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Abstract

Megalencephalic leukoencephalopathy with subcortical cysts (MLC, MIM# 604004) is an autosomal recessive inherited
disease mostly resulting from MLC1 mutations. In this study, we finished the functional analysis of MLC1 mutations identified
recently in Chinese patients, including five newly described missense mutations (R22Q, A32V, G73E, A275T, Y278H), one
known nonsense mutation (Y198X), and two known missense mutations (S69L, T118M). We found MLC1wt was localized to
the cell periphery, whereas mutant R22Q, A32V, G73E, S69L and T118M were trapped in the lumen of endoplasmic
reticulum (ER) when we transfected the wild-type and mutant MLC1 in U373MG cells. Compared to wild type, the mutant
G73E, T118M, Y198X and A275T transcript decreased and all mutants except R22Q had lower protein expression in
transfected U373MG cells. Therefore, we propose that all these eight MLC1 mutations had functional effect either on their
protein/mRNA expression, or on their intracellular protein localization, or both.
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Introduction

Megalencephalic leukoencephalopathy with subcortical cysts

(MLC, OMIM 604004) is a rare congenital vacuolating leukodys-

trophy characterized by early-onset macrocephaly at birth or

during the first year of life. Ataxia, seizures, and usually later onset

mild mental deterioration are other common clinical features [1].

Representative MRI shows diffusely abnormal white matter with

subcortical cysts in the tips of the temporal lobes and in

frontoparietal subcortical areas [2].

MLC is a genetically heterogeneous condition resulting from

gene defects either in MLC1 or HEPACAM. MLC1 (GenBank

NM_015166) is mapped to chromosome 22q13.3, containing 12

exons with a start codon in exon 2 and an 2.2 kb untranslated 3-

prime end [3]. MLC1 is highly expressed in cerebellum, olfactory

tract, brainstem and thalamus, but has weaker expression in

cerebral cortex, striatum, and hippocampus [4]. MLC1 mainly

presents in astrocytes, but not in oligodendrocytes. Specifically,

MLC1 localizes in astrocyte-astrocyte membrane contact regions

[5]. At the subcellular level, human MLC1 localizing in the plasma

membrane forms eightmers (oligomers) and is predicted to span

the plasma membrane eight times [6]. MLC1 is homologous with

carrier proteins and is confined to the plasma membrane, which

indicates that it may regulate substance translocation across the

cell membrane [3,7]. Besides, it has not yet been determined

whether MLC1 is localized in membrane contact regions between

endothelial cells and glial cells or between different kinds of glial

cells [8–10].

Although the exact function of MLC1 remains unclear, the

analysis of its Amino acid sequence reveals a slight similarity with

potassium channel Kv1.1, ABC-2 type transporters and sodium-

galactoside symporters [3,6]. MLC1 has been recently shown to

regulate the chloride current and cell volume in astrocytes

consistent with its structural homologies to an ion channel [11,12].

In addition, many MLC1 mutations have been identified in the

past years [3,13–19]. Until now, there are around 70 MLC-related

mutations of MLC1 have been reported in patients of various

ethnic backgrounds (human gene mutation database, HGMD).

Despite this, families without identifiable mutation at the MLC1

locus had been found [3,20], and the existence of at least one other

locus had been suggested before [21,22]. Recently, López-

Hernández T et al. found mutations in GlialCAM encoded by

HEPACAM in some MLC patients without MLC1 mutations.

Further experiments demonstrated that GlialCAM was essential

for accurate localization of MLC1 [23]. Thus, HEPACAM is the

second gene associated to MLC.

In our previous study, we identified 10 MLC1 mutations in 13

Chinese patients, including five newly described missense

mutations (c.65G.A, p.R22Q; c.95C.T, p.A32V; c.218G.A,

p.G73E; c.823G.A, p.A275T; c.832T.C, p.Y278H), one newly
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described splicing mutation (c.772-1G.C in IVS9-1), one newly

described small deletion (c.907_930del, p.V303_L310del), one

known nonsense mutation (c.593delCTCA, p.Y198X) and two

known missense mutations (c.206C.T, p.S69L; c.353C.T,

p.T118M) [24]. In this study, we carried out the functional

analysis of eight MLC1 mutants (not involving c.772-1G.C in

IVS9-1; c.907_930del, p.V303_L310del) to investigate the path-

ogenesis of MLC. With the exception of T118M, seven of the eight

mutations had not been studied functionally before. All these eight

mutations were analyzed by mRNA, protein expression and

intracellular protein localization in this study. We used the mutant

T118M as a positive control in our study according to the previous

report which demonstrated that the mutant T118M declined in

MLC1 plasma membrane protein [6].

Results

Intracellular localization of wild-type and mutant MLC1
Seven missense (c.65G.A, p.R22Q; c.95C.T, p.A32V;

c.218G.A, p.G73E; c.823G.A, p.A275T; c.832T.C,

p.Y278H; c.206C.T, p.S69L; c.353C.T, p.T118M) and one

nonsense mutation (c.594delCTCA, p.Y198X) were generated by

site-directed mutagenesis. Fluorogram of MLC1wt and mutant

allele (A275T) resulting from G to A transition at position 823 in

MLC1 cDNA were shown in Figure 1.

In transfected cells, MLC1wt distributed to cell periphery

whereas mutant MLC1 was retained in the perinuclear sub-

compartment. Upon co-staining with ER marker, calnexin, we

found co-localization of calnexin with mutant MLC1 in transfect-

ed U373MG cells. As shown in Figure 2 and Figure 3, MLC1

R22Q and A32V mutants staining mostly overlapped with

calnexin. Other mutants, S69L, G73E and T118M only showed

mild retention and were not entirely confined to the perinuclear

space. However, MLC1 Y198X, A275T and Y278H mutants

showed minimal co-staining with calnexin and had expression

pattern similar to that of MLC1wt.

Protein expression of MLC1
A32V, G73E, S69L, T118M, Y198X, A275T and Y278H

mutants showed a decrease in MLC1 protein expression.

Compared to the wild-type MLC1 (defined as 1), A32V reduced

to 0.456, G73E to 0.432, S69L to 0.458, T118M to 0.488, Y198X

to 0.545, A275T to 0.637 and Y278H to 0.632, however, R22Q

had no significant change in statistic analysis (P.0.05). These were

shown in figure 4 and figure 5.

mRNA expression of MLC1
By defining WT as 1, we observed that transcripts of MLC1

mutants R22Q (1.093) and S69L (1.007) were expressed to same

levels as that of WT. Moreover, mutants A32V and Y278H had

no significant changes (P.0.05). In addition, G73E decreased

significantly to 0.665, T118M to 0.311, Y198X to 0.276, and

A275T to 0.606 (figure 6).

Discussion

MLC1 is the first identified and main causative gene known to

be associated with MLC. Sequence analysis identified mutations

in approximately 70% of clinically diagnosed MLC individuals.

Since the identification of this causative gene in 2001, no studies

have revealed the functional change of MLC1 variants found in

non-Caucasian patients in terms of both mRNA and protein

levels. Through a combination of western blot, real-time PCR

and confocal imaging, we demonstrated that mRNA and/or

protein expression of these MLC1 mutants decreased, and the

intracellular distribution of mutant MLC1 changed significantly.

It seems that these changes contribute to the phenotype in MLC

patients.

Figure 1. The sequencing results of MLC1wt and the mutant. (A) The sequencing result of MLC1wt. Arrow showed cDNA 823 base was G; (B)
The sequencing result of c.823G.A. Arrow pointed G changed to A (Other data not shown).
doi:10.1371/journal.pone.0033087.g001

Functional Studies of MLC1 Mutations
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Figure 2. Some MLC1 mutants were retained intracellularly and co-localized with an ER marker. Confocal images of transfected U373MG
cells expressing various MLC1 mutants immunostained with anti-HA antibody (green) and calnexin (red) were shown (magnified in Inset). Mutant
MLC1 staining mostly overlapped with calnexin for A32V. Y198X showed minimal co-staining with calnexin and was expressed like MLC1wt. The bar
was 30 mm (Other data not shown).
doi:10.1371/journal.pone.0033087.g002

Figure 3. Transfected cells were scored for MLC1 subcellular protein distribution at the cell periphery or peri-nuclearly. MLC1wt was
mainly at the cell border (92.60% cells), whereas MLC1 mutants R22Q, A32V, S69L, G73E and T118M were mainly ER retained, standing at 91.74%,
58.43%, 34.71%, 14.81% and 19.48%, respectively. Surprisingly, A275T, Y278H and Y198X were found at the cell borders (n = 3 experiments).
doi:10.1371/journal.pone.0033087.g003

Functional Studies of MLC1 Mutations
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MLC1 mutants accumulated in the ER
MLC1 has been proven to be expressed in brain, and alternative

splicing products have not been detected [3]. MLC1 encodes a

membrane protein that may transport a specific substrate and

MLC1 is predicted to be an oligomeric protein involving 8

transmembrane segments. The forecasted transmembrane domain

4 and 8 include a fraction of some leucine residues, which indicates

that leucine-leucine interaction plays a pivotal role in the

oligomerization, like other membrane proteins [6].

In the brain, MLC1 protein is predominantly expressed in

astrocyte end-feet, connecting with lipid rafts and the dystrophin

glycoprotein complex (DGC). DGC is a multiprotein complex

modulating brain development as well as ion and fluid homeostasis

in astrocytes and neurons [25]. Intracellular domains of MLC1 are

associated with the DGC proteins syntrophin, dystrobrevin, Kir4.1

and caveolin-1, the structural protein of caveolae [26]. The

caveolar-lipid rafts that MLC1 localizes in are crucial for protein

trafficking [27,28]. Moreover, MLC1 is expressed in intracellular

vesicles and endoplasmic reticulum, and is concerned with the

endocytosis regulated by caveolae/raft. Inhibition of endocytosis,

cholesterol diminution, and MLC1 phosphorylation improve the

membrane-associated MLC1 expression [26]. However, patho-

logical mutations prevent MLC1 membrane expression [6]. At this

study, we detected that these eight MLC1 mutants except for

Y198X, A275T and Y278H, unlike MLC1wt, were retained to

different degrees in the ER. We conclude that most of the MLC1

mutant proteins are trapped in the ER, thereby inhibiting them to

move to the cell membrane and carry out their functions

Reduced mRNA and protein expression of the MLC1
mutants

MLC1 protein is located in astrocytic processes related to blood

and cerebrospinal fluid-brain barriers. The performance in

cultured rat astrocytes illustrated that MLC1 was expressed in

cell-cell contacts, which contains important proteins located in

tight and adherent junctions. A MLC cell model was established

by knockdown of MLC1 in primary astrocytes. Reduced MLC1

expression on this model led to the appearance of intracellular

vacuoles. But the co-expression of human wild MLC1 can rescue

the vacuolation. Moreover, a human brain biopsy of the MLC

patient demonstrated that vacuoles were also found in astrocytic

processes [29]. Thus, decrease in expression of MLC1 can clearly

affect the structure of astrocytes.

Two previous studies with ten different MLC1 mutations in

total [6,30] showed that mutations mostly led to the reduction of

protein expression. Another research showed that mutation

C326R reduced MLC1 mRNA expression [20]. Further, decline

of MLC1 protein and mRNA expression had also been found in

monocytes from MLC patients [31]. In our study, most of

mutations made MLC1 protein and/or mRNA expression

decreased. That means the function of MLC1 should be affected

by the reduction of MLC1 expression caused by mutations.

Interestingly, compared with MLC1wt, mutant A32V, S69L and

Y278H expressed normal amounts of mRNA, but had lower

Figure 4. Protein expressions of MLC1wt and the mutants.
Calnexin was an internal control and MLC1 proteins were tagged by HA.
Cont was the control without transfection.
doi:10.1371/journal.pone.0033087.g004

Figure 5. Statistics for protein expressions. We defined WT as 1.
Except for R22Q, all other mutations resulted in significant downreg-
ulation in mutant MLC1 protein levels (n = 4). The statistics of these data
was compiled by T test in Prism 5 (*** P,0.001, ** P,0.01, * P,0.05,
compared with WT).
doi:10.1371/journal.pone.0033087.g005

Figure 6. mRNA expressions of MLC1wt and the mutants. SYBR-
Green quantitative real-time PCR analysis revealed that, when
compared with MLC1wt, MLC1 mutants (G73E, T118M, Y198X, and
A275T) were expressed at significantly lower levels. No significant
changes were observed in R22Q, A32V, S69L and Y278H (n = 3).The
statistics of these data was compiled by T test in Prism 5 (*** P,0.001,
** P,0.01, * P,0.05, compared with WT).
doi:10.1371/journal.pone.0033087.g006
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protein expression. Further studies are warrant to investigate this

at the translational level.

Reductions of functional MLC1 proteins caused by
mutants

MLC1 is mostly expressed in astrocyte–astrocyte junctions of

blood– and CSF2 brain barriers, Bergmann glia and main axonal

tracts [5,8,9]. The GlialCAM is regarded as an MLC1 beta-

subunit and affects MLC1 directly in astrocyte–astrocyte junc-

tions. HEPACAM mutations also interact with the trafficking of

MLC1, which causes the same disease MLC [32]. Moreover, most

of MLC1 mutations led to reduced membrane expression of the

MLC1 protein [31]. Thus adequate expression and proper

positioning of MLC1 proteins is required to carry out their

function effectively. For instance, although R22Q had enough

expression, only 8.26% of the proteins ultimately were transported

to the membrane. Consequently, R22Q showed an overall

decrease in functional proteins. Moreover, compared with WT,

the three mutants Y198X, A275T and Y278H seemed to have a

slightly higher rate of proteins at the membrane according to the

figure 3, but protein expressions in these three mutants were

apparently reduced. Other mutants had not only reduction of

expression but also abnormal localization. In brief, they are all

devoid of enough functional proteins in the cell membrane.

In summary, we have finished the functional studies of eight

MLC1 mutants detected in Chinese patients, including Intracel-

lular localization of wild-type and mutant MLC1, and transla-

tional and transcriptional change of mutants in transfected

primary rodent astrocytes and brain epithelial derived cell line,

U373MG. Mutant R22Q, A32V, G73E, S69L and T118M,

unlike MLC1wt, were retained in ER. Moreover, we have

identified significant decline in mutant transcripts and protein

levels. Therefore, we conclude that these eight MLC1 mutations in

Chinese patients decrease MLC1 protein and/or mRNA expres-

sion and disrupt intracellular protein localization, and these may

be the molecular mechanisms related to their MLC phenotype.

Materials and Methods

Chemicals
Tris HCL1M (pH 6.8) cat. MC030.5 and Tris HCL 1.5 M

(pH 8.8) cat. MC030.4 were from M&C Gene Technology. a-

MEM cat. C0008 and D-PBS cat. SH0021 were from Beijing

Four-Ring Sunny Bioscience CO.LTD. The U373MG cell line

was obtained from Shanghai Fumen Company in China. pfu

DNA Polymerase cat. M7741 was from Promega Corporation

(USA). HA (Rabbit polyclonal antibody to HA tag) and HRP

conjugated goat anti rabbit/mouse IgGs were from Gene Tex.

Calnexin (TO-5) was from SANTA CRUZ BIOTECHNOLO-

GY.INC.

Mutant human MLC1 constructs
Epitope tagged (HA) pcDNA3.1-MLC1 was kindly provided by

M. S.van der Knaap (VU University Medical Center, Amsterdam,

The Netherlands). Seven missense (c.65G.A, p.R22Q; c.95C.T,

p.A32V; c.218G.A, p.G73E; c.823G.A, p.A275T; c.832T .C,

p.Y278H; c.206C.T, p.S69L; c.353C.T, p.T118M) and one

nonsense mutations (c.594delCTCA, p.Y198X) were generated by

PCR site-directed mutagenesis. To generate the mutants, the

oligonucleotide primers were used and shown in Table 1. All site-

directed mutants were generated by circular amplification of this

plasmid with PFU Turbo DNA polymerase (Stratagene, La Jolla,

CA), followed by DpnI digestion (New England Biolabs, Ipswich,

MA) and transformation into Escherichia coli. Individual clones were

analyzed by DNA sequence analysis.

Cell culture
U373MG cells were cultured in a-MEM containing 10%FBS

(fetal bovine serum) and antibiotics: streptomycin (25 mg/ml) and

penicillin (25 U/ml). Cells were maintained in a humidified

incubator at 37uC in 5% CO2 atmosphere. The medium was

exchanged every 48–72 h. Cells were passed by 0.25% trypsin

every 3 days.

Transfections
For transfection, 10 ml of Lipofectamine 2000 (Invitrogen,

Carlsbad, CA) and 4 mg of plasmid DNA were incubated

separately in Opti-mem (GIBCO Invitrogen, Carlsbad, CA) for

5 min at room temperature, then combined for another 20 min.

U373MG cells (approximately 80–90% confluent) were washed

with PBS, incubated with the combined Lipofectamine 2000/

DNA solution in Opti-mem for 4–5 h at 37uC, then fed with a-

MEM supplement with 10% FBS. After 24 h, transfected cells

were either processed for western-blot, confocal microscopy, or

real-time PCR.

Western-blot
Transfected U373MG were washed thrice with ice-cold PBS

and lysed in ice-cold lysis solution (26 lysis solution consisted of

Triton X-100 0.4 ml, NaCl 0.18 g, 0.5 M EDTA 0.4 ml, 1 M

Tris HCl (pH = 8.8) 2 ml, dH2O 10 ml) at 4uC for 20 min. After

scraping with ell scraper, the lysates were collected and centrifuged

at 12000 g for 30 min at 4uC. Finally liquid supernatant was

stored at 280uC. Proteins were separated on 10% SDS

polyacrylamide gels and electrotransferred (BioRad) to PVDF

membranes. The membranes were blocked with 5% milk power in

PBS, and probed with the indicated primary antibody by

overnight incubation at 4uC. Four washes in 0.05% PBS-T

(0.5 ul Tween-20 in 1 ml PBS) of 10 min each at room

Table 1. Oligonucleotide primers used to generate MLC1
mutants.

MLC1 mutants Oligonucleotide Primers

G73E 59-cgctgtacctggagaacgtgttccc-39

59-gggaacacgttctccaggtacagcg-39

A275T 59-cgctgctgttcacaacctctggatatctg-39

59-cagatatccagaggttgtgaacagcagcg-39

Y198X 59-gggtcctgaaatcttagtcgtcgaggtaatcg-39

59-cgattacctcgacgactaagatttcaggaccc-39

R22Q 59-tggagcggggccagcaagaccccgc-39

59-gcggggtcttgctggccccgctcca-39

A32V 59-atgccccagacgtgaagccgagcga-39

59-tcgctcggcttcacgtctggggcat-39

Y278H 59-cctctggatatccgtcattcagcat-39

59-atgctgaatgacggatatccagagg-39

S69L 59-cctcggggtttttgctgtacctggg-39

59-cccaggtacagcaaaaaccccgagg-39

T118M 59-tgtttgtttccatgtttgctgtgac-39

59-gtcacagcaaacatggaaacaaaca-39

doi:10.1371/journal.pone.0033087.t001

Functional Studies of MLC1 Mutations
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temperature were performed before incubation with secondary

antibody. After four washes in 0.05% PBS-T of 10 min at room

temperature, antigen-antibody complexes were visualized by

enhanced chemiluminescence and exposed on X-ray films.

Real-time PCR
Total RNA isolated by TRIzol Reagent (Invitrogen, Carlsbad,

CA, USA) was used to eliminate the genome DNA contamination.

Total RNA (1 ug) was reverse transcribed using reverse transcrip-

tion kit (Promega, Madison, WI, USA). Quantitative real-time

PCR was performed on ABI 7300 PCR Instrument (ABI, Foster

City, CA, USA) with SYBR Green-real-time PCR master mix kit.

GAPDH was used as the endogenous control. Forward (F) and

reverse (R) primer sequences were shown in Table 2. PCR was

performed for 5 min at 95uC, then 30 sec at 95uC and 30 sec at

55uC for 40 cycles.

Confocal microscopy
Confocal microscopy was carried out after transfection had

been accomplished for 24 h. All steps were performed at room

temperature, unless stated otherwise. Cells grown on confluent

plates were washed three times briefly with PBS, fixed for 15 min

in 4% (wt/vol) paraformaldehyde/PBS. After washed 3 times for

10 min each in PBS, cells were blocked in 2% (wt/vol) BSA for at

least 60 min. A mouse anti-calnexin monoclonal antibody and a

Rabbit anti-HA Polyclonal antibody respectively diluted 1:2000

and 1:5000 in 0.05% TBS were applied overnight at 4uC. After

three washes in PBS (10 min each), fluorochrome-conjugated

secondary antibodies were applied for at least 60 min. After three

washes in PBS (10 min each), coverslips were mounted with Aqua-

Poly/Mount (Polysciences Warrington, PA) on glass slides.

Fluorescent images were captured on an Olympus confocal

microscope (FV-1000 spectral-type) with a 636 oil Plan Apoc-

hromat objective.
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