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Abstract

Pathophysiology of systemic sclerosis (SSc, Scleroderma), an autoimmune rheumatic dis-

ease, comprises of mechanisms that drive vasculopathy, inflammation and fibrosis. Under-

standing of the disease and associated clinical heterogeneity has advanced considerably in

the past decade, highlighting the necessity of more specific targeted therapy. While many of

the recent trials in SSc failed to meet the primary end points that predominantly relied on

changes in modified Rodnan skin scores (MRSS), sub-group analysis, especially those

focused on the basal skin transcriptomic data have provided insights into patient subsets

that respond to therapies. These findings suggest that deeper understanding of the molecu-

lar changes in pathways is very important to define disease drivers in various patient sub-

groups. In view of these challenges, we performed meta-analysis on 9 public available SSc

microarray studies using a novel pathway pivoted approach combining consensus cluster-

ing and machine learning assisted feature selection. Selected pathway modules were fur-

ther explored through cluster specific topological network analysis in search of novel

therapeutic concepts. In addition, we went beyond previously described SSc class divisions

of 3 clusters (e.g. inflammation, fibro-proliferative, normal-like) and expanded into a much

finer stratification in order to profile SSc patients more accurately. Our analysis unveiled an

important 80 pathway signatures that differentiated SSc patients into 8 unique subtypes.

The 5 pathway modules derived from such signature successfully defined the 8 SSc subsets

and were validated by in-silico cellular deconvolution analysis. Myeloid cells and fibroblasts

involvement in different clusters were confirmed and linked to corresponding pathway activi-

ties. Collectively, our findings revealed more complex disease subtypes in SSc; Key gene

mediators such as IL6, FGFR1, TLR7, PLCG2, IRK2 identified by network analysis under-

scored the scientific rationale for exploring additional targets in treatment of SSc.
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Introduction

Systemic sclerosis (SSc) is a heterogeneous autoimmune disease characterized by the dysregu-

lated immune system, vasculopathy, and systemic fibrosis of the connective tissues. SSc is a

rare disease with a prevalence around 240 patients per million in USA [1]. Still, 30% of patients

died within 10 years of diagnosis. Many pathological factors were found to contribute to the

disease progression, including dysregulated innate and adaptive immune system, inflamma-

tory mediators, fibroblasts dysfunction, and other components such as over-disposition of

extracellular matrix and the microvascular endothelial cells (MVEC), as well as fibro-prolifer-

ative vasculopathy of small vessels [2, 3]. SSc disease, characterized by skin thickening on body

surface, may progressively lead to severe damage of multiple internal organs such as digestive

system, heart, lung or kidneys. Based on the extent of skin involvement, the type of autoanti-

body, and the pattern of organ involvement, SSc is commonly described as two clinical catego-

ries: diffuse SSc (dSSc) and limited SSc (lSSc) [4–6].

It is well accepted that both genetic and environmental factors contribute to the pathophysi-

ology of SSc. Genome-wide association studies (GWAS) have identified some key genetic asso-

ciations that confer susceptibility to SSc including major histocompatibility complex (MHC)

II region as being the most significant in this disease [7–9]. Toll-like-receptors (TLR), such as

TLR 2, 3, 4, 7, 8, and 9, IRF5, STAT4, HSP70, HMGB-1, and CD169 are believed to have par-

ticular relevance to SSc pathogenesis as well [10–12]. TGF-β1, a pluripotent cytokine produced

by most cell types, and IL-4, a characteristic cytokine from Th2 cells and mast cells were pri-

marily studied for their roles in stimulating collagen synthesis and chemotaxis by fibroblasts

during SSc onset [13, 14]. Meanwhile, a plethora of other cytokines, chemokines and growth

factors, such as IL-5, IL-6, IL-13, IL-18, IL-33, MCP-1, PDGF, and CTGF, have been found to

associate with SSc pathogenesis by previous studies [15, 16].

The disease of SSc is heterogeneous both clinically and genetically due to the involvement

of multiple pathogenic pathways. Thus, a better understanding of the interplay of these factors

is considered necessary in developing novel therapies for improved treatment options. Exten-

sive efforts have been made to define and comprehend the disease mechanism at molecular

level. Several microarray analysis studies or recent meta-analysis have delineated the existence

of a few major key subtypes of SSc skin samples such as immune response dominant, fibro-

proliferative and normal phenotypes [17–21]. This approach was applied in recent trials to

define the responder populations based on the basal gene expression pre-treatment. Some of

the potential novel therapeutic concepts were also proposed from these studies to target spe-

cific biological pathways [18]. However, most of the studies either analyzed the gene expres-

sion datasets with limited patient sample size,or relied on multi-source meta-analysis with

suboptimal integration strategy. Challenges of the latter became more evident when the total

number of public SSc studies is limited given its rarity, and involved a wide variety of microar-

ray platforms using diverse probe designs. Researchers adopted meta-analysis when individual

study is underpowered; meanwhile, they need to come up with a strategy to integrate data sets

of varying sources. Typical solutions include either incorporating data by gene weights (e.g. p

values) of each study, or merging data all together through strong normalization procedure.

Both methods may possess drawbacks when the scope of commonly shared genes is limited, or

strong data source effects exist. To address these potential issues, our study adopted a different

approach combining gene expression data: we surveyed public genomic data sets with a novel

application of gene-pathway space projection using GSVA algorithm [22]—A non-parametric,

unsupervised gene set enrichment method that calculates sample-wise pathway enrichment

scores based on gene expression within the sample. This procedure was followed by consensus

clustering and machine learning assisted feature optimization process to explore patients’
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heterogeneity. Our analysis identified disease subtypes on pathway space directly, resulting in a

diversified classification of SSc samples into more pertinent subgroups. Furthermore, cluster spe-

cific Protein-Protein-Interaction (PPI) network analysis and cellular deconvolution procedure

were used to reveal important gene regulators as emerging therapeutic target in SSc treatment.

Methods

SSc study search and data collection

All of the 9 SSc data sets were obtained by searching on 2 popular gene expression repositories:

GEO or ArrayExpress databases, using key words “systemic sclerosis”, “systemic scleroderma”

or “SSc”. We looked into studies published in the last 12 years and focused exclusively on micro-

array data. Next generation sequencing or other types of high throughput gene expression data

were not considered since the absolute majority of public SSc datasets were based on microar-

ray, and it is computationally more consistent to combine data sets of the same platform for

meta-analysis. During the initial search, a total 26 SSc studies were identified from the two data

repositories. They were subsequently screened for redundancy to exclude 3 studies sharing the

same set of samples with others. An additional filter was applied to remove another 12 studies

of non-skin samples. Lastly, we disqualified two studies (GSE9285 and GSE76806) as these data

sets share much less common genes with others. The final list of studies included in our current

investigation is specified in S1 Table. Many of the studies we selected were clinical trials that

involve medical intervention on patients; other studies have paired biopsy position (e.g. forearm

vs back) design wherein non-involved skin area was sampled. We generally only considered

baseline SSc patients and focused exclusively on involved (affected) skin samples on forearms to

avoid any confounding factor. The availability of clinical information such as disease stage,

severity and internal organ involvement varied a lot across studies, we hence concentrated on

the factor of major disease phenotypes (dSSc, lSSc & Controls) in our research. Overall, we had

a total of 141 SSc samples and 80 controls entered our meta-analysis, including 126 dSSc and 15

lSSc; the detailed sample distributions are listed in S2 and S3 Tables.

Pathway compendium formation and filtering

From each GEO study, the normalized gene matrix data (uploaded by their original authors)

was carefully examined using PCA and boxplot profiling. We then applied GSVA algorithm

[22] (R package GSVA v1.34.0) to transform gene expressions to pathways scores by querying

against MetabaseTM [23, 24], a commercial database from Clarivate Analytics. The pathway

enrichment matrices of each individual study were then merged into one compendium (937

pathways × 221 samples). PCA based QC procedure was performed on this joint pathway

matrix to check batch effects and detect outliers. Two filter steps were subsequently applied: 1)

we selected several key words (“JAK-STAT”, “PI3K”, “TGF-beta”, “WNT”, “extracellular

matrix”, “VEGF”, “Hedgehog” and “Notch”) from previously reported SSc associated pathways

[18, 25–27] to search against Median Absolute Deviation (MAD) score sorted (decreasing)

MetabaseTM entries using an incremental size of 50. The criterion was to include at least one

pathway that contained a given key word when we searched from top to bottom. 2) We only

kept the pathway that has enrichment scores over 3 in at least 5 samples out of 141 cases. In

the end, a total of 693 pathways passed the filter and entered subsequent analysis.

Consensus clustering and clusters number determination

Consensus clustering procedure was performed using R package ConsensusClusterPlus (V

1.50.0) based on 90 percent of the samples, Euclidean distance and ward.D metrics. Optimal
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number of clusters were determined by visual inspection of consensus matrix pattern, CDF

plot and delta plot from default function output as well as the plot of an external metrics: sil-

houette [28] (R package Cluster V2.1.0). Per the focus of current study, we primarily concen-

trated on cluster numbers greater than 4 in the process. Collectively, we considered all metrics

supporting N = 8 as the final optimal number of clusters in our SSc stratification.

Choosing machine learning classifier

In order to find the best classifier for pathway feature selections, we surveyed a group of multi-

class machine learning classifiers from R package caret (v 6.0–84) [29]. These methods were:

Single C5.0 Tree (C5.0Tree), Gradient Boosting Machines (gbm), K-nearest neighbors (kknn),

Naïve Bayes (nb), Partial least Squares (pls), Random Forest (ranger), Shrinkage Discriminant

Analysis (sda), Stabilized Linear Discriminant Analysis (slda), Support Vector Machines

Radial kernel (svmRadial) and Bagged CART (treebag). We first attempted reconstructing the

8 SSc clusters with each algorithm using all 693 pathways and a 10 fold cross-validation proce-

dure. Subsequently, top 50 and top 100 pathways were selected using recursive feature elimina-

tion method (function rfe from caret) and repeated the classification step. For each classifier, 5

random levels of main parameters were tried (tuneLength = 5 in R Caret function) in training

process. The highest accuracy of each run was recorded and compared accordingly.

Random forest based feature selection and classification

Fast implementation of random forest method (ranger) [30] was chosen for pathway feature

selections. We first ran ranger using all 693 pathways with repeated (n = 5) 10 fold cross-valida-

tion and reached an overall accuracy of 83.6% (tunelength = 5). The pathway features were

ranked by gini index at the same time. A looping process was then setup to survey from top 10

to top 150 pathways (incremental by 10) using the same ranger classification and a tune-

length = 5. When top 80 pathways were used the overall classification accuracy (82.8%) was

roughly at the same level as that achieved by all pathways. Heatmap was generated (R pheatmap

V 1.0.12) to display the 80 pathway signature across 141 samples plus control and Euclidean dis-

tance based clustering was also performed at pathway level. By visual inspection, a cutoff result-

ing in 5 pathway modules (Blue, Red, Green, Yellow and Black) was defined and used for

subsequent cluster functions interpretations (Table 1). In each cluster & pathway-module com-

bination, the average of pathway enrichment scores was calculated (shown in S4 Table) and the

value range was divided into 3 levels: High (> = 0.15), Moderate (-0.15~0.15), and Low (=

<0.15) to reflect the pathway enrichment levels in each cluster and pathway module.

Cluster specific network analysis

We extracted genes corresponding to the 5 pathway modules respectively (Table 1) and performed

two nodes prioritization algorithms (random walk and neighborhood scoring [31, 32]) on each of

the pathway set using those genes as start nodes. The algorithms were implemented through

CBDD package [33] and queried against MetabaseTM network. Random Walk restart probability

was set at 0.75 and neighborhoodScoring alpha was set as 0.5. The final targets from both programs

were ranked by their hub scores (separately) for each pathway set. In case of target list having more

than 500 genes, only top 500 genes were used to cross-reference with MRSS in the following step.

MRSS and gene correlation

Modified Rodnan skin score (MRSS) was extracted from one study from GEO. We then calcu-

lated Pearson correlation coefficients for each gene with MRSS based on quantile normalized
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gene expressions. MRSS associated genes were selected based on p value < = 0.05 and correla-

tion coefficient > 0.

Cellular deconvolution in pathway modules

We selected common genes across all 9 SSc studies and combined individual gene expression

matrices into a gene level compendium matrix (12306 genes by 141 samples). Combat method

[34] (R package sva v3.20.0) and quantile normalization (R package preprocessCore v1.34.0)

were applied to remove batch effect and baseline differences across samples. We then used

GSVA algorithm to calculate cell type enrichment using gene markers curated by a previous

study [35] for fibroblasts, endothelial cells and macrophage, and an internal 9 genes list

(CD14, MS4A6A, IL1b, CSF1R, C1QA, C1QB, MS4A7, HCK, C5AR1) for myeloid calcula-

tions. Pairwise Welch’s T test was also performed to compare the cell type enrichment level

between each pair of the clusters.

Results

We surveyed PubMed and related GEO database of the past 15 years (2004 ~ 2019), selecting 9

relevant skin SSc studies through a multi-step screening and filtering process (Fig 1) for the

final meta-analysis. With a novel application of gene-pathway space projection, we sought to

unify different SSc studies into a single pathway-based compendium before further dissecting

their molecular signatures. Consensus clustering procedure was then applied to classify SSc

samples into more discrete subgroups than previously documented 3 or 4 clusters [18, 20, 21].

Overall, our approach leveraged the SSc pathway activation pattern and extended into underly-

ing gene regulator discovery through network analysis.

The first major challenge in gene expression meta-analysis is to integrate information from

each individual study of varying baselines and batch effects. We managed to address the issue

by transforming individual gene expression into common pathway space using GSVA

Table 1. Pathway module function and cluster enrichment pattern.

Pathway Modules a Black Yellow Blue Red Green

Pathway Name Metabolism-1 Metabolism-2 Immune-Fibrosis Immune Response-2 Immune Response-1

# of pathways 14 7 23 18 18

# of genes 151 249 650 475 567

Clusters Enrichment Level b

Cluster 1 High High Low Moderate Low

Cluster 2 Low Moderate Moderate High High

Cluster 3 Low Moderate High Low Moderate

Cluster 4 Low Low High High High

Cluster 5 High High High High High

Cluster 6 High High Low Low Low

Cluster 7 Low High Low Moderate Low

Cluster 8 Moderate Low High High High

Control Moderate Moderate Low Low Low

a The pathway modules are defined by the functions of majority of the pathways in the module as well as the module specific cellular components (See Results: Cell type

signature profiling part in SSc clusters).
b A three level system (High, Moderate, Low) was adopted to denote the pathway enrichment level of the 8 SSc clusters and control cohort based on average enrichment

scores (See Methods for details).

https://doi.org/10.1371/journal.pone.0242863.t001
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algorithm [22]. A consensus clustering procedure was then performed on the pathway enrich-

ment compendium to identify 8 detailed SSc subtypes. To further refine the pathway features,

we employed a random forest classifier to elect an 80 pathways set that achieved the same dis-

criminant power using all pathways. In this manner, we were able to define the 8 SSc subsets

based on the pathway signature, thereby enabling cluster specific gene hub explorations. Sub-

sequent steps involved network analysis of each SSc subgroup and identification of latent gene

regulators. The entire analytic pipeline, fully illustrated in Fig 2, featured a pathway-centered

view of SSc patients’ heterogeneity and an objective data driven approach delineating the geno-

mic differences that defined SSc pathogenesis.

Fig 1. Flow diagram of studies collection and screening process. An initial selection of 26 SSc studies from both GEO and ArrayExpress data

repositories were screened for sample redundancy (to exclude studies sharing the same set of samples), biopsy sites (studies of non-skin samples

excluded) and commonly shared genes (2 data sets removed) to arrive at the final 9 SSc studies for the final meta-analysis.

https://doi.org/10.1371/journal.pone.0242863.g001
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Unifying SSc studies by gene-to-pathway projection

Gene expression from individual study was transformed into pathway enrichment scores, and

subsequently merged into one joint pathway compendium. We performed PCA on the com-

pendium and found no potential batch effect or any outlier sample (S1 Fig). Similarly, we

failed to observe notable difference among diffuse, limited SSc samples and Controls, suggest-

ing that the clinically groups may only differ on a subset of variable pathways. In addition,

some of the disease samples were known to be highly similar to controls as documented by

previous studies [19, 21].

Moderate filter steps based on Mean Absolute Deviation (MAD) and enrichment scores

were applied to remove uninformative pathways. Relatively lenient cutoffs (See Methods for

details) were used in this process so that we did not exclude any interesting biological feature.

Fig 2. Schematic view of data processing and analysis. (A) 9 SSc studies were used in the current meta-analysis. (B) Preprocessed gene expression

matrix of each study was projected into pathway space using GSVA algorithm (C) 9 SSc studies were projected into one pathway enrichment table (D)

Multiple filters were applied to remove pathways of constant enrichment scores. (E) Consensus clustering procedure was applied and (F) optimal

number of subsets were determined. (G) Machine learning procedure was used to determine best pathway modules at maximum accuracy. (H) Genes

were extracted from selected top pathways modules that differentiate SSc subtypes and (I) subsequent network analysis was applied to select important

gene regulators behind each subset.

https://doi.org/10.1371/journal.pone.0242863.g002
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As a result, a sum of 693 pathways passed the filters and entered downstream clustering

analysis.

Detailed stratification of systemic sclerosis patients based on pathway

enrichment

We performed consensus clustering [36] on 221 SSc samples across 11 studies based on previ-

ously filtered 693 pathways. To determine optimal number of SSc subsets, several consensus

clustering metrics were used, including consensus matrices heatmaps, CDF function plot and

Delta area plot (Fig 3A, 3C and 3D). Additionally, an external metric of silhouette scores was

also generated (Fig 3B) to demonstrate the optimal cutoff of SSc subtype numbers. Previous

SSc studies mostly focused on 3 to 4 major SSc divisions [18, 20, 21, 37], featuring one or two

sets as inflammation signature, a fibro-proliferative type and a normal-like group. Our view of

SSc heterogeneity, nonetheless, differed from such granular classification and pushed into a

finer division of more than 4 classes. We therefore focused on pattern fuzziness (e.g. consensus

matrices heatmap), AUC (CDF plot) or line elbow point (e.g. silhouette plot) where number of

clusters is greater than 4 (Fig 3A–3D). Eventually, we selected the optimal cluster number at

N = 8 to strike a balance between minimal cluster size and a good stratification setting of SSc

patients. Details on the cutoff determination methods of the 4 plots are specified in Methods

section. The 8 subtype classification of 141 SSc patients defined a spectrum of disease clusters

ranging from the biggest cohort of 28 (19.8%) samples to the smallest cohort of 8 (5.67%)

patients (S2 Table). It was also noted that none of the clusters is significantly enriched with an

individual SSc study; the overall association between cluster membership and GEO study

sources is non-significant (Chi-square test: p = 0.15). In addition, neither dSSc nor lSSc

patients was found to enrich a certain subtype (Chi-square test: p = 0.12), although some level

of cluster associated lSSc depletion was observed in cluster 2 and cluster 4 (S3 Table). Overall,

the 8 SSc clusters were established independent of study effects or clinical phenotypes (dSSc vs

lSSc).

Delineation of a predictive pathway subset for SSc patients’ classification

A total of 693 pathways, many of which redundant, were used to establish the 8 cluster SSc

classification. The sheer number of pathways involved in consensus clustering actually ham-

pered our effort in deriving meaningful biological interpretations, not to mention questing rel-

evant gene targets. In addition, we arrived at the 8 SSC subsets through a consensus clustering

approach based on Euclidean distance metrics and the robustness of their cluster memberships

may need further validation by a different method. To address these issues, we adopted a

machine learning procedure aiming to reconstruct the cluster membership and reduce the

number of pathways through an accompanying feature selection process. The goal of such pro-

cess was to find a highly predictive pathway subset that can achieve the same level of classifica-

tion accuracy as that of all 693 pathways. We evaluated a diverse set of popular multiclass

machine learning algorithms based on 10-fold cross-validation of the training set (See Meth-

ods). A couple of algorithms reached more than 80% accuracy using all 693 pathways, how-

ever, only gbm, ranger and svmRadial could roughly uphold accuracy level when we rerun the

cross-validation using top 50 or 100 features (Fig 4A). Eventually, random forest (ranger) clas-

sifier was adopted since it on average achieved the highest level of accuracy in all 3 pathway

modules (80.1%); In addition, it relied on a model based feature selection metric (Gini index)

instead of random heuristic searching. We then adopted a step-up loop process using repeated

cross-validation to determine an optimal number of top pathways that can reconstruct 8 SSc

groups with comparative accuracy. As a result, a signature of top 80 pathways was elected
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whereby each SSc cluster can be interpreted biologically through its pathway enrichment pat-

tern (Fig 4B). We also compared the profiles of all SSc subtypes with that of control; highlight-

ing 5 pathway modules that can literally differentiate the 8 clusters by their expression level

combinations (Fig 4B). It was readily evident that cluster 1 and 6 resembled control cohort,

showing elevated level of cell metabolism pathways (Pathway-module Black). Meanwhile a

minor difference was noted between the two subtypes that cluster 1 has slightly elevated level

Fig 3. The determination of optimal number (K) of detailed SSC subsets. (A) Heatmaps of consensus matrices for K (number of clusters)

ranging from 2 to 9 showing clear-cut consensus clustering pattern at K = 8. (B) Silhouette plot showing average silhouette score peaking at K = 8

when considering more than 3 clusters. (C) Delta area plot showing relative change in the area under the CDF curve with dotted line as reference. It

is evident that from K = 8 the change of AUC of CDF becomes very minimal.(D) Consensus cumulative distribution function plot showing at

cluster K = 8, the area under CDF curve almost maximized with little improvement when K increased to 9 or 10.

https://doi.org/10.1371/journal.pone.0242863.g003
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Fig 4. The choice of best supervised machine learning algorithms to classify SSc pathway set into 8 clusters / subsets. (A) Different supervised

classification methods were evaluated using all features, top 50 features and top 100 features by recursive feature elimination process. (B) The heatmap of

8 SSc subsets was generated based on top 80 pathways selected by random forest method according to Gini index. The 8 subsets are later defined

respectively by the pathways they are enriched in. Subsequently 5 pathway modules were defined by tree-cut with visual assistance so that their average

levels of expression can determine the distinct features of the 8 clusters.

https://doi.org/10.1371/journal.pone.0242863.g004
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of immune response than cluster 6, suggesting a possible transitional role among cluster 1

samples. Such variation was also noted between cluster 2 and 4 wherein the average enrich-

ment of Blue moderately differed between the 2 groups while both of them demonstrated a

strong inflammation signature. Cluster 3, showing elevated level in Blue module only, formed

a distinct cohort. Clusters 5 and 8 are again diverging solely on Pathway module Yellow

although they are not so dissimilar to each other; both subsets demonstrated strong inflamma-

tory, pro-fibrotic and cell-metabolism signatures. Lastly, cluster 7 appeared to be a separate

“normal-like” cohort, enriching merely in a couple of metabolism pathways of Pathway mod-

ule Yellow. Collectively, the 8 SSc cluster subtyping system was a more pertinent and finer

stratification compared to the paradigmatic 3-type classifications (inflammatory, normal-like

and fibroproliferative) by previous literatures [20, 21, 37, 38]. All pathway modules and their

corresponding pathways are listed in S5 Table.

Cluster specific network analysis unveils underlying gene regulators

After identifying 8 SSc subtypes using the pathway signature, we further explored the under-

lying gene interactions of each cluster through network analysis. The aim of such inquiry

was to uncover latent gene hubs or upstream regulators that lay behind the pathway pattern;

these genes, if established, could serve as potential drug target candidates for related SSc

patient groups. To achieve this goal, we extracted all genes from each of the 5 pathway mod-

ules identified previously (Fig 4B) and used them as start nodes to query against the Metaba-

seTM biological network [24]. Two algorithms were used in the analysis: 1) random walk [32]

and 2) neighborhood scoring [31]. Both methods traverse the undirected reference network

from priori nodes, searching for hub genes that are significantly connected with start nodes

while controlling for vertex promiscuity. Regulator or gene hubs identified in this process

may or may not be part of start nodes, thereby expanded our scope into latent gene

regulators.

Still, each algorithm led to hundreds of potential target genes ranked by their hub scores,

we further reduced the target lists by overlapping with external clinical features such as modi-

fied Rodnan Skin Score (MRSS) which is an important clinical marker of SSc skin phenotype.

We extracted MRSS from one study and correlated with genomic expressions. Genes signifi-

cantly associated with MRSS were selected, and overlapped with the potential targets identified

in pathway module based network analysis. This procedure generated a concentrated target

list of 164 genes (S6 Table) based on 5 pathway modules, of which 92 unique genes emerge if

we combine module sources. We picked a list of 9 genes (CCL2, COL1A1, FGFR1, FN1, IGF1,

IL6, IRAK2, MMP1 and TLR7) based on their MRSS associations and biological assessment,

showing their profiles in Fig 5.

We further focused on 3 genes of interest (FGFR1, TLR7, IRAK2) from the 9 gene list and

investigated their subnetwork connections (Fig 6). Identified as key hub in its subnetwork,

pursuing those three targets with small molecule compound or monoclonal antibody will pos-

sibly destabilize the topology of subnetwork, and normalize the aberrant biological pathways.

A recent approval of Nintedanib (OFEV1) targeting FGFR for SSC-associated interstitial lung

disease (ILD) substantiates our effort for drug targets based on PPI network analysis. Another

possible target is IRAK2, a key serine/threonine kinase involved with IL1R and its downstream

upregulation of NF-kB and its pathway. The function of IRAK2 in myofibroblast had been

illustrated in a murine IRAK2 knockout model in which fibroblasts showed reduced reaction

to multiple TLR ligands. In summary, our analyses has not only demonstrated some important

biological pathways relevant to the disease, but also identified some important key hub genes/

proteins within the biological pathway networks.
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Cell type signature profiling in SSc clusters

When examining genes identified in network analysis, we recognized that many of them were

highly related to myeloid cell and fibroblast signatures. A cell type enrichment analysis was

then performed to profile fibroblasts and myeloid components in each cluster (Fig 7A & 7B).

Endothelial cells and macrophages were also included in the analysis as a comparison. A fol-

low-up pairwise t-test was carried out to compare among the clusters and corresponding

results (P values) were recorded in S7 Table. The overall cellular enrichment pattern appeared

highly consistent with the cluster pathway features (Figs 4B & 7B). Specifically, cluster 1

showed low level of fibroblasts and endothelial signatures, corresponding to the under-

enriched Pathway module Blue, on the other hand, it had moderate enrichment in myeloid

and macrophage that corresponds to Pathway module Red. Cluster 2 exhibited elevated level

of myeloid + macrophages (Pathway module Red & Green) and moderate enrichment in fibro-

blasts + endothelial (Pathway module Blue). Cluster 3 only enriched in fibroblasts + endothelial

which was reflected by Pathway module Blue in Fig 4B. Cluster 4, with strong expression in all

4 cell types, had elevated enrichment in Pathway modules Blue, Red and Green. In the similar

Fig 5. The Pearson correlation scatter plot of selected gene regulators showing significantly positive association between normalized gene

expression and MRSS. The 9 genes (CCL2, COL1A1, FGFR1, FN1, IGF1, IL6, IRAK2, MMP1, TLR7) shown in the figure were selected from random

walk or neighborhood scoring algorithm, and are positively correlated with MRSS based on study GSE58095. These 9 genes are mostly expressed on

myeloid / stromal cells and many of them are deeply involved in cell skeleton remodeling, innate immune response and cell-cell adhesion processes.

https://doi.org/10.1371/journal.pone.0242863.g005
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manner, cluster 5, 6, 7 and 8 respectively displayed enrichment pattern of the 4 cell types that

linked to 3 Pathway modules. In summary, Red and Green pathway groups are strongly associ-

ated with myeloid signature while Blue pathways correspond steadily with fibroblasts activity.

Fig 6. Hub-gene centered subnetwork based on random walk and neighborhood scoring algorithms. (A) TLR7 centered subnetwork identified by

random walk algorithm and MRSS correlations. (B) IRAK2 centered subnetwork identified by neighborhood scoring algorithm and MRSS

correlations. (C) FGFR1 centered subnetwork identified by random walk algorithm and MRSS correlations. In all 3 subnetworks, hub gene regulators

are highlighted in blue and the edge of inhibiting relationships between two genes are colored in light blue as well.

https://doi.org/10.1371/journal.pone.0242863.g006
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The establishment of such cells-to-pathway affiliation also helped us defining the main biologi-

cal functions of each pathway module (Table 1). In contrast to the previous studies which

demonstrated differential expression levels of multiple immune cell lineage gene signatures,

our cellular deconvolution demonstrated the prevalent myeloid cell signature among multiple

SSc clusters, especially the co-variation between myeloid and macrophage gene signatures.

The dysfunction of macrophage can lead to aberrant tissue repair and uncontrolled tissue

modelling by communicating with epithelial cells, endothelial cells and fibroblasts by produc-

ing pro-fibrotic mediators and enhance the survival and activation of myofibroblasts. Hence,

our analysis substantially underscored the contribution of myeloid cells to SSc pathogenesis.

Discussion and conclusion

The current meta-analysis implemented novel computational approaches with the focus on

deciphering new biological insights of SSc pathogenesis to compliment known mechanisms,

and comprehensively characterized SSc disease subsets. Our analyses explored pathway driven

meta-analysis by reducing the number of biological pathways from a comprehensive pathway

database: Metabase1 using machine learning assisted feature selection. We picked Metabase1

over other pathways sources based on a balanced view between accurate coverage of immune

related biological processes and avoidance of potentially redundant entries. The selected 80

pathways subjected to consensus clustering could reconstruct 8 SSc subtypes with comparative

accuracy to that of all 693 pathways. Further analyses exploring topological network of 8 sub-

types unveiled some key gene regulators—potentially as novel targets. In-silico cellular decon-

volution was also conducted for each SSc subtype revealing the dominant immune and

fibroblast components with the close association to each disease subtype. Our machine

Fig 7. Cell type enrichment of 8 SSc clusters and comparison to control. (A) Violin plot showing 4 cell types (Endothelial, Fibroblasts, Macrophages and

general Myeloid) enrichment among 8 SSc clusters as well as control cohort. Clusters significantly different (p value< = 0.05) from control group were

marked with asterisk. (B) Heatmap showing relative enrichment score in the form of -log p value of t-test comparing 4 cell types against control.

https://doi.org/10.1371/journal.pone.0242863.g007
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learning assisted clustering method allowed us identifying more pertinent SSc subtypes com-

pared to previous studies, shedding light upon the development of immune-precision SSc

treatment.

Previous SSc meta-analysis integrate multiple datasets with varying source effects by merg-

ing data together after normalization and baseline correction procedure [18]. We adopted an

alternative approach by transforming individual gene expression into common pathway space

using GSVA algorithm [22]; this step was followed by consensus clustering on the random for-

est classifier that elected an 80 pathway set. Our analysis identified 8 detailed SSc subtypes,

revealing the heterogeneity of SSc and an objective data driven approach delineating the geno-

mic differences that defined SSc pathogenesis. We were able to highlight 5 pathway modules

that can differentiate the 8 clusters by their expression level combinations (Fig 4B). For

instance, cluster 1 and 6 resembled the control cohort, showing active cellular metabolism

pathways (Pathway module Black) similar to the normal control group. However, we noticed a

subtle difference between the two subtypes that cluster 1 was actually mixed with elevated lev-

els of immune response genes. Cluster 2 and 4 classified as Pathway module Blue, demon-

strated moderate difference in terms of the extent of the enriched inflammation signature.

Cluster 3, showing elevated levels in the Blue module only, formed a distinct cohort. Consis-

tent with literature, Cluster 5 and 8, characterized as Pathway module Yellow exhibited a mix-

ture of strong inflammatory, pro-fibrotic and cell-metabolism signatures. Lastly, cluster 7

appeared to be a separate “normal-like” cohort. Collectively, the 8 SSc cluster subtyping system

was a more pertinent and finer stratification compared to the paradigmatic type classifications

(inflammatory, normal-like and fibroproliferative) by previous literatures [21, 37, 38].

The 8 SSc subtypes we assessed in the study can be grouped to inflammatory, fibro-inflam-

matory, metabolic-fibrosis, metabolic, and normal-like phenotypes. For the inflammatory

dominant clusters, such as cluster 2 and cluster 4, it is evident that IL17, IL22 pathways were

highlighted, suggesting the hyperactive Th17 cells in such groups of patients. Current knowl-

edge indicates complex roles of Th17 in fibrogenesis: One study demonstrated that IL-17

derived from Th17 cells promoted collagen production and fibroblast growth [39]. Another

recent analysis showed that type 3 inflammation characterized by IL17 and IL22 by adaptive

immune cells contribute to liver fibrosis [40]. Herein, cluster 4 is enriched for IL17/IL22 adap-

tive immune pathways together with IL-1 signaling pathway suggesting synergistic effects on

the expression of pro-fibrotic and inflammatory mediators in dermal fibroblasts. Clusters 4, 5,

and 8 of SSc patients in our meta-analysis have been attributed to the enrichment of biological

pathways associated with the myeloid cells and fibrosis, such MCP1 and CD40 pathways. In

the context of SSc, monocyte, macrophage, DCs including pDC either contribute indirectly to

fibrogenesis in SSc by affecting inflammatory responses, or directly contribute to over-produc-

tion of profibrotic factors and ECM proteins, such as TGFβ and collagen I [41]. In contrast to

M1 macrophage, M2 macrophages are heavily involved in the process of tissue fibrosis. Abun-

dant M2 macrophages infiltrated the lesional skin and lung tissues of SSc patients. pDCs is the

major resource type 1 interferons production. Highly enriched IFN pathway in clusters 4, 5

and 8 highlights the importance of pDC contributing to fibrogenesis by over-production of

type I IFNs. Metabolic reprogramming plays an instrumental role in regulating immune cell

function and inflammatory responses, which are notable in the custers1 and 6 from our analy-

ses. For the instance of SSc, glycolysis was significantly increased after fibroblast activation

[42]. Actually, the significantly enriched oxidative phosphorylation metabolic pathways exert

on macrophage polarizations to profibrogenic M2-like macrophage differentiation. Thus,

although cluster 1 and cluster 5 SSc subtypes resemble to normal control group from some

aspects, highly dysregulated metabolic profile of such subgroups of SSc patients suggests a pro-

found metabolic reprograming contributing the pathological mechanisms of SSc. We also
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observed a group of SSc patients more resemble a normal-like pathway features. We speculate

that cluster 6 patients with a normal-like transcript profile also tend to have milder disease

with lower MRSS and lower skin score at the biopsy site as proposed by Assassi et al. [20]. It

should be interesting to determine if there is a correlation of the decreasing composite fibroin-

flammatory score in this group of patients. Hence, the current meta-analysis will facilitate

development of feasible biomarkers for intrinsic SSc subset classification with the goal to maxi-

mize the treatment benefit of certain therapies, and develop precision treatments of SSc.

Another distinct computational approach we adopted was to analyze the topology of PPI

networks derived from each cluster using two algorithms: 1) random walk [32] and 2) neigh-

borhood scoring [31]. By combining MRSS scores representative of SSc disease severity, our

network analyses discovered hub genes that are significantly connected with start nodes while

controlling for vertex promiscuity. A concentrated target list of 164 genes was generated with a

few key genes such as CCL2, COL1A1, FGFR1, FN1, IGF1, IL6, IRAK2, MMP1 and TLR7 that

were closely correlated with MRSS scores. It is noteworthy to highlight that these genes belong

to a few important biological processes, such as cytokine signaling in the innate immune sys-

tem, PI3K-Akt signaling pathway, extracellular matrix organization and TLR cascade. The

results significantly strengthened the contribution of the innate immune system, in particular,

myeloid cells, and fibroblasts potentially governing the pathological events in SSc. Of note,

these hub genes demonstrated to a varying extent mRNA expression and may be identified in

only one or at most two clusters of SSc patients; this was consistent with the contribution of

such key genes to the SSc disease phenotypes we observed.

To expand the biological discoveries from our meta-analysis, in silico cellular deconvolution

was applied to determine to what extent each immune or stromal cell subset is associated with

the identified 8 disease subtypes. Our analyses showed that the SSc metabolic phenotype nor-

mally correlated with low enrichment of cellular components–except for cluster 8, which are

enriched by all cellular components. The general moderate-to-low patterns of cell type enrich-

ment shown in Fig 7 suggest that the SSc subtypes with dominant metabolic pathways are

associated with a “normal” like phenotype. In contrast, clusters 2, 3, 4, and 5, which are anno-

tated as immune response dominant, exhibited substantially elevated levels of myeloid lineage

enrichment. In particular, Cluster 4, with strong expression in all 4 cell types, has elevated

enrichment in the Pathway module of pro-fibrotic and/or immune responses. In general, this

analysis underscores the important involvement of myeloid cells, particularly macrophages,

linked to fibroblast pathway genes. The establishment of such cells-to-pathway affiliation

helped to define the main biological functions of each pathway module.

Our meta-analysis on SSc public studies, on the other hand, is not without limitations:

Firstly, it has always been challenging to achieve enough sample size in meta-analysis of this

type of rare human disease. In addition, there is a severe unbalanced distribution of lSSc and

dSSc patient numbers in our analysis, which limited the power to delineate the molecular dif-

ferences between the two categories. Thirdly, all the SSc public datasets available so far are

based on microarray platforms that have limited resolution due to probe designs. Last and

most importantly, the lack of important clinical information–e.g. disease duration or treat-

ment history, in majority of the public datasets may hamper our effort in accurately defining

the disease phenotypes. For example, some subtype of patients such as the normal-like group,

may simply represent the early stage of the disease if we have disease duration data available.

In view of these concerns, a more comprehensive future longitudinal study of SSc patients is

needed to unveil critical biological mechanisms behind the etiology, disease progression, and

prognostics of this dangerous autoimmune disorder.

In summary, our findings based on the current pathway driven meta-analysis indicate that

there exists more complex disease structure in SSc than previously described. These results
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also confirmed the important role of myeloid cells in SSc pathogenesis. Nevertheless, the extent

of contribution to disease phenotype through myeloid cell involvement still warrants further

examination. Meanwhile, important hub genes identified through our module specific net-

work analysis overlapped strongly with current clinical evidences; some of the genes are poten-

tial drug targets and may serve as the foundation for next generation of SSc treatment.

Supporting information

S1 Checklist. PRISMA 2009 checklist.

(DOC)

S1 Fig. 2- dimensional PCA plot showing pathway enrichment scores of all samples from 9

SSc studies. Samples are colored by study sources and clinical phenotypes are denoted in dif-

ferent shapes.

(TIF)

S1 Table. Studies included in the current meta-analysis and their disease phenotype break-

down. Some samples are repeated at different time series points, before-after treatments or

biopsy positions. Detailed inclusion or exclusion standards are specified in Method section. 1

Whitefield Lab from department of Genetics, Dartmouth Medical School, Hanover, NH, USA;
2 Assassi Group from University of Texas Health Science Center, Houston, TX, USA; 3 Bioin-

formatics Core facility, University of Manchester, Manchester, UK.

(DOCX)

S2 Table. The SSc samples distribution (by counts) among 8 SSc clusters: Study names

denoted by GEO numbers are in row header and Cluster number denoted by C1~C8 are in

column header. �Percentages in the table represent total percentages.

(DOCX)

S3 Table. Diffuse and limited SSc samples distribution (by counts) among 8 SSc clusters:

Diffuse and limited SSc denoted by dSSc and lSSc are in row header and Cluster number

denoted by C1~C8 are in column header. �Percentages in the table represent total percent-

ages.

(DOCX)

S4 Table. Pathway module enrichment levels among the 8 clusters and the control group.

The average of pathway enrichment scores for each cluster & pathway-module combination

from Table 1 was calculated and shown.

(DOCX)

S5 Table. Five pathway modules and their corresponding pathways in detail. Pathways

modules identified from Fig 4B are shown in the left column and their corresponding path-

ways are listed in the right column.

(DOCX)

S6 Table. List of 163 genes from network analysis overlapped with MRSS positively corre-

lated genes. Pearson correlation coefficient and related p value are used to denote association

between MRSS and gene expression, the algorithm sources (random walk or neighborhood

scoring) and pathway module (1~5) are shown in column 1 and 2.

(XLSX)

S7 Table. Cell type enrichment pairwise comparison among 8 SSC clusters and the control

group. One-sided Welch T test was performed to compare cell type enrichment level among

the 8 SSC clusters and the control group. P value matrix (corrected by Bonferroni procedure)

PLOS ONE Pathway driven meta-analysis of systemic sclerosis data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242863 November 30, 2020 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242863.s009
https://doi.org/10.1371/journal.pone.0242863


was generated. The comparison was based on the alternative hypothesis that cluster in row

label> cluster in column label

(XLSX)

Acknowledgments

We thank Tammara Wood from Department of Genetics, Whitfield Lab, Dartmouth Medical

School, Hanover, NH, USA for providing explanation and instructions of their published data.

Author Contributions

Conceptualization: Xiao Xu, Sudha Visvanathan.

Data curation: Xiao Xu.

Formal analysis: Xiao Xu.

Investigation: Sudha Visvanathan.

Methodology: Xiao Xu, Li Li.

Supervision: Li Li.

Writing – original draft: Xiao Xu.

Writing – review & editing: Xiao Xu, Meera Ramanujam, Sudha Visvanathan, Shervin

Assassi, Zheng Liu, Li Li.

References
1. Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic

sclerosis-associated interstitial lung disease. Clin Epidemiol. 2019; 11:257–73. Epub 2019/05/23.

https://doi.org/10.2147/CLEP.S191418 PMID: 31114386; PubMed Central PMCID: PMC6497473.

2. L IS, C DP. T-cells and B-cells in systemic sclerosis. Curr Rheumatol Rev. 2010; 6(4):276–82. Epub

2010/01/01. https://doi.org/10.2174/157339710793205657 PMID: 25693042.

3. O’Reilly S. Innate immunity in systemic sclerosis pathogenesis. Clin Sci (Lond). 2014; 126(5):329–37.

Epub 2013/11/14. https://doi.org/10.1042/CS20130367 PMID: 24219159.

4. Wollheim FA. Classification of systemic sclerosis. Visions and reality. Rheumatology (Oxford). 2005; 44

(10):1212–6. Epub 2005/05/05. https://doi.org/10.1093/rheumatology/keh671 PMID: 15870151.

5. Jimenez SA. Role of endothelial to mesenchymal transition in the pathogenesis of the vascular alter-

ations in systemic sclerosis. ISRN Rheumatol. 2013; 2013:835948. Epub 2013/11/01. https://doi.org/

10.1155/2013/835948 PMID: 24175099; PubMed Central PMCID: PMC3794556.

6. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification cri-

teria for systemic sclerosis: an American college of rheumatology/European league against rheumatism

collaborative initiative. Ann Rheum Dis. 2013; 72(11):1747–55. Epub 2013/10/05. https://doi.org/10.

1136/annrheumdis-2013-204424 PMID: 24092682.

7. Luo Y, Wang Y, Wang Q, Xiao R, Lu Q. Systemic sclerosis: genetics and epigenetics. J Autoimmun.

2013; 41:161–7. Epub 2013/02/19. https://doi.org/10.1016/j.jaut.2013.01.012 PMID: 23415078.

8. Favalli E, Ingegnoli F, Zeni S, Fare M, Fantini F. [HLA typing in systemic sclerosis]. Reumatismo. 2001;

53(3):210–4. Epub 2002/08/09. https://doi.org/10.4081/reumatismo.2001.210 PMID: 12167973.

9. Agarwal SK, Reveille JD. The genetics of scleroderma (systemic sclerosis). Curr Opin Rheumatol.

2010; 22(2):133–8. Epub 2010/01/22. https://doi.org/10.1097/BOR.0b013e3283367c17 PMID:

20090527.

10. Ciechomska M, Cant R, Finnigan J, van Laar JM, O’Reilly S. Role of toll-like receptors in systemic scle-

rosis. Expert Rev Mol Med. 2013; 15:e9. Epub 2013/08/30. https://doi.org/10.1017/erm.2013.10 PMID:

23985302.

11. Jin J, Chou C, Lima M, Zhou D, Zhou X. Systemic Sclerosis is a Complex Disease Associated Mainly

with Immune Regulatory and Inflammatory Genes. Open Rheumatol J. 2014; 8:29–42. Epub 2014/10/

PLOS ONE Pathway driven meta-analysis of systemic sclerosis data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242863 November 30, 2020 18 / 20

https://doi.org/10.2147/CLEP.S191418
http://www.ncbi.nlm.nih.gov/pubmed/31114386
https://doi.org/10.2174/157339710793205657
http://www.ncbi.nlm.nih.gov/pubmed/25693042
https://doi.org/10.1042/CS20130367
http://www.ncbi.nlm.nih.gov/pubmed/24219159
https://doi.org/10.1093/rheumatology/keh671
http://www.ncbi.nlm.nih.gov/pubmed/15870151
https://doi.org/10.1155/2013/835948
https://doi.org/10.1155/2013/835948
http://www.ncbi.nlm.nih.gov/pubmed/24175099
https://doi.org/10.1136/annrheumdis-2013-204424
https://doi.org/10.1136/annrheumdis-2013-204424
http://www.ncbi.nlm.nih.gov/pubmed/24092682
https://doi.org/10.1016/j.jaut.2013.01.012
http://www.ncbi.nlm.nih.gov/pubmed/23415078
https://doi.org/10.4081/reumatismo.2001.210
http://www.ncbi.nlm.nih.gov/pubmed/12167973
https://doi.org/10.1097/BOR.0b013e3283367c17
http://www.ncbi.nlm.nih.gov/pubmed/20090527
https://doi.org/10.1017/erm.2013.10
http://www.ncbi.nlm.nih.gov/pubmed/23985302
https://doi.org/10.1371/journal.pone.0242863


21. https://doi.org/10.2174/1874312901408010029 PMID: 25328554; PubMed Central PMCID:

PMC4200700.

12. Maugeri N, Franchini S, Campana L, Baldini M, Ramirez GA, Sabbadini MG, et al. Circulating platelets

as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis.

Autoimmunity. 2012; 45(8):584–7. Epub 2012/08/30. https://doi.org/10.3109/08916934.2012.719946

PMID: 22928592.

13. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Involvement of alphavbeta5 integrin-medi-

ated activation of latent transforming growth factor beta1 in autocrine transforming growth factor beta

signaling in systemic sclerosis fibroblasts. Arthritis Rheum. 2005; 52(9):2897–905. Epub 2005/09/06.

https://doi.org/10.1002/art.21246 PMID: 16142753.

14. MacDonald KG, Dawson NA, Huang Q, Dunne JV, Levings MK, Broady R. Regulatory T cells produce

profibrotic cytokines in the skin of patients with systemic sclerosis. J Allergy Clin Immunol. 2015; 135

(4):946– e9. Epub 2015/02/14. https://doi.org/10.1016/j.jaci.2014.12.1932 PMID: 25678090.

15. Huang XL, Wang YJ, Yan JW, Wan YN, Chen B, Li BZ, et al. Role of anti-inflammatory cytokines IL-4

and IL-13 in systemic sclerosis. Inflamm Res. 2015; 64(3–4):151–9. Epub 2015/03/03. https://doi.org/

10.1007/s00011-015-0806-0 PMID: 25725697.

16. Raja J, Denton CP. Cytokines in the immunopathology of systemic sclerosis. Semin Immunopathol.

2015; 37(5):543–57. Epub 2015/07/15. https://doi.org/10.1007/s00281-015-0511-7 PMID: 26152640.

17. Mahoney JM, Taroni J, Martyanov V, Wood TA, Greene CS, Pioli PA, et al. Systems level analysis of

systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic poly-

morphisms. PLoS Comput Biol. 2015; 11(1):e1004005. Epub 2015/01/09. https://doi.org/10.1371/

journal.pcbi.1004005 PMID: 25569146; PubMed Central PMCID: PMC4288710.

18. Moon SJ, Bae JM, Park KS, Tagkopoulos I, Kim KJ. Compendium of skin molecular signatures identi-

fies key pathological features associated with fibrosis in systemic sclerosis. Ann Rheum Dis. 2019; 78

(6):817–25. Epub 2019/04/07. https://doi.org/10.1136/annrheumdis-2018-214778 PMID: 30952646.

19. Chakravarty EF, Martyanov V, Fiorentino D, Wood TA, Haddon DJ, Jarrell JA, et al. Gene expression

changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with

diffuse cutaneous systemic sclerosis. Arthritis Res Ther. 2015; 17:159. Epub 2015/06/14. https://doi.

org/10.1186/s13075-015-0669-3 PMID: 26071192; PubMed Central PMCID: PMC4487200.

20. Assassi S, Swindell WR, Wu M, Tan FD, Khanna D, Furst DE, et al. Dissecting the heterogeneity of skin

gene expression patterns in systemic sclerosis. Arthritis Rheumatol. 2015; 67(11):3016–26. Epub

2015/08/05. https://doi.org/10.1002/art.39289 PMID: 26238292; PubMed Central PMCID:

PMC5394431.

21. Pendergrass SA, Lemaire R, Francis IP, Mahoney JM, Lafyatis R, Whitfield ML. Intrinsic gene expres-

sion subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Derma-

tol. 2012; 132(5):1363–73. Epub 2012/02/10. https://doi.org/10.1038/jid.2011.472 PMID: 22318389;

PubMed Central PMCID: PMC3326181.

22. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq

data. BMC Bioinformatics. 2013; 14:7. Epub 2013/01/18. https://doi.org/10.1186/1471-2105-14-7

PMID: 23323831; PubMed Central PMCID: PMC3618321.

23. Bureeva S, Zvereva S, Romanov V, Serebryiskaya T. Manual annotation of protein interactions. Meth-

ods Mol Biol. 2009; 563:75–95. Epub 2009/07/15. https://doi.org/10.1007/978-1-60761-175-2_5 PMID:

19597781.

24. MetaBase (V 4.2.3) [Internet]. Thomson Reuters. 2019.

25. Dees C, Tomcik M, Palumbo-Zerr K, Distler A, Beyer C, Schett G, et al. JAK-2 as a novel mediator of

the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis & Rheumatology.

2012; 64(9):3006–15. https://doi.org/10.1002/art.34500 PMID: 22549363

26. Sierra-Sepulveda A, Esquinca-Gonzalez A, Benavides-Suarez SA, Sordo-Lima DE, Caballero-Islas

AE, Cabral-Castaneda AR, et al. Systemic Sclerosis Pathogenesis and Emerging Therapies, beyond

the Fibroblast. Biomed Res Int. 2019; 2019:4569826. Epub 2019/02/28. https://doi.org/10.1155/2019/

4569826 PMID: 30809542; PubMed Central PMCID: PMC6364098.

27. Wei J, Fang F, Lam AP, Sargent JL, Hamburg E, Hinchcliff ME, et al. Wnt/beta-catenin signaling is

hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal

cells. Arthritis Rheum. 2012; 64(8):2734–45. Epub 2012/02/14. https://doi.org/10.1002/art.34424

PMID: 22328118; PubMed Central PMCID: PMC3553791.

28. Rousseeuw PJ. A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl

Math. 1987; 20:53–65.

29. Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software. 2008;

28(5):1–26.

PLOS ONE Pathway driven meta-analysis of systemic sclerosis data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242863 November 30, 2020 19 / 20

https://doi.org/10.2174/1874312901408010029
http://www.ncbi.nlm.nih.gov/pubmed/25328554
https://doi.org/10.3109/08916934.2012.719946
http://www.ncbi.nlm.nih.gov/pubmed/22928592
https://doi.org/10.1002/art.21246
http://www.ncbi.nlm.nih.gov/pubmed/16142753
https://doi.org/10.1016/j.jaci.2014.12.1932
http://www.ncbi.nlm.nih.gov/pubmed/25678090
https://doi.org/10.1007/s00011-015-0806-0
https://doi.org/10.1007/s00011-015-0806-0
http://www.ncbi.nlm.nih.gov/pubmed/25725697
https://doi.org/10.1007/s00281-015-0511-7
http://www.ncbi.nlm.nih.gov/pubmed/26152640
https://doi.org/10.1371/journal.pcbi.1004005
https://doi.org/10.1371/journal.pcbi.1004005
http://www.ncbi.nlm.nih.gov/pubmed/25569146
https://doi.org/10.1136/annrheumdis-2018-214778
http://www.ncbi.nlm.nih.gov/pubmed/30952646
https://doi.org/10.1186/s13075-015-0669-3
https://doi.org/10.1186/s13075-015-0669-3
http://www.ncbi.nlm.nih.gov/pubmed/26071192
https://doi.org/10.1002/art.39289
http://www.ncbi.nlm.nih.gov/pubmed/26238292
https://doi.org/10.1038/jid.2011.472
http://www.ncbi.nlm.nih.gov/pubmed/22318389
https://doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pubmed/23323831
https://doi.org/10.1007/978-1-60761-175-2%5F5
http://www.ncbi.nlm.nih.gov/pubmed/19597781
https://doi.org/10.1002/art.34500
http://www.ncbi.nlm.nih.gov/pubmed/22549363
https://doi.org/10.1155/2019/4569826
https://doi.org/10.1155/2019/4569826
http://www.ncbi.nlm.nih.gov/pubmed/30809542
https://doi.org/10.1002/art.34424
http://www.ncbi.nlm.nih.gov/pubmed/22328118
https://doi.org/10.1371/journal.pone.0242863


30. Wright MNZ, A. ranger: A fast implementation of random forests for high dimensional data in C++ and

R. J Stat Softw. 2017; 77:1–17.

31. Nitsch D, Goncalves JP, Ojeda F, de Moor B, Moreau Y. Candidate gene prioritization by network analy-

sis of differential expression using machine learning approaches. BMC Bioinformatics. 2010; 11:460.

Epub 2010/09/16. https://doi.org/10.1186/1471-2105-11-460 PMID: 20840752; PubMed Central

PMCID: PMC2945940.

32. Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease

genes. Am J Hum Genet. 2008; 82(4):949–58. Epub 2008/03/29. https://doi.org/10.1016/j.ajhg.2008.

02.013 PMID: 18371930; PubMed Central PMCID: PMC2427257.

33. Analytics C. CBDD. 15.1.0 ed2019.

34. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical

Bayes methods. Biostatistics. 2007; 8(1):118–27. Epub 2006/04/25. https://doi.org/10.1093/

biostatistics/kxj037 PMID: 16632515.

35. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multi-

cellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016; 352(6282):189–96.

Epub 2016/04/29. https://doi.org/10.1126/science.aad0501 PMID: 27124452; PubMed Central PMCID:

PMC4944528.

36. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments

and item tracking. Bioinformatics. 2010; 26(12):1572–3. Epub 2010/04/30. https://doi.org/10.1093/

bioinformatics/btq170 PMID: 20427518; PubMed Central PMCID: PMC2881355.

37. Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, et al. Molecular sub-

sets in the gene expression signatures of scleroderma skin. PLoS One. 2008; 3(7):e2696. Epub 2008/

07/24. https://doi.org/10.1371/journal.pone.0002696 PMID: 18648520; PubMed Central PMCID:

PMC2481301.

38. Johnson ME, Mahoney JM, Taroni J, Sargent JL, Marmarelis E, Wu MR, et al. Experimentally-derived

fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic

sclerosis patients in three independent cohorts. PLoS One. 2015; 10(1):e0114017. Epub 2015/01/22.

https://doi.org/10.1371/journal.pone.0114017 PMID: 25607805; PubMed Central PMCID:

PMC4301872.

39. Yang X, Yang J, Xing X, Wan L, Li M. Increased frequency of Th17 cells in systemic sclerosis is related

to disease activity and collagen overproduction. Arthritis Res Ther. 2014; 16(1):R4. Epub 2014/01/09.

https://doi.org/10.1186/ar4430 PMID: 24398084; PubMed Central PMCID: PMC3979142.

40. Fabre T, Molina MF, Soucy G, Goulet JP, Willems B, Villeneuve JP, et al. Type 3 cytokines IL-17A and

IL-22 drive TGF-beta-dependent liver fibrosis. Sci Immunol. 2018; 3(28). Epub 2018/10/28. https://doi.

org/10.1126/sciimmunol.aar7754 PMID: 30366940.

41. Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic

sclerosis. Nat Rev Rheumatol. 2019; 15(5):288–302. Epub 2019/04/07. https://doi.org/10.1038/

s41584-019-0212-z PMID: 30953037.

42. Zhao YD, Yin L, Archer S, Lu C, Zhao G, Yao Y, et al. Metabolic heterogeneity of idiopathic pulmonary

fibrosis: a metabolomic study. BMJ Open Respir Res. 2017; 4(1):e000183. Epub 2017/09/09. https://

doi.org/10.1136/bmjresp-2017-000183 PMID: 28883924; PubMed Central PMCID: PMC5531310.

PLOS ONE Pathway driven meta-analysis of systemic sclerosis data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242863 November 30, 2020 20 / 20

https://doi.org/10.1186/1471-2105-11-460
http://www.ncbi.nlm.nih.gov/pubmed/20840752
https://doi.org/10.1016/j.ajhg.2008.02.013
https://doi.org/10.1016/j.ajhg.2008.02.013
http://www.ncbi.nlm.nih.gov/pubmed/18371930
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
https://doi.org/10.1126/science.aad0501
http://www.ncbi.nlm.nih.gov/pubmed/27124452
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bioinformatics/btq170
http://www.ncbi.nlm.nih.gov/pubmed/20427518
https://doi.org/10.1371/journal.pone.0002696
http://www.ncbi.nlm.nih.gov/pubmed/18648520
https://doi.org/10.1371/journal.pone.0114017
http://www.ncbi.nlm.nih.gov/pubmed/25607805
https://doi.org/10.1186/ar4430
http://www.ncbi.nlm.nih.gov/pubmed/24398084
https://doi.org/10.1126/sciimmunol.aar7754
https://doi.org/10.1126/sciimmunol.aar7754
http://www.ncbi.nlm.nih.gov/pubmed/30366940
https://doi.org/10.1038/s41584-019-0212-z
https://doi.org/10.1038/s41584-019-0212-z
http://www.ncbi.nlm.nih.gov/pubmed/30953037
https://doi.org/10.1136/bmjresp-2017-000183
https://doi.org/10.1136/bmjresp-2017-000183
http://www.ncbi.nlm.nih.gov/pubmed/28883924
https://doi.org/10.1371/journal.pone.0242863

