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When environmental changes do not cause
geographic separation of fauna: differential
responses of Baikalian invertebrates
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Abstract

Background: While the impact of climate fluctuations on the demographic histories of species caused by changes
in habitat availability is well studied, populations of species from systems without geographic isolation have
received comparatively little attention. Using CO1 mitochondrial sequences, we analysed phylogeographic patterns
and demographic histories of populations of five species (four gastropod and one amphipod species) co-occurring
in the southwestern shore of Lake Baikal, an area where environmental oscillations have not resulted in
geographical isolation of habitats.

Results: Species with stronger habitat preferences (gastropods B. turriformis, B. carinata and B. carinatocostata)
exhibit rather stable population sizes through their evolutionary history, and their phylogeographic pattern
indicates moderate habitat fragmentation. Conversely, species without strong habitat preference (gastropod M.
herderiana and amphipod G. fasciatus) exhibit haplotype networks with a very abundant and widespread central
haplotype and a big number of singleton haplotypes, while their reconstructed demographic histories show a
population expansion starting about 25-50 thousand years ago, a period marked by climate warming and increase
in diatom abundance as inferred from bottom-lake sedimentary cores.

Conclusions: In agreement with previous studies, we found that species reacted differently to the same
environmental changes. Our results highlight the important role of dispersal ability and degree of ecological
specialization in defining a species’ response to environmental changes.

Background
Many studies have demonstrated the strong influence of
climate fluctuations on the patterns of genetic diversity
of species. Continental glaciations resulted in geographic
isolation of terrestrial species by affecting habitat avail-
ability [1,2]. After the climate warming, some species
experienced demographic expansions and occupied
newly created habitats [3-5]. Additionally, climate cooling
was linked with low level of oceans and lakes [6]. When
the water level decreased, marine species could experi-
ence range contractions and this again resulted in change
of their phylogeographic patterns [7,8]. On the other
hand, low ocean level affects the connectivity of islands

and the distribution of species inhabiting them [9]. How-
ever, analysis of the demographic histories of species
from northeastern Pacific showed that half of them were
not affected by climatic changes in the Pleistocene [10].
This suggests that, even if the majority of studies con-
sider geographic isolation as a driving force of changes in
demographic histories, impact of climate cooling on eco-
logical systems could be more complex. For example,
switches in oceanic thermohaline circulation could
change distribution and abundance of food and result in
a bottleneck [11]. Furthermore, in systems where envir-
onmental changes resulted in isolation of populations,
the present genetic structure of populations will reflect to
a great degree the changes in genetic diversity due to ran-
dom evolution in these isolated populations. As such,
analysis of current patterns of diversity will be affected by
this, as well as by the demographic histories of the popu-
lations, or the presence/absence of selective pressures.
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Conversely, in systems where geographical isolation is
absent one can distinguish the effect of genetic drift in
small isolated populations from the demographic changes
brought about by the environmental changes themselves.
It therefore seems appropriate to study ecosystems that
are known to be affected by environmental changes, but
where these changes did not lead to geographic separa-
tion of populations.
Ancient lakes are famous for their high level of biodi-

versity. Whereas many studies on speciation were
devoted to the fauna of ancient lakes, reconstruction of
their demographic histories received little attention (but
see e.g. [12]). Lake Baikal is the largest freshwater conti-
nental ecosystem [13], and given its high-latitude loca-
tion it is particularly sensitive to climatic variations [14].
Despite the great depth of the lake (c. 1650 m), its
water is well oxygenated throughout, creating unique
habitats. The sediments of the lake are one of the most
valuable continental climatic archives having uninter-
rupted record back to Late/Middle Miocene [15,16].
The paleoclimatic history of Lake Baikal was recon-
structed based on records of diatom and associated bio-
genic silica in sediments, their variation corresponding
to the Marine Isotope Stages (MIS) of climate change
[17-23]. Additionally, sedimentary photosynthetic pig-
ments provide more data about past productivity of the
lake by representing the whole assemblage of phyto-
plankton [24,25]. Numerous strong environmental
changes were identified during the Upper and Middle
Pleistocene [21,26-29] and the Holocene [18,30,31]. Also
there is evidence for water level fluctuations during peri-
ods of climatic cooling [32,33]. While Lake Baikal is
known to have been affected by environmental changes,
the lake’s geological structure suggests that these
changes have not affected the connectivity of habitats.
Previous studies on the genetic variation of invertebrates
from the lake revealed variation of population dynamics
presumably caused by geological events (tectonic shifts),
changes in global climate and related changes in sedi-
mentation rate [34].
Recent studies comparing the demographic histories of

multiple co-occurring species [10,35,36] found that
populations of these species responded in different ways
to the same environmental changes. However, exact
causes for such differences were often difficult to distin-
guish given the numerous biological differences between
the investigated species. We thus compare, in this study,
species with very similar biological traits and life-history
characteristics, allowing us to identify the factors
responsible for the species’ differential response to
environmental changes. This approach has already
proved valuable in understanding key aspects of the
response of species to fluctuation of environmental con-
ditions (e.g. see [37,38]). We focus on four gastropod

species of the family Baicaliidae: Baicalia carinata (W.
Dybowski, 1875) is an abundant sand dwelling species
with a circum-lacustrine distribution; Baicalia carinato-
costata (W. Dybowski, 1875) is often found in sandy
habitats together with B. carinata but usually in smaller
numbers; Maackia herderiana dominates the rocky sur-
faces but is also found in lower abundance in sandy and
silty substrates in the southwestern shore of the lake
[39]; and Baicalia turriformis (W. Dybowski, 1875) inha-
bits rocks along the same shoreline as M. herderiana
(Lindholm, 1909). The four species also use different
egg-laying substrate: B. carinata lays its eggs on the sur-
face of the shell of other conspecifics; B. carinatocostata
lays its eggs in sand; M. herderiana uses cavities of
stones; and B. turriformis attaches its eggs to smooth
surfaces of rocks [40,41]. Juveniles of these gastropods
emerge directly from egg capsules and therefore the dis-
persal ability of these species is low when compared to
other gastropods with free-swimming, planktonic larvae.
For comparative purposes, we included in this study
data from the amphipod Gmelinoides fasciatus (Steb-
bing, 1899). It is found in high abundances in sandy and
rocky bottoms in almost all littoral zones of the lake at
water depths between 0 and 5 meters. This species is a
successful invader that rapidly increases its population
size when introduced in new ecosystems [42,43] and
this suggests that it might represent a good proxy for
habitat and food availability. All four gastropod species
and G. fasciatus are suspension feeders and have similar
dietary preferences. Observations on the stomach con-
tent of the gastropods showed that they mainly consume
planktonic diatoms Aulacoseira baicalensis, A. islandica,
Cyctotella baicalensis and C. minuta [44]. These diatom
species significantly contribute to the paleo-record of
the lake and their abundance reflects the bioproductivity
of the ecosystem. It therefore seems appropriate to use
the paleoclimatic history (based on record of sediments)
to study the impact of past environmental changes on
the species herein investigated.
In this study we investigated how demographic his-

tories of several co-occuring species with different eco-
logical preferences were affected by environmental
changes in an ecosystem where these changes did not
cause geographical separation of fauna. To this end we
collected mitochondrial DNA data (CO1) from popula-
tions of five species from the southwestern shore of
Lake Baikal. We examined phylogeographic patterns and
performed comparative analysis of the demographic his-
tories of these populations in view of the known past
environmental changes.

Results
Our taxon sampling included 222 individuals from the
five targeted species collected from 13 localities. The list
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of sampling localities is shown in Table 1 (for details
please see Additional file 1). Haplotype networks for the
investigated species show different patterns of genetic
variation (Figure 1). Most of M. herderiana individuals
carry the same haplotype and there is a number of sin-
gleton haplotypes, this suggests population growth. The
same pattern is exhibited by G. fasciatus, with a domi-
nating haplotype and a small number of less abundant
haplotypes. Conversely, haplotypes found in B. carinata,
B. carinatocostata and B. turriformis are very diverse
and distributed throughout the network. In B. carinata
and B. carinatocostata very different haplotypes were
found in several localities, some of which were resolved
in separate networks.
Tables of pairwise FST values and their significance

levels for each studied species are shown in Additional
file 2. The studied species exhibited variable level of
geographic structuring, from total absence of significant
FST values between pairs of localities (G. fasciatus) to
significant FST values between almost all of these com-
parisons (B. turriformis).
Results of comparative analysis of mismatch distribu-

tions [45,46] for each species are depicted in Figure 2.
Mismatch distributions of M. herderiana and G. fascia-
tus exhibit similar shape with most pairwise compari-
sons having small genetic distances, showing a relatively
good fit to the expected mismatch distributions under
the model of population growth. Conversely, the mis-
match distributions of B. carinata, B. carinatocostata
and B. turriformis are rather multimodal and ragged,
and contain a higher proportion of comparisons result-
ing in larger genetic distances.
Table 2 summarizes the intraspecific statistics esti-

mated for each species: number of sequences, number

of segregating sites, number of haplotypes, nucleotide
diversity, haplotype diversity and average number of
nucleotide differences. Felsenstein [47] suggests that
eight haplotypes randomly sampled from a single pan-
mictic population allow accurate estimates of population
genetics’ parameters. Therefore, our sampling effort
seems adequate (only for B. turriformis were less than 8
haplotypes recovered in this study). Despite small sam-
ple sizes, B. turriformis and B. carinatocostata exhibited
high nucleotide diversity, while the lowest nucleotide
diversity was found in M. herderiana (0.0019).
Maackia herderiana is the only species for which clas-

sic tests rejected the hypothesis of neutrality, with
Ramos-Onsins’ R2 test against population expansion
being significant (see Table 3). G. fasciatus exhibited
low, though non-significant, p-values for Ramos-Onsins
R2 and Tajima’s D tests. H test showed no purifying
selection for any of the investigated species.
Figure 3 summarizes results of Bayesian skyline recon-

structions of demographic histories for sand dwelling (a)
and for rock dwelling (b) gastropod species, and also for
G. fasciatus (c). Sand dwelling B. carinata and B. cari-
natocostata show rather stable population sizes as does
the rock-dwelling B. turriformis. Maackia herderiana
shows a dramatic population expansion and G. fasciatus
shows signs of population growth. Results of Bayesian
Skyline Plots (BSPs) were not influenced by the change
of the substitution model for G. fasciatus (see Addi-
tional file 3). Figure 3 (d) shows the relative duration of
the recovered demographic histories. The most recent
common ancestors of the populations of M. herderiana
and G. fasciatus are relatively recent when compared
to B. carinata, B. carinatocostata and B. turriformis.
Figure 4 shows the calibrated demographic histories of

Table 1 Sampling localities and number of samples of each species used in this study

Locality Locality No. B. carinata B. carinatocostata B. turriformis G. fasciatus M. herderiana

Angara River 1 - - - 7 -

Murinskaya Banka 2 14 2 - - 5

Utulik 3 3 - - - -

Kultuk 4 5 6 3 - 4

Polovinnaya Bay 5 - 4 5 17 16

Listvyanka 6 - - 10 7 19

Bolshie Koty 7 2 - 3 - 9

Varnachka 8 - - 4 - -

Peschanaya Bay 9 3 5 - 4 -

Bugul’deika 10 2 - - 3 25

Tutaiskaya Bay 11 7 - - - -

Olkhon Gates 12 21 2 - 2 -

Zunduk Cape 13 - - - 3 -

Total No. - 57 19 25 43 78
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G. fasciatus and M. herderiana, and the known lake-
level fluctuations and diatom abundance through time
inferred from sedimentary cores. Start of the population
expansions in both species occurred during a period of
relatively high water level, and coincided with a period
of high diatom abundance c. 25-50 Kyr BP (thousand
years before the present).

Discussion
In this study we compared phylogeographic patterns and
demographic histories of species with similar feeding

preferences inhabiting the same geographical area of
Lake Baikal. Overall, we found three different phylogeo-
graphic patterns in the five species investigated. Both M.
herderiana and G. fasciatus exhibit haplotype networks
in which a central haplotype is very abundant and wide-
spread, and to which several less common haplotypes
are closely related. Baicalia carinatocostata and B. turri-
formis display very different pattern, with the same hap-
lotype never found in more than one locality and
lacking a central and most abundant haplotype. Baicalia
carinata shows an intermediate picture, with some

Figure 1 Sampling localities and haplotype networks of the studied species. Diameter of circles representing haplotypes in the networks
are proportional to the number of sequences per haplotype (empty circles below lake scale represent sizes for 2, 5 and 10 individuals), colours
represent locality of origin, empty small circles represent missing haplotypes. Throughout shoreline, coloured circles represent sampled localities,
numbers inside these circles correspond to those in Table 1.
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relatively abundant haplotypes being found in different
localities and rare haplotypes restricted to single sam-
pling localities.
While phylogeographic patterns often reflect habitat

availability and connectivity [8,48] our results suggest
that intrinsic biological factors might play an important
role in shaping the genetic structure of the species ana-
lyzed. The southwestern shore of Lake Baikal, which
was sampled for this study, has relatively few sandy
areas, with a mostly steep, rocky shoreline (Additional
file 4). One would thus expect that species inhabiting
mostly sandy bottoms would show high geographic sub-
structuring, while species that prefer rocky habitats
would exhibit a pattern indicative of relatively uninter-
rupted gene flow. Our results, however, are only

partially supportive of this hypothesis. Concerning M.
herderiana, it should be noted that although inhabiting
mostly rocky areas, this species has been found in both
sandy and silted areas [39]. In this regard, M. herderiana
resembles the generalist amphipod G. fasciatus, which
lives in both sandy and rocky substrates [49,50] and is
further known to easily invade new habitats and occupy
places in ecosystems [42,43,51]. These two species show
remarkably similar phylogeographic patterns, with our
data suggesting high degree of gene flow throughout the
studied geographic range. The inferred patterns for the
remaining three species analysed, however, highlight the
importance of specific biological characteristics other
than preferred habitat type. In fact, B. carinata and
B. carinatocostata both live in sandy bottoms, but show

Figure 2 Mismatch distributions for the studied species. Bars represent observed values, lines represent expected values under model of
sudden population growth (estimated in DNAsp).

Table 2 Summary statistics of genetic variation for each
species

Species N S h Pi Hd k

B. carinata 57 29 21 0.0136 0.932 8.014

B. carinatocostata 19 24 10 0.0091 0.912 5.368

B. turriformis 25 12 6 0.0054 0.807 3.200

G. fasciatus 43 14 10 0.0033 0.693 1.834

M. herderiana 78 13 12 0.0019 0.501 1.123

N - number of sequences; S - number of segregating sites; h - number of
haplotypes; Pi - nucleotide diversity; Hd - haplotype diversity; k - average
number of nucleotide differences.

Table 3 Statistical tests of neutrality calculated for each
species

Species Fs R2 D H

B. carinata -1.76(0.28) 0.137(0.86) 0.89(0.84) 0.79(0.91)

B. carinatocostata -0.027(0.51) 0.122(0.41) -0.85(0.23) 0.827(0.89)

B. turriformis 0.05 (0.52) 0.127(0.62) -0.07 (0.55) 0.116 (0.31)

G. fasciatus -2.64(0.164) 0.067(0.08) -1.35(0.09) 0.684(0.81)

M. herderiana -0.19 (0.56) 0.099 (0.043) -0.05 (0.55) 0.05 (0.27)

Fs - Fu’s Fs index; R2 - Ramos-Onsins R2 test; D - Tajima’s D; H - Fay and Wu’s
H statistics. In parentheses, p-values are given for each statistics. Results of
significant tests (p < 0.05) are shown in bold.
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rather different phylogeographic patterns. It was
reported that B. carinata increases its dispersal by laying
eggs on the shells of its conspecifics [40,41], and this
could explain the difference between phylogeographic
structures. Similarly, the rock-dweller B. turriformis dis-
plays high degree of geographical substructuring, even
though significant geographical barriers between rocky
habitats in the sampled shore seem absent. This more
sedentary species mostly inhabits the surface of steep
rocks and cliffs with individuals hanging on each other
[41,44] and is known as a strict specialist in regard to
its feeding behaviour and overhanging slopes [44]. This
high degree of specialization might reduce the dispersal
ability of B. turriformis due to the lack of suitable habi-
tats available.

Figure 3 Inferred demographic histories for sand dwellers B.
carinata and B. carinatocostata (a), for rock dwellers M.
herderiana and B. turriformis (b) and for ecologically plastic G.
fasciatus (c). Thick solid lines are median estimates, and the thick
dashed lines are mean estimates. Grey shades show 95% highest
posterior density limits. Duration of demographic histories for the
five species is compared in bottom panel (d).

Figure 4 Calibrated demographic histories of G. fasciatus and
M. herderiana and reconstructed paleoclimatic history. (a)
Inferred lake water level (relative to present) based on seismic
survey of the delta of the Selenga River. The two lines (NW and SE)
represent results obtained using the northwestern and southeastern
(respectively) blocks of the delta (see reference [32] for details);
adapted from reference [32], (b) changes in population size in G.
fasciatus and M. herderiana (mean estimates; obtained in this study)
and (c) diatom abundance inferred from sedimentary drill core BDP-
93-2 (redrawn from [21]). In (c), solid triangles are the radiocarbon
dates for the core BDP-93-1 [82,83] and squares are for core BDP-
93-2; the arrow indicates the 50.3 Kyr BP correlation tie point for
BDP-93 record [29]. The shaded areas correspond to Marine Isotope
Stage 3.
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For the reconstruction of the demographic history of
populations it is important to identify if a sampling set
represents a single population. For M. herderiana we
sampled most of the range of the shore where this species
occurs [52] and found very little genetic differentiation.
Likewise, for this species most FST values between local-
ities were non-significant. Baicalia carinata and G. fascia-
tus occur along whole shoreline of the lake and previous
studies [53,54] involving samples from outside the area of
the current study showed that individuals of each of the
species form single populations along the southwestern
shore. In our analysis, not a single pairwise comparison
between localities where G. fasciatus was found exhibited
significant FST values. For B. carinata, significant FST
values were found between some localities (notably,
between comparison involving localities 11 and 12). Simi-
larly, FST values estimated between localities of B. carina-
tocostata exhibited only few significant results. Conversely,
genetic differentiation was higher in B. turriformis, despite
the smaller sample sizes used in this study, and FST analy-
sis revealed significant genetic differentiation between
most localities. These results confirm that samples of M.
herderiana, B. carinata, B. carinatocostata and G. fascia-
tus represent populations without strong geographical
substructuring, and thus are appropriate for reconstruc-
tion of demographic histories. Given the higher genetic
differentiation in B. turriformis, the reconstruction of
demographic histories for this species should be inter-
preted with caution. Recent results (Peretolchina et al. in
preparation) suggest that the co-occurring populations of
B. carinata, B. turriformis and B. carinatocostata were not
influenced by interspecific geneflow during the time per-
iod covered by the current study.
Classic neutrality tests did not detect significant

departures from neutrality for any of the datasets. How-
ever, the most powerful Ramos-Onsins R2 test [55]
detected population growth of M. herderiana. For G.
fasciatus, results of neutrality tests were not significant,
but had small p-values (p = 0.08 for R2 and p = 0.09 for
Tajima’s D test). The structure of the haplotype net-
works of M. herderiana and G. fasciatus, with a central
abundant haplotype and a number of singleton haplo-
types, also suggests population growth for these species.
Our demographic reconstructions suggest that popu-

lation sizes in B. turriformis, B. carinata and B. carina-
tocostata were rather stable during their evolutionary
histories. There are slight trends towards a decline for
B. turriformis and B. carinatocostata as well as slight
trend towards population growth for B. carinata. How-
ever, these slight trends cannot not be taken as evi-
dence for changes in population size because as they
appear, the posterior distributions widen. Conversely,
BSPs suggest moderate growth for G. fasciatus, and
dramatic expansion for M. herderiana. Figure 3 (d)

allows to compare the duration of demographic his-
tories for all species, and one could see that demo-
graphic histories of M. herderiana and G. fasciatus are
short, contrary to demographic histories of B. turrifor-
mis, B. carinata and B. carinatocostata. Long demo-
graphic histories of B. carinata, B. turriformis and B.
carinatocostata do not show response to the climatic
fluctuations that are known from the paleo-record of
the lake, while shorter demographic histories of M.
herderiana and G. fasciatus exhibit strong to moderate
growth. It is thus plausible that M. herderiana and G.
fasciatus are relatively recent colonizers of the south-
western shore of Lake Baikal, while the remaining spe-
cies analysed represent more ancient inhabitants of
this area. Alternatively, G. fasciatus and M. herderiana
populations may have recently undergone strong bot-
tlenecks, with the growth detected reflecting the recent
recovery from such bottlenecks, while the remaining
species could have maintained relatively constant
population sizes throughout their histories. To eluci-
date this, future work could focus on the analysis of
nuclear gene diversity, as autosomal and mitochondrial
DNA diversity are expected to show different rates of
recovery from bottlenecks [56].
Calibration of demographic histories based on molecular

sequences is notoriously difficult, particularly when speci-
fic rates of molecular evolution are unavailable [57,58].
Nevertheless, such dating can often provide rough time
estimates for important events of a species’ evolutionary
history. After we calibrated demographic histories for
populations of M. herderiana and G. fasciatus by applying
available rates of molecular evolution, we found that the
start of expansion of populations of these species coincide,
and could be estimated to 25-50 Kyr BP (Figure 4). Urabe
et al. [32] inferred lake-level variations from seismic sur-
veying and core sampling of the floor of the lake, which
appeared to be correlated to changes of the global climate
represented by MIS. However, there is no evidence that
the drop of the water level due to climate cooling could
separate basins of the lake or result in any kind of geogra-
phical separation of the fauna inhabiting the southwestern
shore. Diatom abundance, that could directly indicate
amount of food items available for both species, is shown
in Figure 4 (c). The sedimentary core BDP-93-2 from
Buguldeika Saddle [21,23] in concordance with cores st2
and st2-PC-2001 from Akademichesky Ridge [59] demon-
strate a strongly pronounced interstadial peak at the time
c. 25-60 Kyr BP. This suggests that populations of M. her-
deriana and G. fasciatus in the southwestern shore of
Lake Baikal started expanding during a warm period of
relatively high water level, and when the amount of food
available was also rather high. While this would indicate
that food availability played an important role in the popu-
lation growth of these species, it should be mentioned that
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from c. 24 to c. 14 Kyr BP the amount of diatoms in the
lake was very much reduced, however the populations of
M. herderiana and G. fasciatus do not appear to have
stopped expanding. Data on sedimentary photosynthetic
pigments suggests that, despite the reduced bioproductiv-
ity of the lake, green algae, diatoms and dinoflagellates
were still present in the lake between 16 and 27 Kyr BP
[25]. Therefore, it is possible that during this period the
abovementioned species relied on other food items. At any
rate, the simultaneous growth detected in M. herderiana
and G. fasciatus suggests that environmental factors pro-
moted the population growth of these species in the
southwestern shore of Lake Baikal. High resemblance of
demographic histories of M. herderiana and G. fasciatus, a
species known to be of high invasive capability, highlights
the strong dispersal potential of M. herderiana and its
ability to expand its population size when environmental
conditions are favorable.

Conclusions
Demographic histories of populations reflect complex
interplay between past environmental changes and eco-
logical properties of species. We investigated how five
invertebrate species from the same geographical area
and with similar food preferences reacted to the envir-
onmental changes known to have happened in the lake.
We show that intrinsic ecological specialization plays an
important role in the demographic response of the spe-
cies. In particular, high dispersal abilities and lack of
strong habitat preference allowed species to find appro-
priate habitats and expand their populations in response
to favourable environmental conditions.

Methods
Sampling, DNA extraction, amplification and sequencing
Gastropods were collected by dredge or dives along
southwestern littoral of the lake at depths of 5 to 40
meters. After preliminary sorting of benthic samples, gas-
tropods were fixed in 80% ethanol for 24 hours with sub-
sequent ethanol change to 70% solution and kept until
DNA extraction. G. fasciatus specimens were collected
from the shore, using handle-nets, from the depth of 0
to 1.0 m. Specimens were fixed in 96% ethanol. After
incubation at 4ºC for two to three days, 96% ethanol
was discharged, and the samples were kept at 4ºC in
70% ethanol. The list of sampling localities is shown in
Table 1 (for details see Additional file 1). Relatively few
individuals of B. turriformis and B. carinatocosta are
used in this study due to a scarce number of samples
collected, which is reflective of the rarity of these spe-
cies [60].
DNA extraction and PCR amplification were per-

formed according to protocols described in Peretolchina
et al. [54] for the gastropods and in Gomanenko et al.

[53] for G. fasciatus. The CO1 fragment of mitochon-
drial DNA was amplified using the universal DNA pri-
mers of Folmer et al. [61]. Sequencing reactions were
performed in the forward direction using the Quick
Start Kit (Beckman Coulter Inc.). Sequencing was then
carried on in either a 373A DNA Sequencer (Applied
Biosystems) or a CEQ 8800 DNA sequencer (Beckman
Coulter Inc).

Phylogeography and reconstruction of demographic
histories
The DNA sequences were aligned using ClustalW v. 1.4
[62], and resulting alignment was translated to check for
the presence of stop codons.
Haplotype networks were constructed using the pro-

gram TCS v. 1.2.1 [63]. The threshold value of the statis-
tical parsimony algorithm, defining the maximal number
of mutational connections between pairs of haplotypes
within the same network, was set to 0.95 [64].
For each species, we estimated FST values between pairs

of localities in Arlequin v. 3.5 [65]. We estimated FST
values using haplotype frequencies, using a distance matrix
between haplotypes based on the Kimura’s two-parameter
model [66] and using a distance matrix between haplo-
types based on Tamura-Nei distance [67]. Significance of
FST values was estimated using 10 000 permutations, and
resulting p-values corrected for multiple testing using the
False Discovery Rate procedure of [68].
We used DNA SP v. 5.10.00 [69] to produce mismatch

distributions for each species as well as to perform the
following tests of neutrality: Tajima’s D test [70], Fu’s Fs
statistics [71] and R2 test [55]. In order to distinguish
between population growth and selection, we used H
statistics [72].
Bayesian skyline plots were constructed using BEAST

v. 1.5.1 [73,74]. Substitution model for each dataset was
chosen using jModeltest v. 0.1 [75,76] based on the
Akaike information criterion [77]. For B. carinata and
B. carinatocostata jModeltest selected the Hasegawa-
Kishino-Yano (HKY) model [78] with a proportion of
invariable sites (+I) and a gamma distributed rate hetero-
geneity among the remaining sites (+G). For the remain-
ing three species the best fitting model was HKY. For G.
fasciatus, we could not obtain values of ESS (Effective
Sample Size) exceeding the recommended value of 200
using HKY model proposed by jModeltest, so we applied
the GTR substitution model [79]. In order to check if
this change of substitution model for G. fasciatus affects
the recovered demographic history we compared BSPs
for both substitution models. BEAST analysis was per-
formed assuming selected substitution models but para-
meters were estimated from data. We ran chains of 150
million steps for M. herderiana, 20 million steps for B.
carinata and G. fasciatus, and 10 million steps for B.
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carinatocostata and B. turriformis to obtain in each run
ESS values > 200. For each species we performed at least
2 individual runs and compared the results to check for
convergence. Data from two independent runs for each
species was combined using Log Combiner v1.5.1 [73,74]
in order to observe resulting BSPs.
To convert the time scale of demographic histories

from substitutions per site into years, we used earlier
suggested divergence rate of 1.83%/Myr (million years)
for gastropods [80]. Since there is no calibration of mole-
cular clock available for amphipods, for G. fasciatus we
used average from the reported rates (1.3-1.9%/Myr) of
arthropods [81]. Once absolute time scales were obtained
for the species’ demographic histories, we matched these
histories to paleoclimatic events estimated through radio-
carbon calibrations of sedimentary cores [21,32].

Additional material

Additional file 1: Detailed description of each individual used in the
study. Description includes isolate identification, taxonomic status,
locality and year of capture, collectors and accession numbers.

Additional file 2: Tables of pairwise FST values between localities for
each studied species, with the p-values given in parentheses.
Significant values before correction for multiple testing are marked with
asterisk. Significant values after correction for multiple testing are shown
in bold. Loc is locality number (see Figure 1), N is number of samples.

Additional file 3: BSP reconstructions for G. fasciatus using different
substitution models. Comparison of demographic reconstructions using
GTR and HKY substitution models. Thick solid lines are median estimates,
and thick dashed lines are mean estimates, shades show 95% highest
posterior density limits.

Additional file 4: Maps of underwater landscapes of the study area.
Types of bottom substrates at different depths of the lake. The maps
were redrawn from Karabanov EB, Sideleva VG, Izhboldina LA, Mel’nik NG,
Zubin AA, Zubina LV, Smirnov NV, Parfenova VV, Fedorova LA, Gorbunova
LA, Kulishenko YuL. (1990) Underwater Landscapes of Baikal. Novosibirsk:
Nauka Publ.,184 pp. (In Russian).

Acknowledgements
We would like to thank Dr. L. Kravtsova, Dr. E. Likhoshway, Prof. Dr. C.
Sturmbauer and two anonymous reviewers for useful comments on earlier
versions of this manuscript. Dr. R. Kamaltynov and Dr. T. Sitnikova are
acknowledged for their help with identification of the samples and
discussion on ecological properties of the species studied. Z. Grigoreva and
A. Novikov are acknowledged for assistance with the laboratory work. This
study was supported by RFBR grant 09-04-00972-а to D. Sherbakov. Part of
the samples used in this study was collected during an expedition financed
by ESF Project MOLARCH. B. Nevado was supported by PhD grant SFRH/BD/
17704/2004 from the Fundação para a Ciência e Tecnologia. J. Petunina was
supported by Marie Curie Fellowship during her four month stay in the
University of Leeds.

Author details
1Laboratory of Molecular Systematics, Limnological Institute of the Siberian
Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033
Irkutsk, Russia. 2Evolution and Ecology Program, International Institute for
Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
3Vertebrate Department, Royal Belgian Institute of Natural Sciences,
Vautierstraat 29, 1000 Brussels, Belgium. 4Evolutionary Ecology Group,
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
5Faculty of Biology and Soil Science, Irkutsk State University, Sukhe-Batora 5,
664003 Irkutsk, Russia.

Authors’ contributions
VF carried out molecular genetic studies on M. herderiana, performed the
analysis and drafted the manuscript. BN participated in the analysis and
helped to draft the manuscript. TP and JP carried out molecular genetic
studies on Baicalia spp. and G. fasciatus. DS coordinated the design of the
study and has been involved in drafting of the manuscript. All authors read
and approved the manuscript.

Received: 18 April 2010 Accepted: 23 October 2010
Published: 23 October 2010

References
1. Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000,

405:907-913.
2. Hewitt GM: Genetic consequences of climatic oscillations in the

Quaternary. Phil. Trans. R. Soc.B 2004, 359:183-195.
3. Lessa EP, Cook JA, Patton JL: Genetic footprints of demographic

expansion in North America, but not Amazonia, during the Late
Quaternary. Proc Nat Acad Sc 2003, 100:10331-10334.

4. Márquez A, Maldonado J, González S, Beccaceci M, Garcia J, Duarte J:
Phylogeography and Pleistocene demographic history of the
endangered marsh deer (Blastocerus dichotomus) from the Río de la
Plata Basin. Conserv Genetics 2006, 7:563-575.

5. Shepard DB, Burbrink FT: Lineage diversification and historical
demography of a sky island salamander, Plethodon ouachitae, from the
Interior Highlands. Mol Ecol 2008, 17:5315-5335.

6. Shennan I: Sea level studies. In Encyclopedia of Quaternary Science. Edited
by: Elias SA. Oxford: Elsevier; 2007:2967-2974.

7. Wares JP: Community genetics in the Northwestern Atlantic intertidal.
Mol Ecol 2002, 11:1131-1144.

8. Crandall ED, Frey MA, Grosberg RK, Barber PH: Contrasting demographic
history and phylogeographical patterns in two Indo-Pacific gastropods.
Mol Ecol 2008, 17:611-626.

9. Davison A, Chiba S: Contrasting response to Pleistocene climate change
by ground-living and arboreal Mandarina snails from the oceanic
Hahajima archipelago. Phil Trans R Soc B 2008, 363:3391-3400.

10. Marko PB, Hoffman JM, Emme SA, Mcgovern TM, Keever CC, Cox LN: The
‘Expansion-Contraction’ model of Pleistocene biogeography: rocky
shores suffer a sea change? Mol Ecol 2010, 19:146-169.

11. Hoelzel AR, Natoli A, Dahlheim ME, Olavarria C, Baird RW, Black NA: Low
worldwide genetic diversity in the killer whale (Orcinus orca):
implications for demographic history. Proc Royal Soc B 2002,
269:1467-1473.

12. Genner MJ, Knight ME, Haesler MP, Turner GF: Establishment and
expansion of Lake Malawi rock fish populations after a dramatic Late
Pleistocene lake level rise. Mol Ecol 2010, 19:170-182.

13. Kozhov M: In Lake Baikal and Its Life. Edited by: Junk W. The Hague,
Netherlands; 1963.

14. Short DA, Mengel JG, Crowley TJ, Hyde WT, North GR: Filtering of
Milankovitch cycles by earth’s geography. Quat Res 1991, 35:157-173.

15. Williams DF, Kuzmin MI, Prokopenko AA, Karabanov EB, Khursevich GK,
Bezrukova EV: The Lake Baikal drilling project in the context of a global
lake drilling initiative. Quat Int 2001, 80-81:3-18.

16. Kashiwaya K: Long Continental Records from Lake Baikal Tokyo: Springer;
2003.

17. Grachev MA, Vorobyova SS, Likhoshway YV, Goldberg EL, Ziborova GA,
Levina OV, Khlystov OM: A high-resolution diatom record of the
palaeoclimates of East Siberia for the last 2.5 My from Lake Baikal. Quat
Sci Rev 1998, 17:1101-1106.

18. Bradbury JP, Bezrukova YV, Chernyaeva GP, Colman SM, Khursevich G,
King JW, Likhoshway YV: A synthesis of post-glacial diatom records from
Lake Baikal. J Paleolimnol 1994, 10:213-252.

19. Colman SM, Peck JA, Karabanov EB, Carter SJ, Bradbury JP, King JW,
Williams DF: Continental climate response to orbital forcing from
biogenic silica records in Lake Baikal. Nature 1995, 378:769-771.

20. Williams DF: Lake Baikal Record of Continental Climate Response to
Orbital Insolation During the Past 5 Million Years. Science 1997,
278:1114-1117.

21. Prokopenko AA, Karabanov EB, Williams DF, Kuzmin MI, Khursevich GK,
Gvozdkov AA: The detailed record of climatic events during the past

Fazalova et al. BMC Evolutionary Biology 2010, 10:320
http://www.biomedcentral.com/1471-2148/10/320

Page 9 of 11

http://www.biomedcentral.com/content/supplementary/1471-2148-10-320-S1.XLS
http://www.biomedcentral.com/content/supplementary/1471-2148-10-320-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-320-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-320-S4.PDF
http://www.ncbi.nlm.nih.gov/pubmed/10879524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12074721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18768383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18768383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18768383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20092033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20092033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20092033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20002582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20002582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20002582?dopt=Abstract


75,000 yrs BP from the Lake Baikal drill core BDP-93-2. Quat Int 2001, 80-
81:59-68.

22. Prokopenko AA, Williams DF, Kuzmin MI, Karabanov EB, Khursevich GK,
Peck JA: Muted climate variations in continental Siberia during the mid-
Pleistocene epoch. Nature 2002, 418:65-68.

23. Edlund MB, Stoermer EF: A 200,000-year, high-resolution record of
diatom productivity and community makeup from Lake Baikal shows
high correspondence to the marine oxygen-isotope record of climate
change. Limnol Oceanogr 2000, 45:948-962.

24. Fietz S, Nicklisch A, Oberhänsli H: Phytoplankton response to climate
changes in Lake Baikal during the Holocene and Kazantsevo
Interglacials assessed from sedimentary pigments. J Paleolimnol 2007,
37:177-203.

25. Soma Y, Tani Y, Soma M, Mitake H, Kurihara R, Hashomoto S, Watanabe T,
Nakamura T: Sedimentary Steryl Chlorin Esters (SCEs) and Other
Photosynthetic Pigments as Indicators of Paleolimnological Change Over
the Last 28,000 Years from the Buguldeika Saddle of Lake Baikal. J
Paleolimnol 2007, 37:163-175.

26. Goldberg E, Phedorin M, Chebykin E, Zolotarev K, Zhuchenko N: Decade-
centenary resolution records of climate changes in East Siberia from
elements in the bottom sediments of lake Baikal for the last 150 kyr.
Nucl Instrum Methods Phys Res A 2007, 575:193-195.

27. Prokopenko AA, Williams DF, Karabanov EB, Khursevich GK: Continental
response to Heinrich events and Bond cycles in sedimentary record of
Lake Baikal, Siberia. Glob Planet Change 2001, 28:217-226.

28. Swann G, Mackay A, Leng M, Demory F: Climatic change in Central Asia
during MIS 3/2: a case study using biological responses from Lake
Baikal. Glob Planet Change 2005, 46:235-253.

29. Colman SM, Peck JA, Hatton J, Karabanov EB, King JW: Biogenic silica from
the BDP93 drill site and adjacent areas of the Selenga Delta, Lake Baikal,
Siberia. J Paleolimnol 1999, 21:9-17.

30. Bezrukova EV, Bogdanov YA, Williams DF, Granina L, Grachev MA,
Ignatova N, Karabanov EB, Kuptsov VM, Kurylev A, Letunova PP,
Likhoshway YV, Chernyaeva GP, Shimaraeva MK, Yakujshin AO: A dramatic
change of the ecological system of Lake Baikal in the Holocene. Doklady
AN SSSR 1991, 321:1032-1037, (In Russian).

31. Chebykin EP, Edgington DN, Grachev MA, Zheleznyakova TO, Vorobyova SS,
Kulikova NS, Azarova IN, Khlystov OM, Goldberg EL: Abrupt increase in
precipitation and weathering of soils in East Siberia coincident with the
end of the last glaciation (15 cal kyr BP). Earth Planet Sci Let 2002,
200:167-175.

32. Urabe A, Tateishi M, Inouchi Y, Matsuoka H, Inoue T, Dmytriev A,
Khlystov OM: Lake-level changes during the past 100,000 years at Lake
Baikal, southern Siberia. Quat Res 2004, 62:214-222.

33. Khlystov O, Khanaev I, Grachev M: Evidence of lowstand of Lake Baikal
during the Last Glaciation. Doklady Earth Sciences 2008, 422:1133-1136, (In
Russian).

34. Sherbakov D: Molecular phylogenetic studies on the origin of
biodiversity in Lake Baikal. Trends Ecol Evol 1999, 14:92-95.

35. Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S,
Turner GF, Rico C: The influence of oceanographic fronts and early-life-
history traits on connectivity among littoral fish species. Proc Nat Acad Sc
2009, 106:1473-1478.

36. Kelly RP, Palumbi SR: Genetic Structure Among 50 Species of the
Northeastern Pacific Rocky Intertidal Community. PLoS ONE 2010, 5:e8594.

37. Fauvelot C, Bernardi G, Planes S: Reductions in the mitochondrial DNA
diversity of coral reef fish provide evidence of population bottlenecks
resulting from Holocene sea-level change. Evolution 2003, 57:1571-1583.

38. Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C, Marshall C: Did
glacial advances during the Pleistocene influence differently the
demographic histories of benthic and pelagic Antarctic shelf fishes? -
Inferences from intraspecific mitochondrial and nuclear DNA sequence
diversity. BMC Evol Biol 2007, 7:220.

39. Jadin VI: Fresh-water mollusks of the USSR Moscow: USSR Academy of
Sciences; 1952.

40. Sitnikova T, Roepstorf P, Riedel F: Reproduction, duration of
embryogenesis, egg capsules and protoconchs of gastropods of the
family Baicaliidae (Caenogastropoda) endemic to Lake Baikal.
Malacologia 2001, 43:59-85.

41. Korobkova N, Sitnikova T, Roepstorf P: Intraspecific variation of the
Baikalian endemic gastropod Baicalia carinata (W. Dybowski, 1875)
(Caenogastropoda, Baicaliidae). Hydrobiologia 2006, 568:161-166.

42. Panov VE: Establishment of the Baikalian endemic amphipod Gmelinoides
fasciatus Stebb. in Lake Ladoga. Hydrobiologia 1996, 322:187-192.

43. Berezina N, Zhakova L, Zaporozhets N, Panov VE: Key role of the
amphipod Gmelinoides fasciatus in reed beds of Lake Ladoga. Bor Env
Res 2009, 14:404-414.

44. Roepstorf P, Sitnikova TY, Timoshkin O, Pomazkina G: Observations on
stomach contents, food uptake and feeding strategies of endemic
baikalian gastropods. In Berliner Palaobiologische Abhandlungen. Volume 4.
Berlin; 2002:157-181.

45. Slatkin M, Hudson RR: Pairwise Comparisons of Mitochondrial DNA
Sequences in Stable and Exponentially Growing Populations. Genetics
1991, 129:555-562.

46. Rogers A, Harpending H: Population growth makes waves in the
distribution of pairwise genetic differences. Mol Biol Evol 1992, 9:552-569.

47. Felsenstein J: Accuracy of Coalescent Likelihood Estimates: Do We Need
More Sites, More Sequences, or More Loci? Mol Biol Evol 2006, 23:691-700.

48. Koblmüller S, Sefc KM, Duftner N, Warum M, Sturmbauer C: Genetic
population structure as indirect measure of dispersal ability in a Lake
Tanganyika cichlid. Genetica 2007, 130:121-131.

49. Bazikalova AY: In The amphipods of Lake Baikal. Proceedings of the Baikal
Limnological Station. Volume 11. Moscow-Leningrad: AN SSSR; 1945, (In
Russian).

50. Kamaltynov RM: Amphipoda (Gammaroidea). In Annotated List of Fauna of
Lake Baikal and Its Drainage Area. Volume 1. Edited by: Timoshkin OA.
Novosibirsk: Nauka; 2001:572-832.

51. Berezina N: Interspecific interactions of amphipods Gammarus lacustris
and Gmelinoides fasciatus. Russian J Ecology 2009, 40:81-85.

52. Maximova N: Biology and distibution of Baicalian gastropod Maackia
(Eubaicalia) Herderiana (Lindholm, 1909) (Gastropoda: Caenogastropoda:
Baicaliidae). PhD thesis, Irkutsk 2007, (In Russian).

53. Gomanenko G, Kamaltynov R, Kuzmenkova Z, Berenos K, Sherbakov D:
Population Structure of the Baikalian Amphipod Gmelinoides fasciatus
(Stebbing). Russian J Genetics 2005, 41:907-912.

54. Peretolchina T, Bukin Y, Sitnikova T, Sherbakov D: Genetic differentiation of
the endemic Baikalian mollusk Baicalia carinata (Mollusca:
Caenogastropoda). Russian J Genetics 2007, 43:1400-1407.

55. Ramos-Onsins SE, Rozas J: Statistical Properties of New Neutrality Tests
Against Population Growth. Mol Biol Evol 2002, 19:2092-2100.

56. Pool JE, Nielsen R: Population size changes reshape genomic patterns of
diversity. Evolution 2007, 61:3001-3006.

57. Arbogast BS, Edwards SV, Wakeley J, Beerli P, Slowinski JB: Estimating
Divergence Times from Molecular Data on Phylogenetic and Population
Genetic Timescales. Ann Rev Ecol Syst 2002, 33:707-740.

58. Pulquério MJ, Nichols RA: Dates from the molecular clock: how wrong
can we be? Trends Ecol Evol 2007, 22:180-184.

59. Goldberg E, Chebykin E, Zhuchenko N, Vorobyeva S, Stepanova O,
Khlystov O, Ivanov E, Weinberg E, Gvozdkov A: Uranium isotopes as
proxies of the environmental history of the Lake Baikal watershed (East
Siberia) during the past 150 ka. Palaeogeo Palaeoclimat Palaeoecol 2010,
294:16-29.

60. Kozhov M: In Molluscs of Lake Baikal. Systematics, distribution, ecology, some
data on the genesis and history. Proceedings of the Baikal Limnological
Station. Volume 8. Moscow-Leningrad: AN SSSR; 1936, (In Russian).

61. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for
amplification of mitochondrial cytochrome c oxidase subunit I from
diverse metazoan invertebrates. Mol Marine Biol Biotechnol 1994,
3:294-299.

62. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucl Acids Res 1994, 22:4673-4680.

63. Clement M, Posada D, Crandall KA: TCS: a computer program to estimate
gene genealogies. Mol Ecol 2000, 9:1657-1659.

64. Templeton AR, Crandall KA, Sing CF: A Cladistic Analysis of Phenotypic
Associations With Haplotypes Inferred From Restriction Endonuclease
Mapping and DNA Sequence Data. III. Cladogram Estimation. Genetics
1992, 132:619-633.

Fazalova et al. BMC Evolutionary Biology 2010, 10:320
http://www.biomedcentral.com/1471-2148/10/320

Page 10 of 11

http://www.ncbi.nlm.nih.gov/pubmed/12097906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10322507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10322507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20062807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20062807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12940362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12940362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12940362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1743491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1743491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1316531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1316531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16364968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16364968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16897454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16897454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16897454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12446801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12446801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17971168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17971168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17157408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17157408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7881515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7881515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7881515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11050560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11050560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1385266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1385266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1385266?dopt=Abstract


65. Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated
software package for population genetics data analysis. Evol Bioinform
Online 2005, 1:47-50.

66. Kimura M: A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. Mol
Evol 1980, 16:111-120.

67. Tamura K, Nei M: Estimation of the number of nucleotide substitutions in
the control region of mitochondrial DNA in humans and chimpanzees.
Mol Biol Evol 1993, 10:512-526.

68. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. J R Stat Soc B 1995,
57:289-300.

69. Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of
DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.

70. Tajima F: Statistical Method for Testing the Neutral Mutation Hypothesis
by DNA Polymorphism. Genetics 1989, 123:585-595.

71. Fu YX: Statistical tests of neutrality of mutations against population
growth, hitchhiking and background selection. Genetics 1997,
147:915-925.

72. Fay JC, Wu C: Hitchhiking Under Positive Darwinian Selection. Genetics
2000, 155:1405-1413.

73. Drummond AJ, Rambaut A, Shapiro B, Pybus OG: Bayesian Coalescent
Inference of Past Population Dynamics from Molecular Sequences. Mol
Biol Evol 2005, 22:1185-1192.

74. Drummond A, Rambaut A: BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol Biol 2007, 7:214.

75. Posada D: jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 2008,
25:1253-1256.

76. Guindon S, Gascuel O: A Simple, Fast, and Accurate Algorithm to
Estimate Large Phylogenies by Maximum Likelihood. Syst Biol 2003,
52:696-704.

77. Akaike H: A New Look at the Statistical Model Identification. IEEE Trans
Autom Control 1974, 19:723-730.

78. Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. Mol Evol 1985, 22:160-174.

79. Tavaré S: Some Probabilistic and Statistical Problems in the Analysis of
DNA Sequences. In American Mathematical Society: Lectures on Mathematics
in the Life Sciences. Volume 17. Amer Mathematical Society; 1986:86-57.

80. Wilke T: Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential
relict of the Messinian salinity crisis. Zool J Linn Soc 2003, 137:319-336.

81. Quek S, Davies SJ, Itino T, Pierce NE: Codiversification in an ant-plant
mutualism: stem texture and the evolution of host use in Crematogaster
(Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae).
Evolution 2004, 58:554-570.

82. BDP-Members: Results of the first drilled borehole at Lake Baikal near the
Buguldeika Isthmus. Russian J Geology and Geophysics 1995, 36:3-32.

83. Colman SM, Jones GA, Rubin M, King JW, Peck JA, Orem WH: AMS
radiocarbon analyses from Lake Baikal, Siberia: Challanges of dating
sediments from a large, oligotrophic lake. Quat Sci Rev 1996, 15:669-684.

doi:10.1186/1471-2148-10-320
Cite this article as: Fazalova et al.: When environmental changes do not
cause geographic separation of fauna: differential responses of
Baikalian invertebrates. BMC Evolutionary Biology 2010 10:320.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Fazalova et al. BMC Evolutionary Biology 2010, 10:320
http://www.biomedcentral.com/1471-2148/10/320

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/19325852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19325852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8336541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8336541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19346325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19346325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2513255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2513255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9335623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9335623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10880498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15703244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15703244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17996036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17996036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18397919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14530136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14530136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Methods
	Sampling, DNA extraction, amplification and sequencing
	Phylogeography and reconstruction of demographic histories

	Acknowledgements
	Author details
	Authors' contributions
	References

