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Abstract 16S rRNA gene analysis has emerged as one of

the valuable tools that are being utilized in investigating

the molecular phylogenetic structure of the particular

environment. Here, we embarked upon understanding and

delineating the molecular phylogeny structure of microbes

in polluted soil samples from cancer prone belt of the

Punjab, India, which is highly contaminated with herbicide,

pesticide and heavy metals. To investigate the bacterial

phylogeny structure, a high-molecular weight metage-

nomic DNA was extracted from the soil samples, followed

by PCR amplification, cloning and analysis of the 16S

rRNA genes. Study employing 16S rRNA profiling of the

community DNA revealed the presence of two major

phylums: the Proteobacteria (26.7 %), the Bacteroidetes

(11.2 %), and several minor groups, i.e., Acidobacteria

(4.2 %), Actinobacteria (4.2 %), Firmicutes (2.8 %), Ver-

rucomicrobia (2.8 %), Gemmatimonadetes (1.4 %) and

Chloroflexi (1.4 %). Among the Proteobacteria, we mainly

observed the a-Proteobacteria (18.3 %). Nearly, 38 % of

the recovered 16S rRNA gene sequences in this study do

not share similarity with known culturable bacterial

sequences reported in the genebank data base and hence

considered to be novel. More interestingly, 16S rRNA gene

sequences of archaeal origin (7.0 %) were also recovered

that primarily indicate change in their evolution pattern. A

phylogenetic tree constructed based on alignment-depen-

dent method revealed the extent of similarity these clones

shared with each other, followed by alignment-independent

methods that statistically confirmed the sequence variation

among the clones. Despite the high level of contamination

in the study area, we observed remarkable microbial

diversity that mainly includes the Gram-negative bacteria.

The presence of more Gram-negative bacteria indicates

that they have evolved a robust mechanism to resist and

cope up with these pollutants compared to Gram-positive

groups. Investigation of the polluted soil samples

employing culture-independent approach revealed impor-

tant bacterial groups which could be engineered for future

bioremediation studies.
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Molecular phylogeny � Soil � Bioremediation

Introduction

Soil is a superabundant yet under-characterized ecosystem

that represents an intricate and inexhaustible source of

microbial diversity. The complexity of microbial diversity

in soil is accredited to diverse type of interacting param-

eters, such as pH, water content, soil structure, climatic

variations and biotic activity. The astonishing diversity of

microbes present in the soil has immense potential in

ameliorating our understanding about the soil microbial

ecology. Furthermore, soil environment accommodates

microbial species that can be a goldmine for the genes

involved in biotechnological applications, such as biodeg-

radation of man-made pollutants (Alexander 1977; Daniel
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2005; Diaz 2004). Hence, exploring the diversity of ver-

satile soil microorganisms is of paramount importance

foreseeing their applications in numerous disciplines of

biology. However, most of the soil microorganisms are

exceptionally well adapted to their environment, and can-

not be cultured under the usual laboratory settings. Current

estimate connotes that more than 99 % of microorganisms

present in their innate environment are not readily culti-

vable and, therefore, not accessible to applied and basic

biotechnology research (Amann et al. 1995; Hugenholtz

and Pace 1996; Ward et al. 1990). And hence, new and

improved technologies are required to dissect the func-

tional and structural diversity of the microbial species.

Culture-independent approaches can circumvent such pit-

falls and permit access to the genomes from entire com-

munities that extend our comprehension about the

diversity, ecology, evolution and functioning of the

microbial world (Amann et al. 1995; Handelsman et al.

1998; Hugenholtz and Pace 1996; Riesenfeld et al. 2004;

Ward et al. 1990).

The farmers in Punjab, India, are unseeingly using

pesticides and chemical fertilizers to avert crop destruction,

the extremity of these chemicals has resulted in extensive

pollution of soil and water of Malwa region of the Punjab,

due to which this region is experiencing the perilous

repercussions, and has resulted in cancer and other dreadful

diseases (Blaurock-Busch et al. 2014; Mittal et al. 2014). In

the present investigation, we were aimed at studying the

molecular phylogeny structure of the polluted soil samples

of cancer prone belt of the Punjab, India, by employing

16S-rRNA gene analysis; this technique holds a great

potential in characterizing the microbial diversity of con-

taminated environments (Nogales et al. 2001). Previously,

several studies have been conducted to discern the phy-

logeny structure of several environment niches (Borneman

et al. 1996; Ellis et al. 2003; Kuske et al. 1997; Quirino

et al. 2009); however, to best of our knowledge, no studies

have been undertaken to reveal the phylogeny structure of

this environment. Therefore by analyzing the molecular

phylogeny structure of this region, we wish to shed light

into predominant microflora associated with such soil

samples, and we strongly believe that it will enable

researchers in designing better strategy to engineer these

microorganisms and their metabolically active genes to

combat pollution in such environment.

Materials and methods

Study areas and soil collection

The Punjab state is classified into three regions: Majha,

Malwa and Doaba. Our study area is the Malwa region,

which is south to river Satluj approximately between

29�300 and 31�100 north latitudes and 73�500 and 76�500
east longitudes. The study area comprises the following

districts namely Fazilka, Bathinda, Mansa, Moga, Faridkot,

Patiala, Sangrur, Barnala, Ferozepur, Muktsar and Ludhi-

ana comprising an area of approximately 32,808 km2

(Mittal et al. 2014). Temperature in Malwa region ranges

from 0 �C in winters to 47 �C in summers. The sites for the

collection of soil samples were chosen on the basis of

cancer prevalence in a particular area. We selected six

agricultural fields from the different high cancer prone

areas of the Malwa region. Samples were collected by the

end of January and temperature at the time of sampling was

12 �C. Samples were collected in fresh autoclaved falcon

tubes and were kept on dry ice during transportation from

collection site to the laboratory, and were stored at -20 �C
till use.

DNA extraction and purification

Metagenomic DNA was directly extracted from 0.5 g of all

the six soil samples employing XcelGen Soil gDNA iso-

lation Kit (Xcelris genomics), as per manufacturer’s

instructions. The extracted DNA was brown in color and

was further purified according to the method of Sharma

et al. (2007), using Q-Sepharose (Sigma). Q-Sepharose was

washed and equilibrated with 10 mM potassium phosphate

buffer (pH 7.2). Finally, approximately, 500 ll of solid

washed beads were suspended in 1.5 ml of 10 mM potas-

sium phosphate buffer. After mixing thoroughly, the ali-

quots of 300 ll of Q-Sepharose in buffer were transferred

to six eppendorf tubes (1.5 ml) and centrifuged for 1 min

to separate the overlaying buffer. Chromosomal DNA from

the six soil samples was added into the centrifuge tubes

containing Q-Sepharose beads, and mixed appropriately

via inverting the tubes up and down gradually for 15 min.

Tubes were kept at room temperature for 5 min. The

Humic acids and polyphenolic compounds in the chromo-

somal preparation bound immediately to the Q-Sepharose.

The preparations were centrifuged at 1,0009g for 1 min.

Supernatant containing DNA was saved for further

molecular manipulations.

PCR amplification and cloning of 16 S rRNA

Purified DNA from all the six soil samples was used as a

template for PCR amplification. The pair of primer used for the

amplification was 342F (50-CTACGGGGGGCAGCAG-30)
and 806R (50-GGACTACCGGGGTATCT-30) (Mori et al.

2014) and 27F (50-AGAGTTTGATCMTGGCTCAG-30) and
27R (50-CGGYTACCTTGTTACGAC-30) as potential for-

ward and reverse universal primers, respectively. To amplify

the 16 S rRNA genes, a touchdown PCR was performed in a
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Thermocycler (Veriti, Applied Biosystems) with the following

thermal cycling conditions, 94 �C, 4 min, followed by 16

cycles of 94 �C for 50 s, annealing temperature was step-

downs every cycle to 0.3 �C (from 55 to 50.2 �C) followed by
extension at 72 �C for 2 min. The final PCR product was fur-

ther amplified for another 15 cycles, at an annealing tempera-

ture of 50 �C, whereas the denaturation and extension phases

were sameasmentionedpreviously.Each25 ll PCRcontained

1 ll (0.1 lg) of total soil DNA, 1 ll of each primer (100 lM),

25 mMdNTPs (ThermoScientific), 1 UTaqDNApolymerase

(Thermo Scientific) and 1 9 Taq reaction buffer (Thermo

Scientific). A negative control reaction was also performed

(having no DNA template). PCR amplification products were

run on a 1.5 % agarose gel stained with ethidium bromide and

bands of approximately 500, 900 bp and 1.4 kbp were excised

andDNAwas purified from gel slices using the XcelGenDNA

Gel/PCR Purification kit (Xcelris genomics). The gel-eluted

PCR products from all the six soil samples were pooled and

cloned into the pGEM-T easy vector (Promega, USA) as per

manufacturer’s instruction. The plasmid DNA was extracted

from the randomly selected positive clones (*1,000 random

clones were used) employing Hi YieldTM Plasmid DNA Mini

Kit (Real Genomics).

Nucleotide sequencing

Nearly 150 randomly selected recombinant clones were

sequenced for the presence of 16S rRNA fragments. The

nucleotide sequencing of cloned 16S rRNA genes was

performed in an automated DNA sequencer ABI 3730xl

(Applied Biosystems). Plasmid DNA preparations were

carried out on microtiter plates according to ABI protocol

and was used as a template for PCR cycle sequencing

(Eppendorf) using the Big DYE Terminator Cycle

Sequencing (Applied Biosystems) according to manufac-

turer’s instructions employing a T7 forward and SP6

reverse primer. To confirm the identities of each nucleo-

tide, clones were sequenced twice.

Sequence analysis and construction of phylogenetic tree

The DNA sequences obtained after sequencing were

annotated and pasted as word file, and were further sear-

ched for % homology against the gene database at NCBI.

Reads were edited by the removal of chimeras using

DECIPHER (Wright et al. 2012), low-quality sequences

and the formation of contigs using the CAP3 software

(Huang and Madan 1999). The partial contigs of the 16S

rRNA gene were compared to the non-redundant database

of sequences deposited at the NCBI using BLASTN

(Altschul et al. 1990). Results were used to determine that

sequences were in fact from 16S rRNA and to determine

their degree of similarity to previously known sequences.

Multiple sequence alignment (MSA) was carried out using

Clustal W (Thompson et al. 1994) with default settings.

Phylogenetic analyses were performed with the Mega

programs version 6.06 (Tamura et al. 2013) using the

maximum parsimony method (DNA-PARS) with 1,000

bootstrap replicates for the generation of phylogenetic

trees. The tree was displayed as radial tree.

AIBIMM (Alignment-independent bilinear multivariate

modeling)

In addition to alignment-dependent analysis, a non-align-

ment-based analysis of microbial community was also

carried out via alignment-independent bilinear multivariate

modeling (AIBIMM) approach, as described previously

(Rudi et al. 2006). The sequences were transformed into

multimer frequencies (n = 6) by computer program

PhyloMode (http://www.matforsk.no/web/sampro.nsf/

downloadE/Microbialcommunity). The multimer fre-

quency data were compressed using principal component

analysis (PCA). The starting and end point in the sequences

were corrected using the normalize option data in Phylo-

Mode. The two first principal components (PCs) were

subsequently used for generating pairwise Euclidean dis-

tances for phylogenetic tree construction.

Accession numbers

The nucleotide sequences described in this study have been

submitted to the GenBank database of the NCBI under the

Accession Numbers KM260222–KM260292.

Results and discussion

The 16S rRNA gene analysis has become a valuable tool for

studying the phylogenetic relatedness among microorgan-

isms (Janssen 2006). Soil of Malwa region in Punjab (India)

is known to be constantly contaminated with heavy metals

and pesticides due to long-term agricultural practices in

Punjab (Mittal et al. 2014; Blaurock-Busch et al. 2014). In

our previous study, we also reported considerable presence

of heavy metals and pesticides in the soil sample from this

region (manuscript submitted in current science); therefore,

we embarked upon studying the microbial diversity of the

soil samples from this region to understand the distinctive

ecosystem and the role of these microbes might play in

maintaining ecosystem processes. To meet our aim, we

extracted high-molecular weight metagenomic DNA corre-

sponding to*23 kb size that appeared to be brown in color,

because of the presence of humic acids and polypheno-

lic compounds in it. Such contaminants are known to

hinder molecular manipulations, i.e. PCR amplification and
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restriction enzyme digestion (Tebbe and Vahjen 1993). The

DNA was, therefore, purified according to the method of

Sharma et al. (2007) that resulted in pure colorless DNA

(data not shown). Subsequently, the purified DNA was used

for PCR amplification and cloning. Amplification of 16S

rRNA genes from the environment DNA was carried out

employing touchdown PCR that resulted in amplification of

gene at three distinctive positions corresponding to *500,

900 bp and 1.4 kbp. The PCR-amplified products were gel

eluted and cloned into pGEM-T easy vector, thus a library

representing *1,000 clones was prepared. The plasmid

DNA was extracted from the randomly selected clones,

followed by sequencing of one-hundred and fifty recombi-

nant clones. It is a well-studied fact that chimeras can result

from the amplification of DNA directly extracted from an

environmental sample (Wintzingerode et al. 1997). Among

the 150 sequences analyzed, more than 40 appeared to be

putative chimeric artifacts (vector sequences) which were

detected using DECIPHER, and nearly 39 clones were of

low-quality sequences, and hence were excluded from sub-

sequent analysis. Finally, *71 nucleotide sequences were

analyzed for further studies. The recovered clones showed

abundance according to group affiliation that included

members of all the major phyla, commonly present in soil,

as demonstrated in Fig. 1. The chimera-free and high-qual-

ity sequences were blasted in the GenBank (http://www.

ncbi.nlm.nih.gov) using Blast N program. Based on simi-

larity, the sequences were selected for the construction of the

phylogenetic tree. To find out the phylogenic relatedness

among the clones, we did both alignment-dependent and

alignment-independent analysis. Phylogenetic tree was

constructed based on MSA (multiple sequence alignment)

and was analyzed via maximum parsimony. The tree was

displayed as a radial tree (Fig. 2). In addition, a multivariate

statistical approach was used to further explore the patterns

in the sequencing data obtained. The prime objective behind

using PCA was to gather the major information of the data

and expressing it as a set of new orthogonal variables

(principal components). The data gathered employing

alignment-independent method provided a more compre-

hensive interpretation of the relationship among microor-

ganisms. From the PCA plot analysis (Fig. 3), it becomes

evident that there are 10.94 % variants in the PC1 and

7.06 % variants in the PC2. The pattern of points displayed

in the plot clearly points towards the level of similarity

between different groups of microorganisms which is further

confirmed by the cluster formation. The points displayed

outside the clusters distinctly reflect their difference from

clustered microorganisms. All the clusters represent mis-

cellaneous population of microbes. Interestingly, Archaeal

population shows similarity with bacterial population. Phy-

logenetic tree (Fig. 2) demonstrated two major and several

minor groups. Nearly 62 % sequences reported in the study

shared 90–95 % similarity to cultivable bacterial groups;

interestingly, 38 % sequences showed no homology to the

cultivable bacterial groups and represent novel bacterial

groups. A few (7.0 %) sequences of archaeal origin were

also detected from this community that indicates change in

evolution pattern of archaea. Previously, they were con-

sidered to be the domain of extreme environments. Previous

studies have also documented their presence in non-extreme

environments including marine (DeLong et al. 1994), ter-

restrial (Kudo et al. 1997), and in metal-contaminated eco-

systems (Sandaa et al. 1999a). This implies that presence of

archaea may have important ecological consequences in

non-extreme habitats also. The majority of the bacteria

discovered belong to two major phylums: the Proteobacte-

ria (26.7 %) and the Bacteroidetes (11.2 %). Other minor

groups were also observed that correspond to Acidobacteria

(4.2 %), Actinobacteria (4.2 %), Firmicutes (2.8 %), Ver-

rucomicrobia (2.8 %), Gemmatimonadetes (1.4 %) and

Chloroflexi (1.4 %). Furthermore, several unidentified

uncultured clones of novel bacterial origin (38.0 %) (Fig. 1)

were also recovered. Among all the phylums identified,

phylums Actinobacteria and Firmicutes constituted gram-

positive bacteria (Rappe and Giovannoni 2003). From lit-

erature, it becomes evident that the phylums mainly found in

soils are Proteobacteria, Actinobacteria, Acidobacteria and

Verrucomicrobia (Janssen 2006). Analysis of the clones

from bacterial origin revealed predominantly the presence of

Proteobacteria, a phylum whose presence is well docu-

mented in contaminated sites (Ellis et al. 2003; Rastogi et al.

Fig. 1 The percentage distribution of 16S rRNA genes. Each sector

indicates percentage of clones within each phylogenetic group:

unknown soil bacteria (unknown), a-Proteobacteria (a-Proteo),
Bacteroidetes (Bactero), Archaea, c-Proteobacterium (c-Proteo),
Actinobacteria (Actino), Acidobacteria (Acido), b-Proteobacterium
(b-Proteo), Firmicute, Verrucomicrobia (Verruco), Gemmatimonade-

tes (Gemma), Chloroflexi (Chloro)
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2010). Another major groups reported to be abundantly

present in polluted soil are Actinobacteria and Acidobacteria

(Briceno et al. 2012; Paul et al. 2006; Ward et al. 2009);

however, we observed their insignificant presence in the

present study. In contrast to this these species are reported to

be abundantly present in the non-contaminated samples

(Sandaa et al. 1999b; Sheik et al. 2012). Next, among a, b,
c, d, e subdivision of Proteobacteria, we mainly observed a-
Proteobacteria, which is well correlated to previous studies

conducted on metal-contaminated soil of Braunschweig,

Germany (Sandaa et al. 1999b). In contrast, Joynt et al.

(2006) identified d Proteobacteria along with a, b, c Pro-

teobacteria in heavy metal-contaminated soil. The a-prote-
obacterial clones identified were of Sphingomonas,

Mesorhizobium tamadayense, Phyllobacterium, Porphyrob-

acter, Erythromicrobium, Paracoccus and Aurantimonas.

Under c-proteobacterium, we observed sequence of Lysob-

acter niabensis, Pseudomonas indica and Acinetobacter

Fig. 2 Phylogenetic tree of annotated sequences of 16S rRNA gene

cloned directly from environmental DNA. The analysis involved 71

nucleotide sequences aligned with Clustal W (Thompson et al. 1994)

and the evolutionary history was inferred by maximum parsimony

method from MEGA6 programs (Tamura et al. 2013) using 1,000

bootstrap replicates. Unknown sequences are represented by a clone

number
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origin. Among all, Acinetobacter is an important soil bac-

terium and has the potential to remove a wide range of pol-

lutants (Abdel-El-Haleem 2003). Genus Azoarcus and

Methylibium found in the study belong to b-proteobacterium.
Additionally, the second most abundant phylum observed in

this study was Bacteroidetes that harbor Sphingobacteria,

Saprospiraceae, Cytophagaceae, Dyadobacter fermentans.

Presence of Bacteroidetes has been previously reported in

heavy metal-contaminated soils and sediments (Akob et al.

2008; Brodie et al. 2006; Ellis et al. 2003). The main feature

of this bacterial community study is the abundant presence of

uncultivable bacteria (38 %), and Proteobacteria which is

one of the most abundant soil bacteria (Spain et al. 2009).

Previous studies conducted on non-polluted environment

samples have demonstrated variation in abundance of Aci-

dobacteria, Bacteroidetes, Firmicutes and Proteobacteria

(beta, gamma and delta) along with fewer phyla Nitrospira,

Deferribacteres, Chloroflexi. The abundant presence of a-
proteobacteria (18.2 %) in our study conducted on contam-

inated soil samples is well correlated to previous studies

where they are shown to be present abundantly in contami-

nated soil, and scarcely reported in non-contaminated soil

(Dhal et al. 2011; Sandaa et al. 1999b; Sheik et al. 2012). In

addition to this Sandaa et al. (1999b), reported that the

sequences from Gram-positive bacteria with a high DNA

G?C content were more in soil with low metal inputs. These

studies clearly demonstrate that microbial diversity strongly

varies in two environments (contaminated and non-contam-

inated soil). Interestingly, identification of Sphingomon-

as from variety of contaminated environments is well

documented, where they are implicated in degradation of

numerous pollutants such as herbicides (Adkins 1999),

Polycyclic Aromatic Hydrocarbons (PAHs) (Pinyakong et al.

2003), insecticides (Yu et al. 2013), heavy metals (Chien

et al. 2008). This unique feature of the Sphingomonas bac-

terium may be attributed to molecular structure of its cell

surface, which is reported to be more hydrophobic compared

to other Gram-negative bacteria, due to the presence of

glyco-sphingolipids instead of lipo-polysaccharides, hence

has high ability to degrade many hydrophobic compounds or

pollutants (Kawahara et al. 1999), and make it vital bacteria

in bioremediation from various contaminated sites, which is

also now becoming an intriguing area in research. Similarly,

other bacteria belonging to Alphaproteobacteria also have

appreciable biodegradative potential. The Paracoccus spe-

cies are also implicated in biodegradation of various insec-

ticides used in agricultural fields, such as chlorpyrifos as it

can effectively degrade pyridine, a compound involved in the

synthesis of chlorpyrifos (Lin et al. 2010; Xu et al. 2008) and

fipronil (Kumar et al. 2012). Similarly, Mezorhizobium spe-

cies are also implicated in chorpyrifos degradation (Jabeen

et al. 2014). Furthermore, we did not observe Deltaproteo-

bacteria in the present study, whereas they were reported to

be quite abundant in the non-contaminated site (Dhal et al.

2011). The biodegradative capabilities of these bacterial

consortia become more effective when they act together in

association with each other (Fritsche and Hofrichter 2000)

and culture-independent molecular approach enables us to

identify such a huge diversity of microbial consortium which

plays a major role in ecosystem processes. Despite high level

of contamination in the study area, the remarkable microbial

diversity observed stipulate versatility and adaptability of

microorganisms to endure such environments. Altogether,

investigation of the polluted soil samples employing culture-

independent approach revealed important bacterial groups

which could serve as a catalyst for future bioremediation

studies. Our future goal is to sequence and characterize the

metatranscriptome of the microbes present in the soil, and to

provide functional insights into important metabolically

active genes involved in degradation of these pollutants.
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