous structure. The learning rate was set at 4 3 10� 5, and the

maximum number of generated compounds was 5,000.

Then, the discriminator was trained using the generator that previously learned the characteristics based on the bioactivity values.

Generators trained via GAN discriminator learning usually created chemical structures based on their bioactivity values. These struc-

tures were comparedwith those of the original data in the discriminator. Furthermore, whether each structure was real or derived was

evaluated; structures with a higher probability of being treated were regarded as real structures. The learning rate and loss function

were both set to 0.001, and discriminator pretraining was based on the Wasserstein distance. Chemical structures were predicted

and generated using the generator.

DualTransORGANwas trained on 500,000 compounds with molecular weights of%500 g/mol and SMILES length of 10–60. These

structural data were obtained from 2,105,464 compounds registered in the ChEMBL database (https://www.ebi.ac.uk/

chembl/[accessed 2023-01-26]).103 The bioactivity data of compound structures with activities against ADORA2A and PDE4D

were obtained from ChEMBL. Among these data, 309 and 903 compound structures targeted ADORA2A and PDE4D, respectively.

The bioactivity was defined as IC50. The pIC50 was then obtained as the negative logarithm of the IC50 (in molar concentration).

To obtain the compound structures and their bioactivities on the target proteins, we converted the SMILES representation of the

structure data of a compound to a Morgan Fingerprint and represented it as a 2048-dimensional vector. Then, we created a regres-

sion model for bioactivity prediction using RandomForestRegressor in scikit-learn (https://scikit-learn.org [accessed 2023-01-

26]).104 The n_estimators argument of the RandomForestRegressor was set to 1000. The dataset was split into a training dataset

(80%) and a test dataset (20%). The designed regression model was evaluated using the coefficient of determination.

Among the generated compounds, we analyzed 50 compounds with the highest sums of their two bioactivity values, and

confirmed that the generated structures did not have the same structures as the compounds in the training set. The results are dis-

cussed in the fourth paragraph of the ‘‘generation of dual-target compounds using the proposed structure generators’’ subsection of

the results section. The top 50 compounds are listed in Figure S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

These points are not applicable to this study. In this paper, there are no results of statistical tests.
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