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It is an important content to generate visual place cells (VPCs) in the field of bioinspired navigation. By analyzing the firing
characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based
on environment perception and similar measure is abstracted in this paper. VPCs’ generation process is divided into three phases,
including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method
for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and
a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed
method is available.The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs’ firing fields
can be adjusted flexibly by changing the adjustment factor of firing field (AFFF) and firing rate’s threshold (FRT).

1. Introduction

In 1971, O’Keefe and Dostrovsky [1] found that some neurons
in rat’s hippocampus exhibited location selectivity during
rat free moving. They defined these cells as place cells.
The activity of place cells is related to the spatial location.
Once the animal is located at a relatively narrow region,
the corresponding place cell can fire with a high rate.
But in other regions, this place cell does not fire or fires
with a low rate. This firing characteristic shows animal’s
spatial representation pattern and navigation mechanism to
a certain extent, and it lays a biological foundation to the
bioinspired navigation technology, for example, RatSLAM [2,
3], which is realized by simulating the navigation mechanism
in hippocampus and it can provide the robot with a spatial
awareness of entire environment.

How to generate place cells? Brain neuroscience points
out that the firing of place cells can be activated by the
idiothetic information (e.g., self-motion) and allothetic infor-
mation (e.g., visual) [4–7]. For the idiothetic activity mode,
it can be realized through the transformation from the grid
cells to the place cells. The existing models include the
following: transformation model based on Fourier analysis
[8], transformation model based on competitive learning

[9], transformationmodel based on independent component
analysis (ICA) [10], and so on. For the allothetic activity
mode, it is achieved mainly through the process of obtaining
landmarks, place code, and the calculation of place cell’s
firing rate. This paper mainly focuses on the second-activity
mode based on visual information, and the generated place
cells are called visual place cells (VPCs) [11, 12]. Doboli et al.
[13] proposed an attractor model of the hippocampus. In
their model, the external sensory input encodes distances to
perceived landmarks as well as allocentric bearings to them,
and VPC’s external receptiveness is formed by a product
of Gaussian functions. Gaussier et al. [11, 12, 14, 15] had
done a lot of work in the field of generating VPCs. In
their researches, VPC is defined by a spatial constellation
of online learned visual view, which is obtained by the
process of gradient processing, convolved with a difference
of Gaussian filter (DoG), selection of focus point, and log-
polar transformation. During the learning of a location, each
local view in log-polar coordinate is learned as a landmark
for the system; then, the landmarks’ recognition information
and their spatial localization in the visual field are merged
in a product space to define a place code, and the VPC is
generated after the recognition and association of the place
code. DalleMole and Araújo [16] proposed a topological
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Figure 1: Firing pattern of place cells [17].

map of place cells. To produce a cognitive topological map
of the environment, they acquire and organize knowledge
associating it with places and define an activation function
to determine the similarity between the current perception,
the stored memories, and so on.

Through the analysis of the current research status,
we know that there is a great similarity in the existing
VPCs’ generation methods, and their differences mainly are
reflected in the acquisition and representation of landmarks
and the calculation of VPCs’ firing rates. This paper abstracts
a unified VPCs’ generation model after fully considering
their similarities and differences. The acquisition and rep-
resentation of landmarks are included in the environment
perception. The calculation of VPCs’ firing rates is included
in the similarity measure. As a result, the generation pro-
cess of VPCs and the issues that need to be solved are
stated more clearly, which can provide a complete research
idea for the related researchers. Simultaneously, according
to the abstracted model, a specific method for generating
VPCs is presented, and it is validated and analyzed by the
simulation.

2. VPCs’ Generation Model

The firing activity of biological place cells exhibits strong
location selectivity. When the animal is located in the region
represented by place cells, the corresponding place cells will
fire with high rate. In biology, the field with the firing activity
is called “place field” or “firing field.” Figure 1 shows the
firing activity of place cells recorded by biological experiment
[17], where the trajectory of rat is indicated by gray line, and
each spike is plotted in red. In the theory of hippocampal
cognitive map, place cells are believed to constitute the basic
unit of this cognitive map. A single place cell can represent
a specific location in the environment, and the firing activity
of the whole place cells can describe and represent the entire
environment.

By analyzing and summarizing the existing VPCs’ gener-
ation methods [10–16], VPCs’ generation model is abstracted
here based on environment perception and similarity

measure, as shown in Figure 2. VPCs’ generation process
is divided into environment perception, similarity measure,
and recruiting of a new VPC. The environment perception
phase achieves the landmarks’ acquisition and place code.
Landmarks’ acquisition resolves what information is used as
reference and how to represent it. In this paper, a landmark
is also described by two kinds of information as shown in
[15]. One is the recognition information (What) and the other
one is the location information (Where). What information
and Where information are merged to get the representation
information of a landmark. Place code is to define current
location by the whole landmarks, and each generated VPC
is associated with a place code. Similarity measure achieves
the analysis of the similarity between current place code and
the generated VPCs and then quantifies the VPCs’ firing rates
according to their similarity. The phase of recruiting a new
VPC achieves the analysis of the firing status of the existing
VPCs and flexibly recruits a new VPC.

VPCs’ generation process can be summarized as follows:
during spatial exploration, the vehicle acquires the recogni-
tion information and location information of landmarks by
especial environment perception approach and gets the place
code according the landmarks’ representation information.
Then, VPCs’ firing rates are calculated according to the
similarity between their associated place codes and current
place code. Finally, the comparison among the generated
VPCs is implemented and the winner is compared with the
given firing rate’s threshold (FRT) (FRT is set as the condition
to recruit a new VPC; it indicates the minimum firing rate
that the generated VPCs should satisfy). If it is below FRT, the
current place code is memorized and a new VPC is recruited
to be associated with this memory.

Next, a specific VPCs’ generation method will be pre-
sented according to above-mentioned process; the details are
as follows.

Step 1 (acquire landmarks). Combining local invariant the-
ory and our previous proposed model for landmarks’ acqui-
sition [18], the attention points which are obtained by the
process of extraction of feature points, generation of saliency
value, and selection of attention points in the visual image
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Figure 2: VPCs’ generation model.

are used as landmarks. Considering we mainly focus on the
generating VPCs, the landmarks’ acquisition process is not
discussed in detail here.

Let the number of acquired landmarks at currentmoment
be 𝑁(𝑡). The recognition information and the saliency value
of landmark 𝑖 are denoted by 𝑟

𝑖
(𝑡) and 𝑠

𝑖
(𝑡), respectively. The

distance and the orientation of landmark 𝑖 relative to the
vehicle are denoted by 𝑑

𝑖
(𝑡) and 𝜃

𝑖
(𝑡), respectively. Then, the

landmark is represented as follows:

𝑙
𝑖 (𝑡) = (𝑟𝑖 (𝑡) , 𝑠𝑖 (𝑡) , 𝜃𝑖 (𝑡) , 𝑑𝑖 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁 (𝑡) , (1)

where 𝑙
𝑖
(𝑡) denotes the representation information of land-

mark 𝑖. 𝜃
𝑖
(𝑡) denotes the orientation between north direction

and the vector from vehicle to landmark 𝑖 in clockwise
direction. The schematic diagram of landmarks’ orientation
is shown in Figure 3. In this paper, the absolute direction
is used as the reference direction to calculate landmarks’

orientation. The reason is that if the reference direction
(such as vehicle’s running direction) may change at different
location or different time, then the calculated landmarks’
orientation relative to this kind of reference direction may be
affected by the change of reference direction, which finally
makes it difficult to measure the accurate relation between
landmarks and vehicle at the same location.

Step 2 (construct place code). The whole representation
information of landmarks at current moment is combined to
get current place code, denoted by 𝐶(𝑡); namely,

𝐶 (𝑡) = {𝑙1 (𝑡) , 𝑙2 (𝑡) , . . . , 𝑙𝑁(𝑡) (𝑡)} . (2)

Step 3 (design similarity measure function to quantify VPCs’
firing rates). In our paper, the similarity betweenVPCs’ place
codes and current place code is used to evaluate VPCs’ firing
rates. The similarity measure function is designed based on
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Figure 3: Schematic diagram of landmarks’ orientation.
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Figure 4: Landmarks in the given space.

Euclidean distance and Gaussian function; the formula is as
follows:

𝑓
𝑘 (𝑡) =

𝑁𝑘

∑

𝑖=1

𝑤
𝑖
𝑒
−[𝑤𝑑((𝑑𝑖(𝑡)−𝑑

𝑘

𝑖
)
2
/𝜎
2

𝑑
)+𝑤𝜃((𝜃𝑖(𝑡)−𝜃

𝑘

𝑖
)
2
/𝜎
2

𝜃
)]
, (3)

where 𝑓
𝑘
is the firing rate of VPC 𝑘. 𝑁

𝑘
is the number of

matched landmarks between VPC’s place code and current
place code. 𝜎2

𝑑
and 𝜎2

𝜃
are defined as the adjustment factor

of firing field (AFFF). They denote the influence on VPCs’
firing fields from the distance and orientation, respectively.
The bigger the AFFF, the larger the firing fields with high
firing rate. 𝑤

𝑑
= {0, 1} and 𝑤

𝜃
= {0, 1} denote whether

the distance and orientation are used as the condition of
similarity measure, respectively. If the answer is yes, its value
is set to one, otherwise it is set to zero. 𝑤

𝑖
denotes the

contribution to calculating VPCs’ firing rates. 𝑤
𝑖
can be

calculated by the saliency value of landmarks. The formula
is as follows:

𝑤
𝑖
=
𝑠
𝑖

∑
𝑁(𝑡)

𝑖=1
𝑠
𝑖

. (4)

From (4), we know that the bigger the landmark’s saliency
value (that is to say, the better the landmark’s robustness), the
bigger its contribution to calculating VPC’s firing rate.

Step 4 (recruit a new place cell). First, VPCs’ firing rates are
comparedwith each other.Then, thewinner is comparedwith
the given FRT. If the winner is below FRT, current place code
is memorized, and a new VPC is recruited to be associated
with this place code.

Through the above four steps, the vehicle can generate
VPCs during its spatial exploration. Next, the proposed
method will be validated and analyzed by simulation.
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Figure 5: Firing status of partial VPCs.

3. Results and Analysis

3.1. Realization of the Method. The simulation conditions are
set as follows:

(1) The vehicle’s running environment is defined in a
rectangular space, and its size is set to 40m ×
40m. There are one hundred random distribution
landmarks in the given space, as shown in Figure 4.

(2) A recognition distance is set to select the landmarks
which are associated with current vehicle’s location.
Its role is similar to the method used to acquire
landmarks. Suppose that the vehicle can recognize

the landmarks whose distance is between 10m and
15m relative to vehicle (in actual environment, this
condition can be removed, and the acquisition of
landmarks is implemented by specific algorithm).
Besides, the saliency values of selected landmarks are
equal.

(3) The vehicle runs randomly in the defined space.
Its maximal running speed is set to 5m/s, and the
location updating period is set to 1 s. Vehicle’ speed
remains unchanged in each period, but it changes
randomly in different periods. Besides, the running
direction is changed when the vehicle arrives at the
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Figure 6: Firing status after the overlapping of the whole firing fields (generated VPCs’ number is 50).

boundary, and the relation between the new direc-
tion and the original direction obeys the reflection
theorem. For the single spatial exploration, the total
location updating step is set to 4000.

(4) 𝑤
𝑑
and 𝑤

𝜃
are set to 1. 𝜎2

𝑑
is set to 25. 𝜎2

𝜃
is set to 100.

FRT is set to 0.2.
Figure 5 shows the firing status of partial VPCs after a

single spatial exploration. Figure 6 shows the firing status
after the overlapping of the whole generated firing fields.
For the simulation results, vehicle’s trajectory is indicated by
black line. The firing rate indicated by dark red and dark
blue is corresponding to the highest and lowest firing rate,
respectively. Simulation results show that the behavior of the
generated VPCs is similar to that of biological place cells.
A single VPC’s firing field is corresponding to a restricted
region, and the overlapping of the firing fields of the whole
VPCs can cover the entire space. Therefore, the proposed
method is available. The generated VPCs can well simulate
the firing activity of biological place cells.

3.2. Influence on VPCs from the Parameters. Next, the influ-
ence on VPCs from AFFF, FRT, recognition distance, and
location updating step will be discussed.

Figure 7 shows the firing status of VPCs in different
AFFFs. Each simulation is carried out at the same trajectory.
The other parameters are set according to the simulation
conditions of Section 3.1. Simulation results show that
AFFF affects the firing status of generated VPCs. When the
AFFF increases, the single VPC’s firing field extends and
simultaneously VPCs’ number used to represent the spatial
environment decreases. That is to say, the setting of AFFF
can affect the spatial representation precision. The smaller
the AFFF, the higher the representation precision, but it also
increases the memory cost. Therefore, the AFFF can be set

flexibly according to the demand of representation precision
and memory cost.

Figures 8 and 9 show the firing status of VPCs and the
generatedVPCs’ number in different given FRTs, respectively.
FRT is divided into four different values, including 0.1,
0.2, 0.3, and 0.4. Five different exploration trajectories are
implemented in the same FRT. The other parameters are set
according to the simulation conditions of Section 3.1. Simu-
lation results show that FRT affects VPCs’ firing field and the
generated VPCs’ number.The bigger the FRT, the smaller the
single firing field, and simultaneously the generated VPCs’
number increases. Thus, the spatial representation precision
and the memory cost can also be adjusted by setting different
FRTs.

Figure 10 shows the generated VPCs’ number in different
recognition distances. The recognition distance is divided
into three different intervals, including 5m–10m, 5m–15m,
and 5m–20m. Five different exploration trajectories are
implemented in the same recognition distance. The other
parameters are set according to the simulation conditions
of Section 3.1. Simulation results show that the recognition
distance affects the generated VPCs’ number. The longer the
recognition distance, the less the generated VPCs’ number.
What is more, the number of obtained landmarks increases
with the increasing of the recognition distance, so we can
also get that the generated VPCs’ number will decrease
when more landmarks are used to calculate VPCs’ firing
rates.

Figure 11 shows the generated VPCs’ number in different
location updating steps. Five different exploration trajectories
are implemented in the same condition.Theother parameters
are set according to the simulation conditions of Section 3.1.
Simulation results show that the more the location updating
step, that is to say, the more the complete exploration of
the environment, the more the generated VPCs’ number, but
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Figure 7: Firing status of VPCs in different AFFFs.

the differences of generated VPCs’ number will decrease or
disappear when the higher number of location updating steps
is implemented.

4. Conclusions

Combining the existing method to generate VPCs, this paper
abstracts a model of generating VPCs based on environment
perception and similar measure. In the model, the acqui-
sition and representation of landmarks are included in the
environment perception, and the calculation of VPCs’ firing

rates is included in the similarity measure, which can provide
clear and complete process to generate VPCs. Simulation
results show that the firing characteristic of generated VPCs
is similar to that of biological place cells. VPCs’ firing fields
are corresponding to local regions, and the overlapping
of the whole firing fields can cover the explored space.
Simultaneously, the firing fields and the generated VPCs’
number can be adjusted by setting different AFFFs and
FRTs. In the next researches, we will discuss the proposed
model in the actual environment and especially analyze the
influence on the generation results of VPCs from landmarks’
distribution and saliency value. In the actual environment,
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Figure 8: Firing status of VPCs in different FRTs.
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the distribution of landmarks is usually complex. For some
locations, a lot of landmarks may be perceived by the vehicle,
but, for other locations, the perceived landmarks may be
very few. Besides, the landmarks’ saliency values should be
calculated by specific algorithm.
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