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Abstract: The emergence of efficient viral vectors derived from adeno-associated viruses (AAV)
has led many groups to develop gene therapies for inherited monogenic diseases, such as retinal
dystrophies. To evaluate the potency of new gene therapy vectors in a preclinical context, it is
common to use animal models, such as gene-deficient or mutant animal models of a given human
disease, and then assess vision restoration with functional or behavioral assays. While such animal
models are invaluable to the preclinical testing process, they cannot be readily used as batch release
tests during manufacturing or to validate biological activity at later stages of development. There
is therefore a need for rapid and reliable in vitro models that can determine whether therapeutic
vectors have delivered their cargo gene, and more importantly, whether this has resulted in the
intended biological activity. Given our previous experience, we chose CNGA3-linked achromatopsia
to develop a cell-based system to verify biological activity of AAV vectors designed to deliver a
healthy CNGA3 gene copy into human cone photoreceptors. Our system is based on an immortalized
cell line with high susceptibility to AAV transduction, i.e., HeLa cells, which we engineered to express
a fungal rhodopsin guanylyl cyclase (RhGC) from Blastocladiella emersonii and a sensitive genetically
encoded calcium indicator (GECI) under the control of a tetracycline operator. Using this system,
we were able to confirm and quantify the function of the ion channel encoded by AAV/CNGA3 and
differentiate between AAV vector potencies with a simple fluorometric assay. Finally, we show that
this approach can be readily adapted for the assessment of phosphodiesterase function.

Keywords: retina; AAV; cGMP; in vitro potency assay; biological activity; transgene expression

1. Introduction

Monogenic retinal diseases are ideal candidates for gene therapy as they are both
genetically and phenotypically well characterized, with single-gene supplementations
having a therapeutic impact. The emergence of recombinant adeno-associated viral (AAV)
vectors, with high tropism for retinal cells, has made it possible to locally deliver gene
therapies with intraocular injections. This has sparked numerous efforts to develop new and
optimized AAV-based gene therapies to treat the plethora of blinding monogenic diseases.
Throughout the development of new gene therapies, there is a need for informative in vitro
assays that can be performed rapidly and cost-effectively before in vivo testing to facilitate
the evaluation of different promoters, codon-optimized genes, and optimized regulatory
genetic elements. In addition, functional potency assays are required for quality control
and batch release testing during good manufacturing practice (GMP) production and for
stability studies of a final gene therapy drug product.

A monogenic disorder for which five gene therapy candidates are currently being
tested in clinical trials is achromatopsia. Achromatopsia is characterized by severe impair-
ment of visual acuity and color vision as well as photophobia and pendular nystagmus.
To date, six genes (ATF6A, CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H) are known to
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cause achromatopsia, with mutations in CNGA3 and CNGB3 responsible for more than
90% of cases [1]. CNGA3 and CNGB3 encode the alpha and beta subunits of the cone cyclic
nucleotide-gated (CNG) channel that mediates the depolarizing Na+/Ca2+ “dark” current
in cone photoreceptor outer segments [2]. Previously, the potency of gene therapy vectors
for the treatment of CNGA3- or CNGB3-linked achromatopsia was assessed after subretinal
or intravitreal injection of the gene therapy vector in gene-deficient animal models (i.e.,
mouse or dog) [3–10]. After an incubation period of several weeks to months, the treatment
effect was determined by gene expression analyses to assess CNGA3 or CNGB3 transgene
expression and vision-guided behavior and/or electroretinography (ERG) to indirectly
assess the biological activity of the expressed CNGA3/CNGB3 cGMP-gated ion channel.
Such in vivo potency testing of gene therapy vectors has low throughput and can only be
performed by trained personnel in specialized animal facilities equipped for ophthalmological
procedures and examinations. This also depends on the availability of a sufficient number
of animals and can take several weeks or months to establish therapeutic efficacy. As such,
a rapid and simple in vitro system that could functionally evaluate new viral vectors would
substantially streamline potency testing of gene therapy vectors while reducing costs.

To this end, we engineered a cell-based system that can indirectly track the presence
of a functional AAV-borne CNG channel using a simple fluorometric assay. We show that
this system can be used to reliably assess the biological function of AAV vectors expressing
CNGA3 and, with some adaptation, vectors expressing PDE6A.

2. Results
2.1. The Concept of the Cell-Based In Vitro Potency System

With the aim to develop a cell-based system that can detect CNG channel function,
we genetically engineered HeLa cells to express an inducible protein cascade that forms a
non-ratiometric reporter for cGMP-gated ion influx. HeLa cells were chosen because of their
high susceptibility for AAV transduction [11] and universal accessibility. We engineered
the cells using the piggyBac transposon system [12] to stably express the fungal rhodopsin
guanylyl cyclase (RhGC) from Blastocladiella emersonii [13] and a sensitive genetically en-
coded calcium indicator (GECI), either GCaMP6s [14], jRCaMP1a or jRCaMP1b [15]. We
placed these genes under the control of a tetracycline ON (TetON) system [16,17] in order
to induce their expression in a controlled manner (see Table 1 for qPCR primers used to
verify expression). As such, only cells exposed to the tetracycline analogue doxycycline
would express RhGC and the GECI. HeLa cells do not naturally express CNG channels. We
therefore hypothesized that these cells could be used to test the potency of novel AAV vec-
tors with a transgene cassette encoding cGMP-gated ion channel subunits, such as CNGA3.
Once transduced with an AAV/CNGA3 vector, and in the presence of doxycycline, the
engineered cells would simultaneously express the light-controlled RhGC, the Ca2+ sensor
GECI, and a homomeric cGMP-gated Ca2+ channel CNGA3. When the cells are illuminated
at an excitation wavelength (λex) of 500–560 nm, RhGC would generate cGMP [13] that
would bind and open the CNGA3 channels on the plasma membrane. This would allow
Ca2+ to enter the cell and bind to the GECI, which would fluorescently indicate the change
in intracellular Ca2+ content. This would indirectly confirm the presence of a functional
vector-borne CNGA3 channel (Figure 1).

Table 1. Primer sequences.

Target Forward Primer Reverse Primer Annealing T ◦C

eGFP CGACCACTACCAGCAGAACAC TTCTCGTTGGGGTCTTTGCTCAG 62

ITR2 GGAACCCCTAGTGATGGAGTT CGGCCTCAGTGAGCGA 58

GCaMP6s CCCGACAACCACTACCTGAG GTCCATGCCGAGAGTGATCC 60

jRCaMP1a AAGACAGGTCACGCAGTCAG GAGTGTAACCACGCAGACCA 60

jRCaMP1b GGAATAAGTGGGGTCACGCA GAGTGTAACCACGCAGACCA 60
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Figure 1. Schematic diagram showing the stepwise activation of the bioengineered cell system where
(1) doxycycline induces the expression of rhodopsin guanylyl cyclase (RhGC) and genetically encoded
calcium indicator (GECI) that remain inactive. (2) Transduction of the cells with AAV/CNGA3 leads
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to the expression of a homotetrameric cyclic nucleotide-gated (CNG) channel that remains closed in
the absence of the ligand cyclic guanosine monophosphate (cGMP). (3) Illumination of cells at the
RhGC excitation wavelength (λex) leads to cGMP production that binds and opens the CNG channel
leading to a Ca2+ influx. When illuminated at λex, Ca2+-bound GECI emits a specific fluorescent
signal (λem) that can be quantified by a fluorometric plate reader.

2.2. Validation of Basic Functions

In order to test whether the three selected GECIs would detect Ca2+ under physiologi-
cal conditions, the stable cell lines were exposed to increasing concentrations of doxycycline,
i.e., 0.25, 0.5 and 1 µg/mL. After 48 h incubation, the Ca2+-free medium was replaced with
Ca2+-containing medium (HBSS+CaCl2 ) and the cells were imaged using a fluorescence
microscope with filters for GFP (λex 488, λem 510) and Texas Red (λex 596, λem 615). The
signal obtained was comparable for all concentrations (Figure S1A), and therefore cells were
treated with 0.5 µg/mL doxycycline for all subsequent experiments. As a positive control
for GECI fluorescence when bound to Ca2+, the cells were treated with 4 µM ionomycin
for 5 min, which led to the partial disruption of their cell membrane and an uncontrolled
influx of Ca2+. By comparing the fluorescent images before and after ionomycin treatment,
it was evident that the signal from GCaMP6s (Figure S1A) and jRCaMP1a (Figure S1B)
differed the most between conditions, whereas that from jRCaMP1b (Figure S1C) did not.
Therefore, the cells with jRCaMP1b were not used for further experiments because this
poor sensitivity would fail to detect any CNG-borne changes in intracellular Ca2+.

The light-inducible function of RhGC was validated in all three stable cell lines.
Cells were incubated with 0.5 µg/mL doxycycline for 48 h and then the media was
replaced with DPBS−CaCl2 . The cells were then illuminated in a warmed (37 ◦C) plate
reader at 500–560 nm in 10 nm intervals to activate the RhGC. Once illuminated, the cells
were immediately fixed and immunolabeled for cGMP using an antibody that detects
paraformaldehyde-fixed cGMP. Confocal imaging showed that only the engineered cells
stained strongly for cGMP in the presence of doxycycline, whereas the parental wild-type
cells did not. Furthermore, none of the cell lines generated a detectable cGMP signal in the
absence of doxycycline (Figure 2), thereby confirming that the TetON-dependent RhGC is
tightly regulated and induces cGMP production only after illumination.
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It was important to determine whether the components of this cell-based reporter
could work together in the presence of a CNG channel. Using a new piggyBac vector,
the HeLa cells were further modified to express the CNGA1 gene under the same TetON
system in addition to RhGC-GCaMP6s or RhGC-jRCaMP1a. This means that all three
proteins would be expressed after exposing the cells to doxycycline and the Ca2+ flux
after RhGC illumination could be tested by measuring changes in the GECI signal on a
plate reader. The baseline signal for GCaMP6s and jRCaMP1a was measured using the
maximum sensitivity settings. Subsequently, the extracellular Ca2+ concentration was
increased by replacing DPBS−CaCl2 with HBSS+CaCl2 , and the test signal for both GECIs
was again measured. Finally, using a microinjector as part of the plate reader, ionomycin
was added to the cells to a final 4 µM concentration, and the maximum GECI signal was
recorded. Fluorescence imaging alongside plate reader recordings revealed that the cells
expressing RhGC-GECI-CNGA1 gave a strong signal in the presence of extracellular Ca2+,
as opposed to RhGC-GECI alone (Figure 3A). This was reflected in the signal quantification,
where both GCaMP6s (Figure 3B) and jRCaMP1a (Figure 3C) signal significantly increased
as a result of CNGA1-dependent Ca2+ influx.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 14 
 

 

Figure 2. Validation of light-inducible production of cGMP by RhGC in the three engineered HeLa 
cell lines compared to the parental wild-type (WT) HeLa cells. Confocal images of cells cultured 
with or without doxycycline, illuminated at the RhGC activation wavelength and then immuno-
labeled for cGMP (yellow). Nuclei were stained with DAPI (blue). 

It was important to determine whether the components of this cell-based reporter 
could work together in the presence of a CNG channel. Using a new piggyBac vector, the 
HeLa cells were further modified to express the CNGA1 gene under the same TetON sys-
tem in addition to RhGC-GCaMP6s or RhGC-jRCaMP1a. This means that all three pro-
teins would be expressed after exposing the cells to doxycycline and the Ca2+ flux after 
RhGC illumination could be tested by measuring changes in the GECI signal on a plate 
reader. The baseline signal for GCaMP6s and jRCaMP1a was measured using the maxi-
mum sensitivity settings. Subsequently, the extracellular Ca2+ concentration was increased 
by replacing DPBS−CaCl2 with HBSS+CaCl2, and the test signal for both GECIs was again meas-
ured. Finally, using a microinjector as part of the plate reader, ionomycin was added to 
the cells to a final 4 μM concentration, and the maximum GECI signal was recorded. Flu-
orescence imaging alongside plate reader recordings revealed that the cells expressing 
RhGC-GECI-CNGA1 gave a strong signal in the presence of extracellular Ca2+, as opposed 
to RhGC-GECI alone (Figure 3A). This was reflected in the signal quantification, where 
both GCaMP6s (Figure 3B) and jRCaMP1a (Figure 3C) signal significantly increased as a 
result of CNGA1-dependent Ca2+ influx. 

 

Figure 3. Positive control series with stably integrated CNG channel to confirm that the binary
reporter system works in the presence of all three constituent proteins, i.e., RhGC, CNG and GECI.
(A) Fluorescence images of GECI signal obtained from engineered HeLa cells expressing either



Int. J. Mol. Sci. 2022, 23, 4538 6 of 14

RhGC-GECI or RhGC-GECI-CNGA1, in the presence of high extracellular Ca2+ (HBSS+CaCl2 ) versus
positive control signal, where cells are permeabilized with a 4 µM ionomycin solution. (B) Quan-
tification of relative fluorescence units (RFU) at λem 535 nm of engineered HeLa cells expressing
RhGC-GCaMP6s-CNGA1 in the absence of extracellular Ca2+ (DPBS−CaCl2 ) versus high extracellular
Ca2+ (HBSS+CaCl2 ). (C) Quantification of RFU at λem 605 nm of engineered HeLa cells expressing
RhGC-jRCaMP1a-CNGA1 in the absence of extracellular Ca2+ (DPBS−CaCl2 ) versus high extracellular
Ca2+ (HBSS+CaCl2 ).

2.3. Testing AAV Vectors with CNGA3 Cargo

After validating our cell-based reporter system, we set out to test whether the two
engineered cell lines RhGC-GCaMP6s and RhGC-jRCaMP1a could detect AAV-borne CNG
activity. Both lines were treated with doxycycline and transduced with an AAV/CNGA3
vector for 48 h at multiplicity of infection (MOI) 104 and 105. As before, the medium was
replaced with DPBS−CaCl2 , and the cells were illuminated in a heated (37 ◦C) plate reader
at 500–560 nm in 10 nm intervals to induce cGMP production. The baseline signal for
GCaMP6s and jRCaMP1a was measured and then DPBS−CaCl2 was replaced by HBSS+CaCl2 .
The test signal for both GECIs was measured, and finally, ionomycin was added to record
the maximum GECI signal in the transduced cells. Fluorescence imaging acquired alongside
the plate reader recordings showed that there was a detectable jRCaMP1a signal already in
the untreated cells (Figure S2A), which was also seen in Figure S1B, and the signal remained
the same for both MOIs (Figure S2A). Instead, the GCaMP6s signal was restricted to the
AAV-treated cells, showing no qualitative difference between the two MOIs (Figure S2A).
The quantification of jRCaMP1a showed that, although there was a higher signal in the
presence of extracellular calcium (HBSS+CaCl2 ), this was not significantly different to the
positive control condition (Figure S2B). This was inconsistent with the fluorescence imaging
of the cells, suggesting that jRCaMP1a could not be used confidently across signal detection
methods. Unlike jRCaMP1a, the signal obtained from GCaMP6s was consistent across
methods, with both plate reader quantification and fluorescent imaging of the transduced
cells matching (Figure S2C). This confirmed that the engineered HeLa cells with RhGC-
GCaMP6s could detect AAV-borne CNGA3 channel function

To assess whether our cell-based reporter could discriminate between vector potencies,
three different AAV vectors expressing mouse or human CNGA3 were tested using the
same experimental set-up as above. Vectors carried either a human hArr3-CNGA3 or a
mouse mSWS-CNGA3 expression cassette and were packaged with either the engineered
AAV2.GL [10] or the conventional AAV8 capsid. All vectors were used at an MOI of 105,
which was sufficient to increase the detected GCaMP6s signal in the presence of high extra-
cellular Ca2+ (Figure 4A). Quantitative results confirmed the presence of a functional vector-
borne CNG channel after transducing cells with AAV2.GL/mSWS-CNGA3 (Figure 4B) and
AAV2.GL/hArr3-CNGA3 (Figure 4C), but not AAV8/hArr3-CNGA3 (Figure 4D), indicat-
ing that the vectors with AAV2.GL were more potent.
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Figure 4. Discrimination of vector potencies using the optimal engineered HeLa cells expressing
RhGC-GCaMP6s. (A) Representative fluorescence images of GCaMP6s signal after transduction with
AAV2.GL/hArr3-CNGA3 in three conditions: in the absence of extracellular Ca2+ (DPBS−CaCl2 ), in
high extracellular Ca2+ (HBSS+CaCl2 ), and positive control signal where cells are permeabilized with a
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transduced with AAV2.GL/mSWS-CNGA3 in the absence of extracellular Ca2+ (DPBS−CaCl2 ) versus
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2.4. Combined AAV Vector Testing with CNGA3 and PDE6A Cargo

To broaden the applicability of this in vitro model, we simultaneously transduced the
engineered HeLa cells with AAV vectors that carried two cGMP effector molecules with
opposing effects: the previously used CNGA3 channel, which increases intracellular Ca2+

levels in the presence of cGMP, and the phosphodiesterase 6 alpha subunit (PDE6A), which
degrades cGMP and thus counteracts the CNG-mediated cation influx, leading to a decrease
in intracellular Ca2+ (Figure 5A). In our previous experiments, we observed a basal Ca2+

level that led to measurable GCaMP6s signal even in the DPBS−CaCl2 solution (Figure 4).
We therefore hypothesized that if both proteins (CNGA3 and PDE6A) were expressed,
the cGMP required for CNG-dependent Ca2+ influx would become hydrolyzed by the
PDE6, leading to a further decrease in the GCaMP6s signal (Figure 5A). We co-transduced
cells with AAV vectors encoding both CNGA3 and PDE6A at an MOI 104, which led to
detectable levels of both proteins, as confirmed via ICC (Figure S3). Transduction with
individual vectors (Figure S3A) led to comparable protein expression levels, as seen in cells
co-transduced with both AAVs (Figure S3B). Indeed, representative fluorescent images
showed that the minimal baseline GCaMP6s signal was diminished in cells co-transduced
with CNGA3 and PDE6A after switching to a high extracellular Ca2+ solution (Figure 5B).
This phenomenon was reflected also in the plate reader signal quantification, showing that
all three vector combinations of simultaneous CNGA3 and PDE6A delivery resulted in
decreased GCaMP6s signal (Figure 5C–E).
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AAV/CNGA3 and AAV/ PDE6A, leading to the expression of both the homotetrameric CNG
channel and a partial PDE protein. RhGC illumination (2) leads to cGMP production that, in-
stead of binding and activating the CNG, it becomes hydrolyzed by the PDE, thereby preventing
Ca2+ influx and GECI signal. (B) Representative fluorescence images of GCaMP6s signal obtained
from engineered HeLa cells after transduction with CNGA3- and PDE6A-expressing vectors in
three conditions: in the absence of extracellular Ca2+ (DPBS−CaCl2 ), in high extracellular Ca2+

(HBSS+CaCl2 ), and positive control signal where cells are permeabilized with a 4 µM ionomycin
solution. (C) Quantification of relative fluorescence units (RFU) at λem 535 nm of engineered HeLa
cells co-transduced with AAV2.GL/mSWS-CNGA3 and AAV8/hRho-PDE6A in the absence of ex-
tracellular Ca2+ (DPBS−CaCl2 ) versus high extracellular Ca2+ (HBSS+CaCl2 ). (D,E) As in (C) for cells
co-transduced with AAV2.GL/hArr3-CNGA3 & AAV8/hRho-PDE6A or AAV8/hArr3-CNGA3 &
AAV8/hRho-PDE6A, respectively.

3. Discussion

During drug development, a series of preclinical tests are performed to verify the
safety and efficacy of a new therapeutic agent before being cleared for human clinical
trials. The requirements for preclinical testing are often defined by the disease the new
drug is intended for and the drug’s pharmacological properties. In the context of viral
vector-based gene therapy drugs, new vectors must be tested both in vitro and in vivo [18].
The use of in vitro systems, such as mammalian cell culture, generates proof-of-principle
data that help sieve through large libraries of constructs ahead of more lengthy and costly
experiments in vivo using relevant animal models. Unfortunately, not all diseases for
which new gene therapies are developed have a relevant animal model that mirrors the
human pathophysiology. Even in cases where such a model exists, in vivo testing of new
gene therapies takes months before a functional evaluation can be made. During the
development and optimization of new gene therapies, it is often necessary to repeatedly
assess vector potency and functionality, making it exponentially harder to incorporate
in vivo assays at all the qualitative checkpoints. This is where simple in vitro assays that
can evaluate vector function can be of significant value.

For the purpose of assessing AAV vector potency and biological function, an immortal-
ized cell line with high AAV transduction susceptibility was used, namely, HeLa cells [11].
This in vitro model was designed to assess vectors with a transgene cassette expressing the
CNGA3 subunit of the human cone-specific CNG channel, which would be used to treat
achromatopsia patients with mutations in this gene. The primary aim was to confirm the
formation of a functional ion conducting CNG channel after AAV delivery, and therefore
required constituents that would interact with the channel to form a reporter system. These
constituents were cGMP, as CNG channels in the retina are gated by the ligand cGMP [19],
and a quantifiable signal that would report ion channel function, i.e., cation influx. To this
end, the piggyBac transposon system [12] was used to integrate a light-inducible RhGC [13]
and a GECI into the cells’ genome, under the control of a TetON system [16,17]. The
resulting cells were validated for their ability to produce cGMP after RhGC illumination
(Figure 2) and their inducible GECI expression after exposure to doxycycline (Figure S1).
From the three GECIs tested, i.e., GCaMP6s, jRCaMP1a and jRCaMP1b, only GCaMP6s
proved to be reliable across signal detection methods (Figures S1 and S2). Indeed, GCaMP6s
has the highest calcium affinity from the other GCaMP6 family members [14] and has been
deemed optimal for high-throughput assays [20].

A positive control study was performed, where the rod-specific CNGA1 subunit
was endogenously overexpressed via the same TetON system, to confirm that the three
components RhGC, CNG and GECI would interact to form a fluorescence reporter for Ca2+

influx (Figure 3). It was sufficient to introduce the alpha subunit of CNG, as these can form
functional homomeric ion channels, unlike the beta subunits when expressed alone [21].
The engineered cell line was successfully used to discriminate CNGA3-carrying vectors
with distinct potencies (Figure 4), as well as demonstrate the applicability of this system to
test vectors with a PDE6A-expressing cassette in the presence of CNGA3 (Figure 5). Note
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that transgene cassettes with photoreceptor-specific promoters were able to drive gene
expression in HeLa cells, where such promoters should be inactive. Promoter activation in
trans has been reported in transfection experiments [22], indicating the possibility that, at
high enough MOIs, the interaction between the AAV ssDNA and HeLa genome can trigger
sufficient gene expression under an otherwise less active promoter. Another important
consideration is that single-protein subunits were delivered. Though it is known that CNG
alpha subunits (with the exception of CNGA4) can form homomeric channels [19,21], it was
not clear whether the rod PDE6A subunit would suffice to perform cGMP hydrolysis. The
native rod PDE6 enzyme is thought to consist of two catalytic subunits PDE6A and PDE6B,
and two inhibitory subunits PDE6G [23]. Using our in vitro model, the hydrolysis of cGMP
was measured indirectly by the decrease in CNG-mediated GCaMP6s signal (Figure 5B,C).
The fact that the GCaMP6s signal decreased below the baseline (Figure 5C) was likely
an effect of time rather than the change in extracellular solution. It is possible that the
gradually decreasing GCaMP6s signal reflected a slower cGMP hydrolysis as a result of an
incomplete PDE protein with limited catalytic capacity. To decipher more intricate details
of channel or enzyme function in such a multiplexed setting, ratiometric calcium indicators
could be used [24], although the variable number of AAV-borne CNG channels would skew
the readings in each assay.

In conclusion, we developed a simple cell-based reporter based on calcium imaging
that can identify potent AAV vectors with biological activity within 48 h. This in vitro
model could serve high-throughput pipelines of novel gene therapy development and
evaluate vector potency ahead of preclinical studies in vivo.

4. Materials and Methods
4.1. Cell Culture

Immortalized cells were cultured according to standard practices. Briefly, cells were
cryopreserved in low glucose DMEM (11885084, Thermo Fisher, Darmstadt, Germany)
supplemented with 20% FBS (S0615-500ML, Sigma-Aldrich, Taufkirchen, Germany) and
10% DMSO (C6295, Sigma-Aldrich) in liquid N2. To bring them in culture, cryovials were
thawed and resuspended in warmed complete medium made of DMEM supplemented with
10% FBS and 1% Anti/Anti (15240062, Thermo Fisher). The cell suspension was centrifuged
at 0.5 rcf for 5′ to remove the DMSO, the cell pellet was resuspended in complete medium
and transferred to a sterile T-75 flask. Cells were maintained in an incubator at 37 ◦C, 5%
CO2, 85–95% humidity and passaged once 90% confluent. For passaging, the medium
was aspirated, the cells washed once with DPBS-CaCl2 and then detached from the flask
using 0.05% Trypsin-EDTA (5′ incubation at 37 ◦C, 5% CO2). Cells were counted using 0.4%
Trypan Blue Stain (T10282, Thermo Fisher) and the Countess3 FL Automated Cell Counter
(Thermo Fisher) before seeding in a new recipient.

4.2. Generation of New Hela Cell Lines

The piggyBac vector was cloned using the backbone: pB09/TRE-MCS-SV40pA-Ef1a-
rtTA-PuroR-SV40pA (kindly provided by Prof. Volker Busskamp, University of Bonn). The
backbone was linearized via enzymatic digestion using Fast Digest (FD) BamHI (FD0054,
Thermo Fisher) followed by FastAP Thermosensitive Alkaline Phosphatase (1 U/µL) treat-
ment (EF0654, Thermo Fisher). The RhGC and GECI coding sequences were PCR-amplified
from the RhGC(hBE)_pGEM (kindly provided by Prof. Peter Hegemann, Humboldt Uni-
versity of Berlin), pGP-CMV-GCaMP6s (Addgene #40753), pGP-CMV-NES-jRCaMP1a
(Addgene #61562) and pGP-CMV-NES-jRCaMP1b (Addgene #63136) using Gibson Assem-
bly primers. RhGC and GECI genes were linked by a T2A element, leading to a bicistronic
transcript for simultaneous expression of both proteins in the presence of doxycycline. The
resulting plasmids were: pB09/TRE-RhGC(BE)-T2A-GCaMP6s-SV40pA-Ef1a-rtTA-T2A-
PuroR-SV40pA (11 kb), pB09/TRE-RhGC(BE)-T2A-jRCaMP1a-SV40pA-Ef1a-rtTA-T2A-
PuroR-SV40pA (11.033 kb), pB09/TRE-RhGC(BE)-T2A-jRCaMP1b-SV40pA-Ef1a-rtTA-T2A-
PuroR-SV40pA (11.033 kb). The puromycin resistance gene was used to select for HeLa
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cells in which successful genome integration had occurred. After transposition and a 7-day
puromycin (1 mg/mL) selection period, single HeLa cells were picked, following a serial
dilution step, and grown to separate colonies. Using 200 ng gDNA from the single colonies
as template, quantitative PCR (qPCR) revealed which colonies had the highest number of
inserts, and those were taken forward for all experiments.

4.3. Gene Expression Analysis

Extracted RNA from AAV-transduced cells or tissues was digested with RQ1 RNase-
free DNase (M6101, Promega, Walldorf, Germany) to eliminate DNA contaminants. Fifty-
200 ng of RNA were reverse-transcribed to cDNA using SuperScript IV Reverse Transcrip-
tase (18090050, Thermo Fisher) or a RevertAid First Strand cDNA Synthesis Kit (K1621,
Thermo Fisher). For all types of expression analyses, primer pairs were designed for eGFP,
ITR2, GECIs, with an annealing temperature between 58 and 62 ◦C. Quantitative PCR was
done using the PowerUp SYBR Green Master Mix (A25742, Thermo Fisher), according to
the manufacturer’s instructions on the QuantStudio 5 Real-Time PCR platform.

4.4. RhGC Illumination and GECI Recordings

All illumination and fluorescence recordings were performed using the SpectraMax
plate reader Multi-Mode Microplate Reader from Molecular Devices. The plate reader
temperature was set at 37 ◦C before all recordings and the microinjector was loaded with an
8 µM ionomycin (I9657, Sigma-Aldrich) solution in HBSS+CaCl2 (14025092, Thermo Fisher).
All recordings were performed in clear 24-well plates with signal reads performed from the
bottom of the well with a high PMT and optics setting (Figure 6).
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Figure 6. Illustration of the experimental design and set-up.

To account for discrepancies of cell distribution in each well, 12 dispersed points
were recorded from each well and then averaged. Six technical repeats were performed
for each condition. Cells were seeded in complete medium supplemented with doxycy-
cline (0.5 µg/mL) and, once attached (~4 h), they were transduced with AAV vectors for
48 h. Ahead of GECI recordings in the plate reader, media were replaced by DPBS−CaCl2

(14190144, Thermo Fisher) and washed twice to ensure that residual phenol red was re-
moved. The 24-well plate was then placed inside the pre-warmed (37 ◦C) plate reader and
illuminated with a 500–560 nm spectrum at 10 nm intervals to activate RhGC. Consecutively,
baseline GECI signal was recorded with single-wavelength settings; either λex 488–λem 535
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for GCaMP6s or λex 558–λem 605 for jRCaMP1a and jRCaMP1b. DPBS−CaCl2 was replaced
with HBSS+CaCl2 , and then the test GECI signal was recorded using the same wavelength
settings as before. With only 100 µL HBSS+CaCl2 covering the cells, the plate was reinserted
in the plate reader and, using the SmartInject setting, 100 ul of 8 µM ionomycin were
injected over the cells, shaken to mix (final concentration 4 µM), and after a 5 s pause, the
control GECI signal was recorded.

4.5. Immunocytochemistry and Imaging

Cells were seeded on pretreated glass slides that were previously coated with poly-D-
lysine (P6407, Sigma-Aldrich), according to the manufacturer’s instructions. Once attached,
the cells were illuminated at the excitation wavelength (λex) of RhGC, i.e., 500–560 nm in
10 nm intervals, and then immediately fixed with 4% PFA/PBS for 10 min at room tempera-
ture. The cell monolayer was washed twice with PBS and then incubated overnight at 4 ◦C
with primary antibodies diluted in blocking solution (2% BSA/0.3% Triton-X in PBS). The
primary antibodies used were sheep anti-cGMP 1:3000 (from Prof. Steinbusch, Maastricht
University, Maastricht, The Netherlands), rabbit anti-PDE6A IgG 1:500 (NBP1-87312, Novus
Biologicals), rat anti-CNGA3 1:30 (custom-made anti-CNGA3, 7D8, hybridoma supernatant,
kind gift of Heinz G. Körschen, Caesar Bonn). The next day, the cell monolayer was washed
twice with PBS and incubated with a secondary antibody solution for 1.5 h at room temper-
ature while covered. The secondary antibodies used were sheep anti-Alexa594 IgG (H + L),
donkey 1:500 (A-11016 Thermo Fisher), anti-rabbit-Alexa488 IgG (H + L) 1:400 (#4412, Cell
Signal), and anti-rat-Cy3 IgG (H + L) 1:200 (112-165-143, Jackson). Finally, the monolayer
was washed once with PBS and incubated for 10 min with DAPI 1:2000 (D1306, Thermo
Fisher) prior to mounting with a glass slide (18606-5, Aqua-Poly/Mount). Images were
acquired with an inverted Leica SP8 confocal microscope. The original images, consisting
of multiple z-stacks, were further processed with the open-source software Fiji [25].

4.6. AAV Vector Production and Cell Transduction

Vector production was performed as previously described [10,26]. Single-stranded
AAV plasmids containing a mSWS-CNGA3, hArr3-CNGA3 or hRho-PDE6A expression
cassette flanked by ITRs from AAV2 were used as vector plasmids. Genomic titers of AAV
preps were determined by qPCR using primers: ITR2-F: 5′ ggaacccctagtgatggagtt 3′ and
ITR2-R: 5′ cggcctcagtgagcga 3′. For transduction experiments, cells were passaged, counted,
and seeded in a 50,000 cells/24-well plate density. Multiplicity of infection (MOI) was
determined accordingly, and the calculated volume of AAV solution was added in the
media over the cells and incubated for 48 h.

4.7. Statistical Analysis

Graphs and statistical analyses were performed using Prism 9 (Graph-Pad, San Diego,
CA, USA). The results are presented either as paired data points across conditions or
violin plots showing the distribution of all data points. Paired Student’s t-test was used
to compare two conditions of the same sample population. The significance α = 0.05 was
accepted and exact p values are recorded over each graph.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23094538/s1.

Author Contributions: Conceptualization, M.P. and S.M.; methodology and formal analysis, M.P.;
investigation, M.P. and S.B.; writing—original draft preparation, M.P.; writing—review and editing,
S.M.; supervision and funding acquisition, S.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by a Deutsche Forschungsgemeinschaft (DFG) grant to S.M.
(MI1238/4-1).

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/ijms23094538/s1
https://www.mdpi.com/article/10.3390/ijms23094538/s1


Int. J. Mol. Sci. 2022, 23, 4538 13 of 14

Data Availability Statement: Not applicable.

Acknowledgments: We thank Johanna Wagner, Melina Pekic and Kerstin Skokann for their technical
assistance in the generation of control cell lines and/or production of recombinant AAV vectors. We
also thank Peter Hegemann (Humboldt University Berlin) and Volker Busskamp (University of Bonn)
for the gift of plasmids and Heinz G. Körschen (Casesar, Bonn) for the gift of the 7D8 antibody.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Michalakis, S.; Gerhardt, M.; Rudolph, G.; Priglinger, S.; Priglinger, C. Achromatopsia: Genetics and Gene Therapy. Mol. Diagn.

Ther. 2022, 26, 51. [CrossRef] [PubMed]
2. Michalakis, S.; Becirovic, E.; Biel, M. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy. Int. J. Mol.

Sci. 2018, 19, 749. [CrossRef] [PubMed]
3. Mühlfriedel, R.; Tanimoto, N.; Schön, C.; Sothilingam, V.; Garrido, M.G.; Beck, S.C.; Huber, G.; Biel, M.; Seeliger, M.W.;

Michalakis, S. AAV-mediated gene supplementation therapy in achromatopsia type 2: Preclinical data on therapeutic time
window and long-term effects. Front. Neurosci. 2017, 11, 292. [CrossRef] [PubMed]

4. Michalakis, S.; Mühlfriedel, R.; Tanimoto, N.; Krishnamoorthy, V.; Koch, S.; Fischer, M.D.; Becirovic, E.; Bai, L.; Huber, G.;
Beck, S.C.; et al. Restoration of cone vision in the CNGA3−/−mouse model of congenital complete lack of cone photoreceptor
function. Mol. Ther. 2010, 18, 2057–2063. [CrossRef]

5. Banin, E.; Gootwine, E.; Obolensky, A.; Ezra-Elia, R.; Ejzenberg, A.; Zelinger, L.; Honig, H.; Rosov, A.; Yamin, E.; Sharon, D.; et al.
Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Mol.
Ther. 2015, 23, 1423–1433. [CrossRef]

6. Komáromy, A.M.; Rowlan, J.S.; Corr, A.T.P.; Reinstein, S.L.; Boye, S.L.; Cooper, A.E.; Gonzalez, A.; Levy, B.; Wen, R.;
Hauswirth, W.W.; et al. Transient Photoreceptor Deconstruction by CNTF Enhances rAAV-Mediated Cone Functional Rescue in
Late Stage CNGB3-Achromatopsia. Mol. Ther. 2013, 21, 1131. [CrossRef]

7. Carvalho, L.S.; Xu, J.; Pearson, R.A.; Smith, A.J.; Bainbridge, J.W.; Morris, L.M.; Fliesler, S.J.; Ding, X.Q.; Ali, R.R. Long-term and
age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy.
Hum. Mol. Genet. 2011, 20, 3161–3175. [CrossRef]

8. Pang, J.J.; Deng, W.T.; Dai, X.; Lei, B.; Everhart, D.; Umino, Y.; Li, J.; Zhang, K.; Mao, S.; Boye, S.L.; et al. AAV-Mediated Cone
Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia. PLoS ONE 2012, 7, e35250. [CrossRef]

9. Komáromy, A.M.; Alexander, J.J.; Rowlan, J.S.; Garcia, M.M.; Chiodo, V.A.; Kaya, A.; Tanaka, J.C.; Acland, G.M.; Hauswirth, W.W.;
Aguirre, G.D. Gene therapy rescues cone function in congenital achromatopsia. Hum. Mol. Genet. 2010, 19, 2581–2593. [CrossRef]

10. Pavlou, M.; Schön, C.; Occelli, L.M.; Rossi, A.; Meumann, N.; Boyd, R.F.; Bartoe, J.T.; Siedlecki, J.; Gerhardt, M.J.; Babutzka, S.; et al.
Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol. Med. 2021, 13, e13392. [CrossRef]

11. Keiser, N.W.; Yan, Z.; Zhang, Y.; Lei-Butters, D.C.M.; Engelhardt, J.F. Unique Characteristics of AAV1, 2, and 5 Viral Entry,
Intracellular Trafficking, and Nuclear Import Define Transduction Efficiency in HeLa Cells. Hum. Gene Ther. 2011, 22, 1433–1444.
[CrossRef]

12. Wilson, M.H.; Coates, C.J.; George, A.L. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 2007, 15, 139–145.
[CrossRef]

13. Scheib, U.; Stehfest, K.; Gee, C.E.; Körschen, H.G.; Fudim, R.; Oertner, T.G.; Hegemann, P. The rhodopsin-guanylyl cyclase of the
aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci. Signal. 2015, 8, rs8. [CrossRef]

14. Chen, T.W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.;
et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300. [CrossRef]

15. Dana, H.; Mohar, B.; Sun, Y.; Narayan, S.; Gordus, A.; Hasseman, J.P.; Tsegaye, G.; Holt, G.T.; Hu, A.; Walpita, D.; et al. Sensitive
red protein calcium indicators for imaging neural activity. Elife 2016, 5, e12727. [CrossRef]

16. Gossen, M.; Freundlieb, S.; Bender, G.; Müller, G.; Hillen, W.; Bujard, H. Transcriptional activation by tetracyclines in mammalian
cells. Science 1995, 268, 1766–1769. [CrossRef]

17. Yao, F.; Svensjö, T.; Winkler, T.; Lu, M.; Eriksson, C.; Eriksson, E. Tetracycline repressor, tetR, rather than the tetR-mammalian
cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum. Gene Ther. 1998, 9,
1939–1950. [CrossRef]

18. Cellular & Gene Therapy Guidances|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/biologics-
guidances/cellular-gene-therapy-guidances (accessed on 21 March 2022).

19. Gerstner, A.; Zong, X.; Hofmann, F.; Biel, M. Molecular cloning and functional characterization of a new modulatory cyclic
nucleotide-gated channel subunit from mouse retina. J. Neurosci. 2000, 20, 1324–1332. [CrossRef]

20. Wu, N.; Nishioka, W.K.; Derecki, N.C.; Maher, M.P. High-throughput-compatible assays using a genetically-encoded calcium
indicator. Sci. Rep. 2019, 9, 12692. [CrossRef]

21. Biel, M. Cyclic Nucleotide-regulated Cation Channels. J. Biol. Chem. 2009, 284, 9017. [CrossRef]
22. Smirnov, N.A.; Akopov, S.B.; Didych, D.A.; Nikolaev, L.G. In trans promoter activation by enhancers in transient transfection.

Gene 2017, 603, 15–20. [CrossRef] [PubMed]

http://doi.org/10.1007/s40291-021-00565-z
http://www.ncbi.nlm.nih.gov/pubmed/34860352
http://doi.org/10.3390/ijms19030749
http://www.ncbi.nlm.nih.gov/pubmed/29518895
http://doi.org/10.3389/fnins.2017.00292
http://www.ncbi.nlm.nih.gov/pubmed/28596720
http://doi.org/10.1038/mt.2010.149
http://doi.org/10.1038/mt.2015.114
http://doi.org/10.1038/mt.2013.50
http://doi.org/10.1093/hmg/ddr218
http://doi.org/10.1371/journal.pone.0035250
http://doi.org/10.1093/hmg/ddq136
http://doi.org/10.15252/emmm.202013392
http://doi.org/10.1089/hum.2011.044
http://doi.org/10.1038/sj.mt.6300028
http://doi.org/10.1126/scisignal.aab0611
http://doi.org/10.1038/nature12354
http://doi.org/10.7554/eLife.12727
http://doi.org/10.1126/science.7792603
http://doi.org/10.1089/hum.1998.9.13-1939
https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances
https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances
http://doi.org/10.1523/JNEUROSCI.20-04-01324.2000
http://doi.org/10.1038/s41598-019-49070-8
http://doi.org/10.1074/jbc.R800075200
http://doi.org/10.1016/j.gene.2016.12.005
http://www.ncbi.nlm.nih.gov/pubmed/27956170


Int. J. Mol. Sci. 2022, 23, 4538 14 of 14

23. Goc, A.; Chami, M.; Lodowski, D.T.; Bosshart, P.; Moiseenkova-Bell, V.; Baehr, W.; Engel, A.; Palczewski, K. Structural characteri-
zation of the rod cGMP phosphodiesterase 6. J. Mol. Biol. 2010, 401, 363–373. [CrossRef] [PubMed]

24. Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.F.; Nakano, M.; Abdelfattah, A.S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; et al. An
expanded palette of genetically encoded Ca2+ indicators. Science 2011, 333, 1888–1891. [CrossRef] [PubMed]

25. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.;
Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [CrossRef]

26. Rieser, R.; Koch, J.; Faccioli, G.; Richter, K.; Menzen, T.; Biel, M.; Winter, G.; Michalakis, S. Comparison of Different Liquid
Chromatography-Based Purification Strategies for Adeno-Associated Virus Vectors. Pharmaceutics 2021, 13, 748. [CrossRef]

http://doi.org/10.1016/j.jmb.2010.06.044
http://www.ncbi.nlm.nih.gov/pubmed/20600113
http://doi.org/10.1126/science.1208592
http://www.ncbi.nlm.nih.gov/pubmed/21903779
http://doi.org/10.1038/nmeth.2019
http://doi.org/10.3390/pharmaceutics13050748

	Introduction 
	Results 
	The Concept of the Cell-Based In Vitro Potency System 
	Validation of Basic Functions 
	Testing AAV Vectors with CNGA3 Cargo 
	Combined AAV Vector Testing with CNGA3 and PDE6A Cargo 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Generation of New Hela Cell Lines 
	Gene Expression Analysis 
	RhGC Illumination and GECI Recordings 
	Immunocytochemistry and Imaging 
	AAV Vector Production and Cell Transduction 
	Statistical Analysis 

	References

