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Abstract 

Digestive cancer is one of the leading causes of cancer mortality in the world. Despite a number of studies 
being conducted, the exact mechanism for treating digestive cancer has not yet been fully understood. To 
survive, digestive cancer cells are subjected to various internal and external adverse factors, such as hypoxia, 
nutritional deficiencies or drug toxicity, resulting in accumulation of misfolded and unfolded protein in 
endoplasmic reticulum (ER) lumen further leading to ER stress and the unfolded protein response (UPR). 
During the last years, studies on the relationship between ER stress and microRNAs (miRNAs) has burst on the 
scene. miRNAs are non-coding RNAs with a length of 21~22nucleotides involved in post-transcriptional 
regulation of gene expression, which could be regarded as oncomiRs (tumor inducers) and tumor suppressors 
regulating cancer cell proliferation, invasion, and apoptosis by differently affecting the expression of genes 
related to cancer cell signaling. Therefore, investigating the interaction between ER stress and miRNAs is 
crucial for developing effective cancer treatment and prevention strategies. In this review, we mainly discuss 
miRNAs focusing on its regulation, role in ER stress induced apoptosis in Digestive cancer, expound the 
underlying mechanism, thus provides a theoretical foundation for finding new therapeutic targets of digestive 
cancer. 
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Introduction 
The endoplasmic reticulum (ER) is a peculiar 

sheets and tubules structure which is composed of a 
complex system of membranes that gives rise to the 
nuclear envelope (NE) and peripheral ER [1]. The 
shape and architecture of ER determine the function 
of it. The ER is responsible for the synthesis, folding, 
as well as post-translation modification of secreted 
and membrane proteins [2], moreover, it is a container 
for storing calcium ions. ER is a dynamic organelle 
which can quickly adapt in order to satisfy various 
cellular requirements in response to physiological or 
pathological stimuli [3]. The ER adapts to stress by 
activating a signaling cascade known as the ER stress 
response [4]. As guardians of the ER, a three-branch 

system composed by three transmembrane proteins 
will be activated during ER stress response. This 
system is called unfolded protein response (UPR), 
which undergoes activation upon accumulation of 
misfolded proteins or unfolded proteins as well as 
excess release of calcium on account of leakage of the 
membranes [2]. The three branches are composed of 
protein kinase R (PKR)-like ER kinase (PERK), 
inositol-requiring enzyme 1 (IRE1) and activating 
transcription factor 6 (ATF6), orchestrate the major 
regulatory circuits to ensure ER homeostasis [5]. A 
growing number of studies indicate that ER stress 
involves numerous diseases including but not limited 
to neurodegenerative disease [6] like Alzheimer’s 
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disease [7], Chronic Obstructive Pulmonary Disease 
and Idiopathic Pulmonary Fibrosis [8], disease of 
immune system [2], diabetes [9], cardiovascular 
disease [10], as well as various cancer. Digestive 
cancer is one of the common malignant tumors with 
very poor overall survival worldwide, including 
esophageal cancer, gastric cancer, colorectal cancer, 
pancreatic cancer and liver cancer. Similar to other 
cancers, digestive cancers cells experiencing hypoxia 
undergo metabolic alterations accompanying with ER 
stress. For example, Aloe-Emodin could induce ER 
stress mediated apoptosis via upregulation of C/EBP 
homologous protein (CHOP) and caspase-12 
expression in colorectal cancer cells [11]. 

The relationship between ER stress and 
microRNAs (miRNAs) is a hot topic in the field of 
medical research. miRNAs are 21-22nt small 
non-coding RNAs (ncRNAs) highly conserved among 
species that modulate gene expression, which mainly 
via recognition of cognate sequences and interference 
of transcriptional, translational or epigenetic 
processes [12-14]. During the last decades, a major 
discovery in biology was the discovery of miRNAs, 
which provides new insight on the post- 
transcriptional regulation of gene expression and 
cancer research. Human miRNA genes are frequently 
located at fragile sites and genomic regions involved 
in cancers, suggesting that miRNAs may play a key 
role in in the pathogenesis of human cancers. It has 
been reported that miRNAs could be regarded as 
valuable instruments in tumor diagnosis and the 
prognosis of digestive cancers (affecting the 
esophagus, stomach, intestine, colorectum, liver and 
pancreas) [15]. miR-373 exerts anti-tumor functions in 
human liver cancer by targeting Rab22a [16] and 
overexpression of miR-17 is correlated with liver 
metastasis in colorectal cancer [17], both confirming 
that miRNAs play a significant part in digestive 
cancers. 

In consideration of both miRNAs and ER stress 
have important effects on the genesis as well as 
development of digestive cancer, here, we discussed 
the accelerative roles of miRNAs during the ER stress, 
elucidating the underlying mechanism thus providing 
a theoretical basis for considering interaction of 
miRNAs and ER stress as a potential therapeutic 
strategy ford digestive cancer. 

The relationship between ER stress- 
induced apoptosis and digestive cancer 

In recent years, many studies have found that ER 
stress is closely related to a variety of cancers, 
including cancers of the digestive system. Three key 
factors of ER stress-related pathways, PERK, IRE1 and 
ATF6, activate corresponding signaling pathways and 

unfolding protein responses when separated from ER 
stress molecular chaperone glucose regulatory protein 
78 (GRP78) [18]. These three paths are both relatively 
independent and interrelated. Under ER stress, the 
activation of these three pathways enhanced the 
ability of protein folding, thus maximizing the 
adaptability and survival ability of cells to 
environmental changes, but too long or too intense ER 
stress would induce cell apoptosis [19]. These three 
key factors and their related signaling pathways play 
a critical role in the regulation of the occurrence and 
development of cancer in the digestive system. 

PERK 
PERK is an important ER transmembrane 

protein that participates in UPR by reducing protein 
translation and regulating oxidative stress[20]. 
Oligomerization and autophosphorylation of PERK 
stimulates eukaryotic translation initiation factor 2α 
(eIF2α) phosphorylation in response to stimulation of 
misfolded or unfolded proteins. Subsequently, 
phosphorylated eIF2α promotes transcription of 
activate transcription factor 4 (ATF4), which 
aggregates on the promoters of target genes, 
including transcription factor CHOP, growth arrest 
and DNA damage inducible protein 34 (GADD34), 
and activate transcription factor 3 (ATF3), facilitating 
translation of downstream target genes [21]. PERK 
pathway can induce apoptosis of cancer cells under 
certain conditions, which is the key mechanism for 
many cancers therapy drugs to exert therapeutic 
effect. Cinchonine, a natural compound with 
anticancer activity, can promote the phosphorylation 
of PERK and eIF2α in a variety of hepatocellular 
carcinoma (HCC) cells, and significantly increase the 
protein level of CHOP, thus inducing the apoptosis of 
HCC cells [22]. In gastric cancer, the activation of 
PERK significantly increases the G-1-induced 
apoptosis, while the silencing of PERK leads to 
increased cell apoptosis, suggesting that the PERK 
pathway may enhance the therapeutic effect of 
anti-cancer drugs [23]. In addition, the PERK activator 
CCT020312 can induce ER stress and significantly 
inhibit the proliferation ability of colorectal cancer 
cells, which also further improve the sensitivity of 
colorectal cancer cells to chemotherapy drugs by the 
activated PERK [24]. Similarly, Anlotinib (AL3818), a 
drug that has been proved to have anti-tumor activity 
recently, has an anti-proliferation effect on pancreatic 
cancer cells related to PERK by increase the 
accumulation of reactive oxygen species in cancer 
cells activating of the PERK/eIF2α/ATF4 pathway 
[25]. 
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IRE1 
IRE1 is a transmembrane protein located in the 

ER and consists of two functional domains, including 
a C-terminal cytoplasmic effector domain and an 
N-terminal lumen sensor domain [26]. IRE1 has two 
functions: protein kinase and endoribonuclease. The 
oligomeric and autophosphorylation of IRE1α can 
activate the endonuclease activity of either unfolded 
or misfolded proteins [27]. After activation, the 
substrate precursor X-box binding protein 1 (XBP-1) 
and mRNA intron are spliced by IRE1α to produce 
mature active XBP-1 protein [28]. XBP-1 binds to 
downstream gene promotors involved in UPR and ER 
associated degradation (ERAD), thereby regulating 
their expression and restoring ER homeostasis [29]. 
Therefore, XBP-1 can increase the expression level of 
CHOP. Apoptosis-signaling kinase-1 (ASK-1) 
activates apoptosis by IRE1α. ASK-1 activates Jun-N- 
terminal kinase (JNK) and p38 mitogen-activated 
protein kinase (p38MAPK), leading to apoptotic cell 
death [30]. IRE1 pathway is a key pro-survival/ 
pro-apoptotic pathway in ER stress. It has shown that 
the activation of IRE1-XBP1 signaling inhibits the 
expression of desmoplakin enhancing the migration 
ability of liver cancer cells [31]. IRE1 may also play a 
tumor suppressive role in cancers of the digestive 
system. Kaempferol, a flavonoid compound with 
strong anticancer effects, also induce gastric cancer 
cell death by activating IRE1-JNK-CHOP pathway 
[32]. However, the activation of IRE1-XBP-1 may 
enhance the migration ability of colorectal cancer cells 
and thus promote the progression of colorectal cancer 
[33]. As for pancreatic cancer, the IRE1α-XBP1 
signaling pathway has previously been shown to 
contribute to pancreatic cancer cell invasion in 
xenograft models [34]. These results suggest that 
IRE1α may also be an effective treatment target for 
pancreatic cancer. 

ATF6 
ATF6 is a transmembrane protein associated 

with ER stress that is different from other ER stress 
factors and is the least well understood. Under ER 
stress, ATF6 translocate to Golgi apparatus. In the 
Gorky compartment, ATF6 is cleaved into an 
activated form called short ATF6 (sATF6) [35]. After 
activation, sATF6 translocate to the nucleus and 
interacts with ATF/cAMP response elements and ER 
stress related elements in homologous or heterodimer 
form [36]. In the initial stage of ER stress, ATF6 
promotes the increase of ER capacity and ER protein 
folding ability through target genes, thus restoring ER 
homeostasis. On the other hand, ATF6 promotes 
apoptosis through CHOP when ER stress is 
prolonged [37]. Sorafenib (Sor), a clinical standard 

therapy for advanced HCC, significantly increases the 
intensity of ATF6 immunofluorescence labeled in 
HCC cells, accompanying with the up-regulated 
expression of ATF6 protein, suggesting ATF6 
pathway may be one of the mechanisms of SOR [38]. 
Dehydroeffusol (DHE) shows the anti-cancer effects 
on gastric cancer by increased the expression of ATF6 
[39]. Moreover, activated ATF6 could induce 
intestinal dysregulation and innate immune response 
and promote the occurrence of colorectal cancer [40]. 
In connection with this, studies have shown that the 
expression of colon cancer oncogene CIP2A is 
positively correlated with the expression of ATF6, and 
ATF6, as a transcription factor, directly bind to the 
CIP2A promoter in turn. Similarly, immunohisto-
chemical analysis of tissue microarray from a cohort 
of colon cancer patients showed that high expression 
levels of ATF6 were associated with a tendency for 
poor prognosis [41]. These results suggest that ATF6 
may be highly expressed in colorectal cancer and 
mainly plays a role in promoting the survival of 
cancer cells. In pancreatic cancer, however, ATF6 may 
plays a pro-apoptotic role. Studies have shown that in 
pancreatic cancer BXPC -3 cells, the upregulated ATF6 
levels is closely related to cell apoptosis induced by 
Tanshinone (TAN)-IIA [42]. 

miRNAs and digestive cancer 
miRNAs are abnormally expressed in many 

cancers of the digestive system, which modulate the 
expression of cancer-related genes by directly 
targeting. Importantly, because of the abnormal 
expression of miRNAs in cancer, it is also a promising 
biomarker and target for cancer diagnosis and 
treatment. Here, the miRNAs mentioned in the review 
that are associated with cancers of the digestive 
system are listed in Table 1. 

The abnormally low expression of miR-101 in a 
variety of digestive cancers including liver, gastric, 
colorectal and pancreatic cancer, playing a critical role 
in cancer suppression. In liver cancer, miR-101 targets 
nemo-like kinase (NLK) and plays an inhibitory role 
by inhibiting NLK activity [43]. In gastric cancer, the 
ectopic expression of miR-101 significantly inhibits 
cell proliferation, migration and invasion by targeting 
enhancer of zeste homolog 2 (EZH2), 
Cyclooxygenase-2 (COX-2), Myeloid cell leukemia-1 
(MCL-1) and Fos. In addition, animal studies have 
suggested that miR-101 may also inhibit tumor 
growth in vivo [44]. In colorectal cancer, miR-101 
significantly down-regulated the expression of 
sphingosine kinases 1 (SPHK1) mRNA and protein at 
the molecular level, leading to the production of 
pro-apoptotic ceramides in the above colorectal 
cancer cells, thereby inhibiting the growth of 
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colorectal cancer cells. In addition, miR-101 enhanced 
paclitaxel-induced anti-HCT-116 activity in vivo [45]. 

 

Table 1. miRNAs abnormally expressed in caners of digestive 
system 

miR ID Type of cancer Expression  Targets References 
miR-101 liver cancer down Nemo-like kinase (NLK) [43] 

gastric cancer down EZH2, Cox-2, Mcl-1, Fos [44] 
colorectal 
cancer 

down sphingosine kinase 1 
(SphK1) 

[45] 

miR-132 liver cancer down p-AKT, Survivin [46] 
gastric cancer up FoxO1 [47] 
colorectal 
cancer 

down ZEB2 [48] 

miR-145 liver cancer down HDAC2 [49] 
gastric cancer down SP1 [50] 
colorectal 
cancer 

down fasin -1 [51] 

miR-148b liver cancer down NRP1 [52] 
gastric cancer down CCKBR [53] 
colorectal 
cancer 

down CCK2R [54] 

miR-21 liver cancer up Sprouty1 [55] 
gastric cancer up PTEN [56] 
colorectal 
cancer 

up PTEN [57] 

miR-214 liver cancer down X-BP1/NF-κB [58] 
gastric cancer up PTEN [59] 
colorectal 
cancer 

down MED19 [60] 

miR-221 liver cancer up BMF, BBC3, ANGPTL2  [61] 
gastric cancer up - [62] 
colorectal 
cancer 

up RECK [63] 

miR-143 liver cancer up ORP8 [64] 
gastric cancer down COX-2 [65] 

miR-103a-3p  gastric cancer up ATF7 [66] 
 colorectal 

cancer 
up MEG3, PDHB [67] 

 
 
amiR-132 is also abnormal expressed in digestive 

cancers. The transfection of miR-132 in liver cancer 
cells significantly inhibits cell proliferation by 
promoteing pro-apoptotic genes and inhibiting 
pro-survival genes, playing an inhibitory role in liver 
cancer cells[46]. Upregulated miR-132 in gastric 
cancer inhibits the translation process by binding to 
the 3'-untranslated region (3' -UTR) of Forkhead box 
O class protein 1 (FoxO1) messenger RNA (mRNA) to 
inhibit the inhibitory effect of FoxO1 on cells and 
promote the development of gastric cancer [47]. In 
contrast, the expression of miR-132 is decreased in 
colorectal cancer, exerting a tumor suppressive 
effect. miR-132 was associated with tumor size, 
distant metastasis, and tumor node metastasis (TNM) 
stage in colorectal cancer. The ectopic expression of 
miR-132 could significantly inhibit the invasion ability 
and epithelial mesenchymal transformation of 
colorectal cancer cells, which may be due to its target 
ZEB2, the regulatory factor regulating epithelial 
mesenchymal transformation [48]. 

miR-145 plays an inhibitory role in liver cancer 
by targeting histone deacetylase 2 (HDAC2) [49]. In 

gastric cancer, miR-145 directly targets transcription 
factor specificity protein 1SP1 to down-regulate the 
expression of matrix metalloproteinase-9 (MMP-9) 
and Cyclin D1, inhibiting cell growth and invasion 
[50]. Overexpression of miR-145 in colorectal cancer 
inhibits cell proliferation, motility, and invasion in 
vitro, as well as tumor growth and lung metastasis. 
This antitumor effect may be due to its direct 
interaction with the 3'-UTR of Fascin-1 messenger 
RNA (mRNA), thus down-regulate the mRNA and 
protein expression levels [51]. 

miR-148b significantly inhibits tumorigenicity in 
vivo, possibly due to its target neuropilin-1 (NRP1), 
which is involved in tumor initiation, metastasis and 
angiogenesis [52]. miR-148b is correlated with tumor 
size in gastric cancer, and could inhibit the 
proliferation of gastric cancer cells and tumorigenicity 
in vivo by targeting cholecystokinin-B receptor 
(CCKBR) [53]. Overexpression of miR-148b in 
colorectal cancer cells inhibits cell proliferation in vitro 
and tumorigenicity in vivo by targeting the 
cholecystokinin-2 receptor (CCK2R) gene [54]. 

miR-21 promoting liver cancer cells growth and 
proliferation by targeting Sprouty1 [55]. In gastric 
cancer, miR-21 expression is correlated with the 
degree of tumor differentiation, local invasion and 
lymph node metastasis by targeting the tumor 
suppressor Phosphatase and Tensin Homolog deleted 
on Chromosome 10 (PTEN) [56]. In colorectal cancer, 
patients with poor differentiation, lymph node 
metastasis and advanced TNM have significantly 
high expression of miR-21, which targets PTEN at the 
post-transcriptional level to regulate the proliferation 
and invasion of colorectal cancer cells. Inhibition of 
miR-21 expression in colorectal cancer cells can 
reduce cell proliferation, migration and invasion, 
induce cell apoptosis, and inhibit cell cycle 
progression [57]. 

In liver cancer, miR-214 is low expressed and 
plays a tumor suppressor role, which is related to ER 
stress related factors [58]. In a variety of gastric cancer 
cell lines, miR-214 is highly expressed and targets the 
tumor suppressor PTEN, playing a cancer-promoting 
role [59]. miR-214 is down-regulated in colorectal 
cancer and profoundly associated with lymphatic 
metastasis. In vitro and in vivo experiments showed 
that miR-214 mediated the inhibiting the function of 
Forkhead box D3 (FOXD3) on proliferation, invasion 
and metastasis by targeting mediator complex 
subunit 19 (Med19) [60]. 

Inhibition of miR-221 expression in liver cancer 
cells could reduce cell proliferation, clonability, 
migration/invasion ability, and induce G1 arrest or 
apoptosis by its targets, including BMF, BBC3, and 
AngPTL2. In addition, silencing miR-221 significantly 
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inhibited the growth of HCC xenograft in nude mice 
[61]. In gastric cancer, high expression of miR-221 is 
significantly associated with advanced lymph node 
metastasis, local invasion, and lymphatic 
metastasis. Moreover, overexpression of miR-221 is an 
adverse prognostic factor for overall survival in 
patients with gastric cancer [62]. The high expression 
of miR-221 contributes to the metastasis of colorectal 
cancer, which also regulates the migration and 
invasion of colorectal cancer by targeting reversion 
inducing cysteine rich protein with kazal motifs 
(RECK) [63]. 

In liver cancer, miR-143 targets HCC suppressor 
Oxysterol binding related proteins 8 (ORP8), which 
can inhibit the development of liver cancer by 
inducing FASL through ER stress response [64]. Both 
miR-143-5p and miR-143-3p are significantly down- 
regulated in various gastric cancer cell lines and 
shows anti-gastric cancer effects evidenced by 
inhibiting the activity of COX-2 [65]. 

miR-103a-3p is highly expressed and associated 
with poor prognosis of gastric cancer, which also 
increases the proliferation of gastric cancer cells by 
targeting activating transcription factor 7 (ATF7) [66]. 
In colorectal cancer, miR-103A-3p is also highly 
expressed and targets Pyruvate dehydrogenase E1 
component subunit Beta (PDHB) to inhibit the 
development of colorectal cancer in vitro by affecting 
proliferation, invasion and ER stress [67]. 

miRNAs regulate the function of ER 
stress in digestive cancer 

As mentioned above, both ER stress and 
miRNAs play important regulatory roles in the 
development and progression of cancers of the 
digestive system. Functionally, they have many 
similarities and are closely related. For example, ER 
stress and miRNAs both play a role in cancer 
inhibition and promotion. Moreover, under certain 
conditions, miRNAs can regulate the effects of ER 
stress on digestive cancer, so as to play a regulatory 
role in the occurrence and development of digestive 
cancer. Here, miRNAs that regulate ER stress function 
in digestive cancer are listed in Table 2. 

The down-regulated of miR-199a/214 induce 
apoptosis of liver cancer cells. Meanwhile, XBP-1 has 
been found to be the target of miR199a/214, 
suggesting that miR199a/214 plays an inhibitory role 
in liver cancer by inhibiting XBP-1-related pro- 
survival pathways [58]. On the contrary, miR-3091-3p 
promotes apoptosis of liver cancer cells through pro- 
apoptotic pathways of ER stress, because miR-3091-3p 
inhibits autophagy and enhances ER stress-induced 
cell apoptosis via directly targeting autophagy-related 
protein 9b (Atg9b) [68]. The evidence indicates that 

the regulation of miRNA on the function of ER stress 
is not limited to direct interaction, but also indirectly 
regulate ER stress via its target genes. For example, 
miR-663 play a key regulatory roles in of ER 
stress-mediated apoptosis resistance of liver cancer 
cells by targeting transforming growth factor beta 1 
(TGFB1) [69]. Likewise, miR221/222 are involved in 
the regulation of ER stress-induced apoptosis. 
Interestingly, this process is also involved in 
p27(KIP1)- and MEK/ERK-regulated cell cycle 
progression, suggesting that the regulation between 
miRNA and ER stress may involve other mechanisms 
related to the regulation of cancer cell life process [70]. 
Enhanced pro-apoptotic and anti-proliferative 
properties of Tacrolimus are associated with PERK 
pathway, while it inhibits the expression of miR-92A- 
1-5p, miR-197-3p, miR-483-3p and miR-720 in HepG2 
cells. These results suggest that the abnormally 
expressed miRNAs may be involved in regulating ER 
stress-induced apoptosis in liver cancer [71]. 

In gastric cancer, loss of miR-370 promotes ER 
stress-induced apoptosis and inhibit the proliferation 
of cancer cells [72]. In this case, miR-370 also does not 
directly target ER stress related factors, but instead 
regulates ER stress by targeting HERPUD. 
miR-379-5p inhibits the expression of GRP78 via 
directly targeting. GRP78 expression is negatively 
correlated with the growth inhibition rate of DDP 
(cisplatin) resistant gastric cancer cells, and functional 
analysis showed that enhanced miR-379-5p 
expression inhibits the proliferation of DDP resistant 
gastric cancer cells [73]. This may be due to the fact 
that miR-379-5p inhibits the pro-survival pathway of 
ER stress in gastric cancer cells after acting on GRP78, 
leading to apoptosis. In addition, miR-143 is 
functionally antagonistic with ER stress in gastric 
cancer. In short, ORP8, the target of miR-143, activates 
NF-κB by ER stress to induce apoptosis via Fas/FasL 
pathway. In this process, miR-143 indirectly and 
negatively regulated ER stress [64]. miR-133a-3p also 
increase Bufothionine-induced apoptosis of gastric 
cancer cells by regulating ER stress [74]. 

In colorectal cancer, miR-451 inhibits colorectal 
cancer cell proliferation and induces apoptosis by 
targeting the ER carrier protein B-cell receptor- 
associated protein 31 (BAP31). Then, Bax, PERK/ 
eIF2α/ATF4/CHOP and other ER stress apoptotic 
pathway proteins be further activated, resulting in the 
apoptosis of colorectal cancer cells [75]. miR-7112-3p 
directly targets PERK and activates PERK/ATF4/ 
CHOP/Caspase-level pathway to attenuate apoptosis 
of colorectal cancer CX-1 cells treated with DVDMS- 
PDT [76]. miR-103a-3p, an up-regulated miRNA in 
colorectal cancer, inhibits the pro-apoptosis function 
of ER stress [67]. miRNA and mRNA regulatory 
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networks indicate that some miRNAs in HCT116 cells 
respond to folate deficiency closely related to the 
progression of colorectal cancer by regulating the 
expression of genes related to ER stress. Additionally, 
folate deficiency may cause some miRNAs (miR-379- 
5p, miR-218-5p, miR-1-3p, miR-486-3p, miR-24-3p, 

and miR-3182-3p, miR-132-3p, miR-483-3p, and 
miR-30d-5p) upregulated to inhibit the expression of 
key genes in the ER stress [77], suggesting that the 
regulation between these miRNA and ER stress 
pathway genes may be one of the mechanisms that 
regulate the progression of colorectal cancer.  

 

 
Figure 1. ER stress-induced apoptosis in digestive cancer. 

 
Figure 2. miRNAs regulate the function of ER stress in digestive cancer. (1) miR199a/214 targets XBP-1 to induce apoptosis in liver cancer; miR-3091-3p targets Atg9b 
to enhance ER stress induced apoptosis in liver cancer; miR-663 targets FGFB1 to inhibit ER stress induced apoptosis in liver cancer; miR221/222 promotes ER stress induced 
apoptosis in liver cancer; (2) miR370 targets HERPUD1 to promote survival pathway of ER stress in gastric cancer; miR-379-5p targets GRP78 to inhibit survival pathway of ER 
stress in gastric cancer; miR-143 targets ORP8 to inhibit ER stress and downstream pathway to inhibit apoptosis in gastric cancer; miR-133a-3p enhances ER stress induced 
apoptosis in gastric cancer; (3) miR-451 targets BAP31 thus inhibit ER stress induced apoptosis in colorectal cancer; miR-7112-3p targets PERK to inhibit ER stress induced 
apoptosis in colorectal cancer; miR-103a-3p inhibits pro-apoptosis function of ER stress. 
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Table 2. miRNAs interplay to ER stress in digestive cancers 

Cancer 
Type 

miRNA Expression in 
cancer 

Related Genes/Proteins/ 
Pathways 

Relationship with ER stress References 

Liver 
Cancer 

miR199a/214  down X-BP1/NF-κB Inhibiting ER stress pro-survival function [58] 
miR-3091-3p down ATg9b, p62, LC3 Enhancing ER stress pro-apoptosis function [68] 
miR-663 up TGFB1 Inhibiting ER stress pro-apoptosis function [69] 
miR221/222 down p27 (Kip1), MEK/ERK Enhancing ER stress pro-apoptosis function  [70] 
miR23a-3p up PTEN/PI3K/AKT, PDL-1 Induced by ER stress [78] 
miR-92a-1-5p/miR-197-3p/miR-483-3p/ 
miR-720 

/ PERK, p53, p21, FKBP12, 
FKBP51 

Inversely related to ER stress in function [71] 

miR-22-3p/miR-376a-3p/miR-663b/ 
miR-886-5p/ miR-1300/ miR-1303 

/ PERK, p53, p21, FKBP12, 
FKBP51 

Positively related to ER stress in function [71] 

miR-143 up ORP8, Fas/FasL Functionally opposite with ER stress [64] 
Gastric 
Cancer  

miR370 up circ_002117, HERPUD1 Inhibiting ER stress pro-apoptosis function [72] 
miR379-5p down LINC00665, GRP78 Inhibiting ER stress pro-survival function [73] 
miR-133a-3p down PI3K/Akt, IGF1R Enhancing ER stress pro-apoptosis function [74] 

Colorectal 
Cancer 

miR-451 down BAP31 Enhancing ER stress pro-apoptosis function [75] 
miR-7112-3p up PERK/ATF4/CHOP Inhibiting ER stress pro-apoptosis function [76] 
miR-379-5p/miR-218-5p/miR-1-3p/ 
miR-486-3p/miR-24-3p/mir -3182-3p/ 
miR-132-3p/miR-483-3p/miR-30d-5p 

/ ER stress related pathway Inhibiting expression of critical ER stress 
related genes 

[77] 

miR-103a-3p up MEG3, PDHB Inhibiting ER stress pro-apoptosis function [67] 
 
 
To sum up, miRNAs and ER stress can not only 

independently regulate the digestive system cancer, 
but also co-determine the fate of digestive cancer cells 
by regulating the function of ER stress. Moreover, ER 
stress function can be directly modulated by miRNAs 
in digestive system cancers, that is, miRNAs can 
directly target ER stress-related factors. ER stress 
function can also be indirectly regulated by miRNAs, 
and other signaling pathways of digestive cancer are 
also involved in this process. The indirect regulation 
between the two may be a complex multiphase 
regulation network. To investigate the regulatory role 
of miRNAs and ER stress and perform intervention is 
of great significance for the formulation of effective 
treatment and prevention strategies for digestive 
cancer. 

Conclusion 
Digestive cancer is one of the main causes of 

death worldwide. Although a number of research on 
its mechanism and therapy have been conducted, the 
effective therapeutic target for treating digestive 
cancer has not yet been fully understood. Hostile 
microenvironmental conditions of digestive cancer 
cell, including hypoxia, bad nutrients and oxidative 
stress induce cellular stress such as ER stress and 
trigger UPR to maintain cellular homeostasis. 
However, persistent ER stress triggers the apoptotic 
pathway. The effects of ER stress on digestive cancer 
cells are both positive and negative. Therefore, 
blocking the adaptive pathway of ER stress or 
promoting the apoptotic pathway of ER stress may be 
an effective anti-cancer strategy. Under ER stress, 
digestive cance cells undergo a series of biological 
changes to survive, including miRNAs expression. 
miRNAs directly or indirectly influence UPR 

signaling to determine cell fate. Emerging evidence 
suggests that miRNAs play important roles in the 
development of digestive cancer (Table 2). Some 
miRNAs may target oncogenes and/or tumor 
suppressors closely related to digestive cancer, while 
others may be directly control differentiation and 
apoptosis of digestive. Understanding of the function 
of miRNAs especially its regulation on ER stress 
induced apoptosis in digestive cancer is providing the 
new insights on the molecular basis of digestive 
cancers, and new biomarkers for cancer diagnoses 
and cancer therapy. 
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