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Glaucoma is an optic neuropathy that affects 60 million people worldwide. The main risk factor for glaucoma is increased
intraocular pressure (IOP), this is currently the only target for treatment of glaucoma. However, some patients show disease
progression despite well-controlled IOP. Another possible therapeutic target is the extracellularmatrix (ECM) changes in glaucoma.
There is an accumulation of ECM in the lamina cribrosa (LC) and trabecular meshwork (TM) and upregulation of profibrotic
factors such as transforming growth factor 𝛽 (TGF𝛽), collagen1𝛼1 (COL1A1), and 𝛼-smooth muscle actin (𝛼SMA). One method of
regulating fibrosis is through epigenetics; the study of heritable changes in gene function caused bymechanisms other than changes
in the underlying DNA sequence. Epigenetic mechanisms have been shown to drive renal and pulmonary fibrosis by upregulating
profibrotic factors. Hypoxia alters epigenetic mechanisms through regulating the cell’s response and there is a hypoxic environment
in the LC and TM in glaucoma.This review looks at the role that hypoxia plays in inducing aberrant epigenetic mechanisms and the
role these mechanisms play in inducing fibrosis. Evidence suggests that a hypoxic environment in glaucoma may induce aberrant
epigenetic mechanisms that contribute to disease fibrosis. These may prove to be relevant therapeutic targets in glaucoma.

1. Introduction

Glaucoma is an optic neuropathy that affects approximately
60 million people worldwide [1]. In glaucoma, the retinal
ganglion cell axons are irreversibly lost through a number of
factors that combine to create the overall disease profile [2].
The factors that contribute to the disease include, but are not
limited to: increased intraocular pressure (IOP), age, genetic
mutations, and reduced ocular perfusion pressure (OPP) [3–
7].

Within the body, there is a normal process of wound
healing and scarring, however, when this process is allowed
to continue unchecked, connective tissue fibrosis occurs [8,
9]. In glaucoma, fibrosis is known to occur as a build-up
of extracellular matrix (ECM) materials in the trabecular
meshwork (TM) at the anterior of the eye [10–12], and in
the lamina cribrosa (LC) at the optic nerve head (ONH) [13–
15]. This mechanism of fibrosis plays a role in the disease
progression. When the TM becomes clogged with ECM,

the fluid within the eye, the aqueous humor (AH) cannot
easily exit via its normal pathway and the pressure within
the eye subsequently increases. This increase in intraocular
pressure (IOP) is one of the main risk factors associated
with the progression of glaucoma [4, 16] and is currently
the only target for treatment in clinical use [17]. Following
the increased IOP, structural damage (cupping) occurs at the
optic nerve head which is associated with the loss of retinal
ganglion cells (RGC) and the loss of vision seen in glaucoma
[18, 19]. The lamina cribrosa is a fenestrated region of the
ONH through which the nerves travel to the brain [2]. In
glaucoma, there is backward bowing of the LC, and this likely
puts pressure on the optic nerves, compressing them, which
then leads to loss of vision [2, 20]. This damage at the ONH
region is associated with an accumulation of ECMmolecules
at the lamina cribrosa [4, 14, 15, 21, 22].

There are a number of profibrotic factors that have
been found to have increased levels in the AH and TM of
glaucomatous eyes. These include the cytokine transforming
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Figure 1: Epigenetic mechanisms. DNA is wrapped around proteins called histones; this forms the core DNA package called the nucleosome.
When the DNA is tightly wrapped, transcription factors cannot bind and transcription is repressed.When the DNA is more loosely wrapped,
transcription is more active as transcription factors can bind. DNA methylation is when a methyl group is added to the DNA strand and is
associated with transcriptional repression [58]. Histone acetylation is the addition of acetyl groups to the histone tails and this is associated
with transcriptional activation. Histone deacetylation is the removal of acetyl groups which is associated with transcriptional repression [59].

growth factor 𝛽 (TGF𝛽) [23], the matricellular proteins
thrombospondin-1 (TSP1) [24], and connective tissue growth
factor (CTGF) [25]. The roles of TGF𝛽 and CTGF in fibrosis
are well established [26–40]; TGF𝛽 acts through Smad
proteins to activate ECM proteins such as collagen and PAI-1
to drive fibrosis [41–44]. TGF𝛽 binds to two different serine
threonine kinase receptors—Type I and Type II. The Type II
receptor is constitutively active and when a ligand binds to
this receptor, it complexes with and phosphorylates the Type
I receptor—this then phosphorylates Smad proteins which
translocate to the nucleus to regulate gene transcription
[45]. TGF𝛽 is a known regulator of CTGF which acts as a
downstreammediator for TGF𝛽 [26, 27, 32, 46]; however, this
mechanism is poorly understood.

These factors have been shown to be involved in ECM
production [35, 47, 48], and as CTGF and TGF𝛽 are present
in the AH of human eyes [23, 25], it is possible that they drive
the production of ECM in the TM and at the LC. As previous
work from our group has shown, there are increased levels of
both TGF𝛽1 and TSP-1 in the LC cells of glaucomatous eyes
[49] and increased levels of CTGF in the AH of glaucomatous
eyes affecting the TM [25]. Further, it has been shown in
a number of fibrotic diseases that TGF𝛽 plays a role in
mediating fibrosis and causes an increase in ECM deposition
[37, 50, 51]. Studies show that the same is true in the process of
glaucoma—increased levels of TGF𝛽 lead to increased ECM
deposition in the TM and LC of glaucomatous eyes [51].

In an attempt to combat fibrosis, a number of therapeutic
approaches have been studied. Baricos et al. showed that
TGF𝛽1 inhibited ECM degradation, and blocking TGF𝛽1
using an anti-TGF𝛽1 antibody increased the degradation of
ECM in human mesangial cells (HMCs) [34]. Further, a
study of glomerulosclerosis in rat models demonstrated that
an anti-TGF𝛽 antibody significantly reduced fibrosis. This
study demonstrated decreased mRNA expression of TGF𝛽
isoforms and collagen type III in the presence of the antibody
and showed a reduction in the level of fibrosis and sclerosis

seen in the kidney [52]. It was shown that transfecting TM
cells with small interfering RNA (siRNA) for CTGF inhibited
TGF𝛽2 induced upregulation of CTGF and fibronectin [47].
A recombinant monoclonal neutralizing antibody (mAb)
to human TGF𝛽2 was shown to significantly improve the
outcome of glaucoma filtration surgery in a rabbit model
of conjunctival scarring [53]. Work by our lab has shown
that a humanized monoclonal anti-CTGF antibody FG-3019
was able to effectively block ECM production in LC and
TM cells treated with AH samples from pseudoexfoliation
glaucoma (PXFG), primary open angle glaucoma (POAG),
and hydrogen peroxide, as shown by a significant reduction
in the expression of profibrotic genes [54].

TSP1 has been shown to induce the active form of TGF𝛽
by inducing its dissociation from a protein that binds to
and keeps it, in its latent, inactive form, thereby regulating
its pathway [55]. This can result in the induction of a
fibrotic phenotype through modulation of TGF𝛽 activity
[55]. A study in mice demonstrated that knocking out TSP1
significantly lowered IOP compared to wild type mice and
that this may be due to altered ECM and aqueous humour
outflow in the knockout mice [56].

However, there is another method by which fibrosis may
be regulated, and this is through epigenetics. Epigenetics
is the study of heritable changes in gene function caused
by mechanisms other than changes in the underlying DNA
sequence [57]. It involves DNA methylation [58] and his-
tone modifications including acetylation/deacetylation and
methylation [59]. It has been proposed that these epigenetic
processes play a role in the progression of fibrosis in a
number of diseases [60–62] (Figure 1). Previously, it has
been shown that epigenetic mechanisms can influence the
activity of TSP1 in cancers [63, 64], so it is likely that there
may be a similar effect in fibrotic disease. Further, senescent
myofibroblast resistance to apoptosis has been linked to both
global and locus-specific histone modifications like methyla-
tion and acetylation [65]. Micro-RNAs (miRNAs) have been
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established as regulators of fibrosis in cardiac, kidney, and
lung fibrosis [66–68]. It has recently been demonstrated that
epigenetic mechanisms may play a role in the regulation of
miRNAs and that miRNAs use epigenetic mechanisms to
mediate their downstream effects in cardiovascular disease
and pulmonary fibrosis [69–71].

There is evidence of a hypoxic environment in glauco-
matous eyes, both in the AH and at the ONH. Oxidative
stress markers have been found in the AH of glaucomatous
eyes [72] and a study by our laboratory showed that LC
cells from glaucomatous donors show increased markers of
oxidative stress (increased production of reactive oxygen
species (ROS)) and compromised antioxidant activity [73].
A hypoxic environment has also been shown in studies that
demonstrated the presence of hypoxia-inducible factor 1𝛼
(HIF1𝛼) in the ONH, which is an indicator of hypoxia [74].
Hypoxia has been shown to induce an epigenetic response
which regulates the cellular response to the hypoxic insult
[75]. The induction of aberrant epigenetic modifications
could potentially be through the hypoxic environment caused
by the oxidative stress present in glaucomatous eyes.

TGF𝛽, TSP-1, and a hypoxic environment can contribute
to the disease pathogenesis of glaucoma and as there is a
role for epigenetics in each of these, we will look at the
epigenetic mechanisms that may be a part of the overall
process (Figure 2).

2. TGF𝛽

2.1. TGF𝛽 and Fibrosis. The TGF𝛽 family of cytokines con-
tains a number of multifunctional proteins that are involved
in the regulation of a variety of gene products and cellular
processes [13, 48, 87–89]. There are three isoforms of TGF𝛽
(1, 2, and 3) and each of these are encoded by a different gene
[90]. Members of this family are involved in inflammation,
wound healing, and ECM production and accumulation,
among others [38, 90]. TGF𝛽1 and TGF𝛽2 have been shown
to be the predominant isoforms in the eye; in the ONH and
the AH [91, 92]. TGF𝛽1 has been found to be elevated in
PXFG, and it plays a significant role in extracellular matrix
formation and accumulation in PEX syndrome [23, 93].
TGF𝛽2 levels have been found to have been increased in
POAG [92].

The TM plays an integral role in the outflow pathway
through which the aqueous humor leaves the eye. In glau-
coma, the TM becomes clogged with ECM molecules [10–
12] preventing the AH from being drained and creating
an increase in intraocular pressure. Studies demonstrated
that TGF𝛽 acts through a number of pathways in the TM
which leads to increased ECM deposition. Using exogenous
TGF𝛽, it has been shown that the process takes place in 4
mechanisms; it increases the synthesis of ECM molecules
in TM cells [51]; it increases the expression of plasminogen
activator inhibitor (PAI)-1 which prevents the activation of
matrixmetalloproteinases (MMPs) that play a role in degrad-
ing ECM [51]; it increases the transglutaminase-mediated
irreversible cross-linking of ECM components by TM cells
[94]; and it inhibits the proliferation of TM cells [95].

Glaucoma

Fibrosis
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Hypoxia/
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HIF1𝛼 TGF𝛽
TSP1

Figure 2: The potential role of hypoxia and epigenetics in the
fibrosis seen in glaucoma. The hypoxic environment in glaucoma
[74] may cause the epigenetic profile of the cells to change bringing
about a more fibrotic phenotype [61, 75].

Treatment of TM cells with TGF𝛽2 stimulates the expression
of ECM genes including collagens, fibrillin, laminin, and
elastin. TGF𝛽2 treatment can also increase the expression of
fibronectin and PAI-1 [38, 51].

There is an increase in TGF𝛽2 levels in the ONH region
of the eye; this is mostly localised to the astrocytes present
in the nerve bundles in the LC [96]. TGF𝛽 is also able to
induce TSP1 which in turn activates TGF𝛽 [24]. In the ONH,
the ECM usually provides a frame and resilience for the
nerves [97], however, in glaucoma, the ECM is altered by
basement membrane thickening along the lamina cribrosa
beams and also changes in collagen and elastin fibres within
the beams [21]. TGF𝛽2 induces the synthesis of collagens
and fibronectin [38, 51], all of which could contribute to the
thickening of the basement membrane. It has been shown
that TM cells secrete endogenous TGF𝛽1 [98], and it has
also been demonstrated that exogenous TGF𝛽 increases the
synthesis and deposition of ECMproteins in LC cells, namely,
fibronectin, collagens, elastin, and PAI-1 [96], so it is likely
that endogenous TGF𝛽 has a similar effect in these cells.
Therefore, an increase in the amount of endogenous TGF𝛽
secreted from the cells could increase ECM deposition at the
TM. Work from our lab has shown that TGF𝛽1 is increased
in glaucomatous LC cells in comparison to normal LC
cells [49] and treatment of normal LC cells with exogenous
TGF𝛽1 upregulated profibrotic genes such as CTGF, collagen
I, and thrombospondin [99]. The use of glaucomatous-
like stimulus (cyclical mechanical strain—cell stretch and a
hypoxic environment—1% O

2
) upregulated genes associated

with the ECM, such as CTGF, Collagen I, Elastin, TSP-1
macrophage migration inhibitory factor 1 (MIF), discoidin
domain receptor familymember 1 (DDR1/TrkE), and Insulin-
like growth factor 2 receptor (IGFR2) seen in the LC region
of glaucoma [84, 100].

There are a number of anti-TGF𝛽 therapies in research
and clinical trials; one such therapy is SB-431542. This is an
inhibitor of the TGF𝛽 Type I Receptor kinase activity and so
an inhibitor of the TGF𝛽 pathway. A study on the inhibition
of TGF𝛽1-induced ECM using this therapy demonstrated
that SB-431542 decreased TGF𝛽1-induced upregulation of
fibronectin and collagen1a1 in a renal epithelial carcinoma cell
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line, both of which are ECM proteins [101]. A second study
by Mori et al. similarly showed that SB-431542 prevented
the TGF𝛽-induced stimulation of collagen, fibronectin, and
CTGF in skin fibroblasts [102]. The TGF𝛽2 antibody CAT-
152 has been shown to reduce collagen deposition in the
subconjunctival following subconjunctival glaucoma surgery
and improved surgical outcome in rabbits [103].

2.2. Epigenetic Control of TGF𝛽 Expression. TGF𝛽 has also
been demonstrated to be regulated through epigenetic pro-
cesses including DNA methylation and histone acetyla-
tion/deacetylation and methylation [76, 77, 104] (Figure 3).
Alterations in the histone status of promoters of target genes
may lead to a difference in the TGF𝛽-mediated transcription
profile, and so they may determine the cell’s response to
TGF𝛽. A number of studies have shown that altered histone
modifications can affect TGF𝛽 functions within the cell [77].
The acetylation/deacetylation of histones can determine how
TGF𝛽 is able to induce a cell response to stimuli [105]. This
was demonstrated in the case of corneal fibroblasts, in the
normal process of wound healing, these cells transition from
a proinflammatory to a profibrotic phenotype. The acetyla-
tion status of corneal fibroblasts was examined and it was
found that TGF𝛽 partially inhibited histone acetylation. This
was reversed by a histone deacetylase inhibitor, trichostatin
A (TSA), which also reversed TGF𝛽-induced upregulation
of profibrotic factors. Therefore, the modification of histone
acetylation in corneal fibroblasts was involved in TGF𝛽
regulation of cell transition to a profibrotic state [77]. A
study by the same authors showed that HDAC inhibitors
TSA and sodiumbutyrate (NaBu) blocked theTGF𝛽-induced
upregulation of 𝛼SMA and collagen I in corneal stromal cells
[106]. Conversely, Inoue et al. demonstrated that Smad-2 and
-3 acetylation by the histone acetyltransferases CBP/P300
were enhanced by TGF𝛽 in renal and liver cell lines [78].This
demonstrates that TGF𝛽 plays a diverse role in the epigenetic
regulation of fibrosis by both histone acetylation and histone
deacetylation to drive fibrosis.

A further example of how histone acetylation/deacetyla-
tion can regulate TGF𝛽 activity was seen in corneal fibrob-
lasts treated with TSA demonstrated inhibition of TGF𝛽-
induced reactive oxygen species (ROS) accumulation and
myofibroblast differentiation [104].

Bruna et al. showed that TGF𝛽 induces proliferation in
one cell line (U373MG) of glioblastoma cells, but inhibits it
in another (U87MG) and this is connected to TGF𝛽 induced
platelet-derived growth factor B (PDGFB). This result can be
explained by the methylation status of PDGFB in the two cell
lines. In one of the cell lines (U87MG), the PDGFB promoter
was methylated, which blocked TGF𝛽-Smad signalling in
this cell line. However, in the other cell line (U373MG), the
promoter was not epigenetically suppressed and so TGF𝛽-
Smad signalling was active. Therefore, the DNA methylation
status of the cells is able to determine if the cell response
is controlled by TGF𝛽 activity [89]. Furthermore, the TGF𝛽
signalling pathway has been shown to be suppressed through
methylation. A number of genes were analysed and were
shown to be methylated; these genes include TGF𝛽 receptor

2 (TGF𝛽R2) and TSP-1. Treating the cells with DNA methyl-
transferase (DNMT) (responsible for the transfer of methyl
groups to the DNA) inhibitors increased the TGF𝛽 pathway
activity [76].

3. Thrombospondin

3.1. Thrombospondin-1 and TGF𝛽. Thrombospondin-1 is a
matricellular, multifunctional protein that is expressed by cell
types involved in wound healing. It is known to regulate
cellular events in tissue repair, including cell adhesion [107],
apoptosis [108], ECM expression, and organization through
modulation of growth factors [109–111]. TSP1 has been
shown, by our lab, to be increased in glaucomatous LC cells
compared to normal LC cells [49], and it has also been
demonstrated that TSP1 is increased in glaucomatous TM
cells [24]. It has been shown to be expressed at increased levels
in renal tissues undergoing fibrosis [110]. In a model of renal
fibrosis, it was found that TSP1 is an important mediator of
the disease, and its knockout reduced renal inflammation and
fibrosis [112].

TGF𝛽 is secreted from cells in a latent form which
associates with the latency-associated peptide (LAP) [113].
Dissociation of TGF𝛽 from LAP can be induced by TSP1, and
this step is necessary for the activation of TGF𝛽 [109]. TGF𝛽
activation by TSP1 is achieved through a conformational
change and is required for the regulation of the TGF𝛽
signalling pathway [114]. TSP1-TGF𝛽 binding does not affect
TGF𝛽 activity; this is possibly because TSP1 may play a role
in aiding TGF𝛽 presentation to cell surface receptors [115].

Studies have shown that TSP1 activates TGF𝛽 secreted
from a number of cell types; endothelial cells, mesangial
cells, and cardiac fibroblasts [111, 116, 117]. It has also been
demonstrated that TSP1 activates TGF𝛽 in fibrotic disease
[118]. While activation of TGF𝛽 by TSP1 is necessary during
development to give a normal phenotype [55], it is very likely
that the main role for TSP1 in regulating TGF𝛽 activation
is during the processes of injury, stress, and in pathological
conditions. In glaucoma, it is likely that TSP1 is necessary for
TGF𝛽 activity, as it is present in high levels in glaucomatous
TM [24]. Further, a number of studies have demonstrated
that treating TM cells with glaucomatous-like stimuli (TGF𝛽,
cyclical stretch) increases TSP1 in these cells [51, 99, 100].
Interestingly, it has been demonstrated that knocking out
TSP1 in mice results in a significantly lower IOP when
compared to wild type [56]. This reduction in IOP was
attributed to a change in the ECM of these mice and to an
increase in the rate of aqueous turnover. These data suggest
that TSP1 plays a role in both glaucoma and in the regulation
of ECM.

3.2. TSP1 and Epigenetics. There are also methods by which
TSP1 itself is regulated in the disease context. Aberrant TSP1
methylation has been seen to effect TSP1 regulation of TGF𝛽
in some cancers. In colorectal cancer, TGF𝛽 inhibits cell
proliferation and induces apoptosis of epithelial calls. In this
form of cancer, TGF𝛽 acts as a tumour suppressing pathway
in the initial disease stages [63]. As previously discussed,
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Figure 3: Epigenetic regulation of the TGF𝛽 pathway. TGF𝛽 has been shown to upregulate the expression of DNMT1 which causes aberrant
methylation [76] leading to a more fibrotic phenotype. Furthermore, TGF𝛽 has been shown to decrease acetylation in corneal fibroblasts
causing them to remain active and leading to fibrosis [77]. In contrast to its role in corneal fibroblasts, TGF𝛽 enhances Smad 2/3 acetylation
leading to increased activity of these Smads [78].

TSP1 regulates the TGF𝛽 pathway by activating TGF𝛽 [119].
In colorectal cancer, TSP1 has been found to be aberrantly
methylated, and it is thought that it may promote tumorigen-
esis [63]. As it is known that the TGF𝛽pathway is regulated by
TSP1, it has now been hypothesised that TSP1 promotes the
formation of tumours through inhibiting the TGF𝛽 pathway
when its methylation status is altered. For example, Rojas
et al. demonstrated that the hypermethylation of the TSP1
promoter in colorectal cancer suppressed TSP1 mRNA and
protein expression. The reduced levels of TSP1 inhibited the
activation of TGF𝛽 in the disease and so suppressed theTGF𝛽
signalling pathways which are beneficial in the first stages
of disease. Another study of gastric cardia adenocarcinoma
demonstrated that while TSP1 promoter methylation affected
the mRNA and protein levels of thrombospondin 1, there
were no significant effects on TGF𝛽 expression, although a
nonsignificant decrease of active TGF𝛽 was seen in patients
with TSP1 hypermethylation [64] indicating that the methy-
lation of TSP1 causes downregulation of TSP1 and therefore
decreased active TGF𝛽.

4. Hypoxia

4.1. Hypoxia and Glaucoma. Hypoxia is a state in which
there is not enough oxygen entering the tissues for them to
function as normal. It is linked to age as a natural feature in
many organs [120]. However the cellular response to hypoxia
may result in the increased expression of survival factors
[75]. There is evidence that there is a hypoxic environment
present in glaucoma [74], and that this hypoxic state induces
retinal ganglion cell (RGC) death which is part of the disease
pathogenesis [121]. Our lab has also shown evidence of
oxidative stress in glaucomatous LC cells and a decreased
capacity of the cells to counteract the oxidative stress [73]. It
has been shown that ocular blood flow is reduced in patients
with glaucoma [79–81, 122, 123], and specifically in those in

which the disease is progressing. A decrease in blood flow
could lead to a decreased level of oxygen—giving a hypoxic
state [82]. Increased IOP and decreased ocular perfusion
pressure [4–6, 81, 83] can both effect the ocular blood flow,
and so the hypoxic environment and the oxidative stress
may be a result of increased IOP seen in glaucoma [82, 124].
Following from this, it has been found that a fluctuating
blood flow is likely to be a cause of glaucomatous damage.
Further, work from our laboratory demonstrated that in
vitro hypoxia can cause LC cells to produce genes involved
in ECM production and remodelling including insulin-like
growth factor 2 receptor (IGFR2) andmacrophage migration
inhibitory factor 1 (MIF) (Figure 4). The HIF families are the
key regulators of the cell’s adaptive response to hypoxia, and
they control the expression of many genes involved in many
cell processes, including fibrosis [125, 126]. HIF1𝛼 regulates
gene expression through hypoxia response elements (HRE)
present in the promoter regions of target genes. Hung et al.
identified a HRE in the TGF𝛽1 promoter; this likely allows it
to be regulated by hypoxia [86].

It is believed that RGC death may be caused by a
hypoxia-induced apoptotic pathway [74, 121]. Hypoxic states
induce the expression of HIF1𝛼, which is responsible for the
transcriptional responses that allow cells to adapt to a hypoxic
environment [75]. Tezel and Wax conducted a study where
they found evidence of increased HIF1𝛼 expression in the
ONHof glaucomatous eyes [74]. Regions ofHIF1𝛼 expression
indicate areas of decreased oxygen and so hypoxic stress,
which suggests that there is tissue hypoxia in glaucoma and
that this plays a role in the disease. Also, areas of HIF1𝛼
expression were also found to correlate to areas of visual field
defects in patients [74].

4.2. Hypoxia and Fibrosis. A role for hypoxia in fibrosis
has been suggested in different experimental models such
as adult wound repair [127] and cirrhosis [128]. It has been
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Figure 4: Hypoxia induces the expression of ECM remodelling
genes in LC cells. It has been hypothesized that the increased IOP in
glaucoma causes the blood flow to the eye to be altered, and this may
be a cause of the hypoxic environment seen in glaucomatous eyes
[79–83]. In addition to the altered blood flow, our group has shown
that glaucomatous LC cells have decreased antioxidant capacity [73].
We have also shown that hypoxia can induce increased expression of
ECMremodelling genes such as insulin-like growth factor 2 receptor
(IGFR2) and macrophage migration inhibitory factor 1 (MIF) in LC
cells [84].

shown that hypoxia up-regulates collagenase IV expression
in cardiomyocytes [129], and increases interstitial collagen
in renal tubulointerstitial cells, while decreasing collagen IV
expression [130]. A study by Corpechot et al. demonstrated
that hypoxia in hepatic stellate cells may directly affect the
quantitative and qualitative change in the ECM during liver
fibrogenesis [128]. As mentioned before, collagens are ECM
proteins and so the upregulation of collagens leads to an
increase in ECM build-up. Along with this, it has also been
demonstrated that hypoxia can mediate the induction of
TGF𝛽 mRNA in a hepatoma cell line [131] and in dermal
fibroblasts [132]. It has been hypothesised that hypoxia may
act in converting TGF𝛽 from its latent form to its active form
[133] as there is a HRE in the TGF𝛽1 promoter [86], which
allows it to be regulated by hypoxia.

In tubulointerstitial cells, it is believed that altered
microvasculature brings about a hypoxic environment that
causes a fibrotic response “the chronic hypoxia hypothesis”
[134]. As mentioned before, there is altered blood flow in
glaucoma [82], and this may be a similar mechanism to
that seen in the tubulointerstitial cells. In tubular epithelial
cells, hypoxia has been seen to induce changes in expres-
sion of genes that play a role in cell adaptation to stimuli
[135]. Hypoxia has been shown to induce the expression of
fibrogenic factors including TGF𝛽 and angiogenic factors
including vascular endothelial growth factor (VEGF) [136].
The cell’s response to hypoxia acts with other fibrogenic
stimuli to add to the fibro-vascular response, as well as
inducing its own changes [137].

Hypoxia has also been shown to promote a more fibrotic
phenotype in fibroblasts, which are ECM-producing cells
[137]. It does this by increasing proliferation, and enhanc-
ing cell differentiation and contraction. It also alters the
metabolism of the ECM and upregulates proteins associated
with matrix production [138] and acts to decrease expression
of proteins that degrade the ECM, such as matrix metallo-
proteinases [133]. There is evidence that hypoxia may also be
involved in suppressing the apoptosis of fibroblasts [139]. A
study by Zhang et al. showed that hypoxia increases the TSP1
pathway that activates TGF𝛽 signalling in human umbilical
vein endothelial cells [140]—suggesting that hypoxia may
affect the expression of TGF𝛽 through a number of regulatory
processes. It was demonstrated that HIF1𝛼 could induce the
expression of TSP1 in cells grown in hypoxic conditions.This
was achieved through HRE binding near the transcription
starting site, asHIF-1𝛼was demonstrated to bind to this site in
a hypoxic environment [141]. HIF1𝛼 has been shown to be the
most active in regulating gene expression associated with the
hypoxic response [136]. It may play a role in the promotion of
fibrosis through the induction of epithelial-to-mesenchymal
transition (EMT) in which cells change from an epithelial
phenotype to a more fibrotic, myofibroblast phenotype [136].

4.3. Hypoxia and Epigenetics. A study by Watson et al.
showed that chronic hypoxia in prostate cells induced an
alteration in DNA methylation and histone acetylation. In
the absence of HIF1𝛼 which is responsible for downstream
mediation of the hypoxic phenotype, epigenetic alterations
may take over this role in establishing and maintaining the
hypoxia related phenotype [75]. Furthermore, it has been
suggested that HIF may require epigenetic mechanisms to
aid in the initiation and maintenance of the cell pheno-
type in a hypoxic environment. In the presence of oxygen,
HIF1𝛼 is regulated through hydroxylation, ubiquitination,
and degradation by prolyl hydroxylase enzymes (PHD) [142].
In the absence of oxygen, this is inhibited which allows
for HIF1𝛼 stabilisation and activation [143]. HIF1𝛼 regulates
gene expression through hypoxia response elements (HRE)
present in the promoter regions of target genes [144]. This
binding can be affected through DNA methylation and
histone modification, which may maintain a favourable
chromatin conformation around HRE sites (Figure 5).

The creb binding protein/p300 coactivator (CBP/P300) is
a histone acetyltransferase (HAT) that functions by adding
acetyl groups to histones and driving gene transcription. It
is known to associate with HIF1𝛼 to coactivate hypoxia-
inducible genes [145]. This association can be affected by
histone deacetylases (HDACs) and also by HDAC inhibitors.
HDAC3 is a binding partner of HIF1𝛼 that aids in the
regulation of its stability during the hypoxic response [146].
HIF1𝛼 binding may also be affected by the methylation of
CpG sites at the HRE. DNA hypomethylation, which is
typically associated with more active gene transcription, has
been shown to be induced by tumour hypoxia [147].

Additionally, there is also evidence to suggest that epi-
genetic modifications induced by hypoxia play a role inde-
pendent of HIF. Modified histones in this case can directly
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DNMTs/HATs/HDACs

DNA methylation/chromatin remodelling
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Figure 5: Epigenetic changes allow HIF binding to HIF response
elements (HREs). A hypoxic environment within a cell can cause
normal epigenetic mechanisms to be changed, altering the level
of DNA methylation and/or modifying chromatin conformation
allowing HIF1𝛼 to bind to the HRE on the gene [85]. The TGF𝛽1
promoter has been previously shown to contain a HRE [86], and so
hypoxia can alter TGF𝛽1 expression through HIF1𝛼.

interact with promoter regions of hypoxia-inducible genes
[147, 148]. Robinson et al. showed that DNA hypermethyla-
tion induced by hypoxia in human pulmonary fibroblasts is
associated with the development of a profibrotic phenotype.
Thy-1 is a glycoprotein that can affect intracellular signalling
pathways. Its absence on fibroblasts is associated with a
myofibroblast phenotype. This group showed that hyperme-
thylation of the Thy-1 promoter was induced by hypoxia and
led to a myofibroblast phenotype and treatment with 5-aza-
2-deoxycytidine caused an increase inThy-1 expression [61].

5. Epigenetics in Ocular Diseases

There are a number of studies that have suggested a role
for epigenetics in ophthalmology. A study of monozygotic
and dizygotic twins with discordant age-related macular
degeneration (AMD) showed differential methylation of the
promoter regions of 231 genes [149]. A further study of
AMD conducted bisulfite sequencing of the retinal pig-
ment epithelium (RPE); there was hypermethylation of the
promoter regions of two glutathione S transferase (GTSM)
isoforms, which resulted in decreased mRNA and protein

[150]. Importantly, GTSMs are involved in defending against
ROS, which have been shown by our lab to be upregulated
in glaucomatous cells [73]. The hypermethylation of the 𝛼A-
crystallin (CRYAA) promoter also coincided with downreg-
ulation of mRNA and protein in age-related cataract [151].
Zhou et al. showed that methylation of the collagen 1a1
(COL1A1) promoter could play a role in the development
of myopia [152]. In a mouse model of optic nerve crush
(ONC), there was an increase in the nuclear localisation and
activity of HDACs 2 and 3 and a corresponding increase in
histone 4 deacetylation; this was associated with RGC death
[153]. Further, the silencing of the Fem1cR gene by histone
deacetylation has been connected to RGC death in a DBA/2J
mouse model of glaucoma [154]. In addition to this, there
is a role for epigenetics in diabetic retinopathy; it has been
shown that in streptozotocin (STZ) treated rats kept under
poor glycemic control, there is increased HDACs 1, 2, and 8
in the retina and retinal endothelial cells [155].

6. Future Perspectives on Epigenetic
Therapies in Glaucoma

Currently there are a number of epigenetic treatments
being used to treat myelodysplastic syndromes and cuta-
neous T-Cell lymphoma. DNMT inhibitors Azacitidine and
Decitabine are used to treatmyelodysplastic syndromes [156].
These DNMT inhibitors cause DNA hypomethylation which
has resulted in an improved survival rate for patients with
myelodysplastic syndromes. These drugs were well tolerated
in patients during clinical trials. This indicates that these
agents may be good candidates for glaucoma therapies, if it
can be demonstrated that there is aberrant DNAmethylation
occurring in glaucoma.

HDAC inhibitors such as Vorinostat and Romidepsin are
in use to treat cutaneous T-Cell lymphoma [157].These drugs
are used when a patient relapses and other treatments are
not effective. Vorinostat is a pan-HDAC inhibitor, and so
inhibits class I, II, and IVHDACs.There are someminor side-
effects associated with this drug, although it is overall well-
tolerated. Romidepsin is similarly a pan-HDAC inhibitor also
targeting class I, II, and IV HDACs. Some minor side effects
were found in clinical trials but the treatments proved very
effective. Similarly, if it can be shown that the mechanisms
of histone acetylation/deacetylation are altered in glaucoma,
these treatments may be an option for glaucoma. Further, it
has been demonstrated that HDAC inhibitors may alter DNA
methylation levels [158–161]. Sanders et al. found that treating
rat lung fibroblasts with TSA demethylated previously hyper-
methylated sites of theThy-1 promoter region [161]; TSA also
upregulated methyltransferase activity in these cells [161].
Another study demonstrated that TSA reduced the global
DNA methylation of cancer cell lines and downregulated the
DNMT1 protein and also altered DNMT1 activity [160]. This
demonstrates that there may be a synergistic role for these
epigenetic mechanisms, and so combination therapies may
be beneficial in treating aberrant epigenetic mechanisms in
fibrotic diseases.
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As there are already epigenetic treatments in clinical
use, research into the role of epigenetics in glaucoma may
offer potential new avenues of therapy to treat the disease.
Furthermore, as previously mentioned, increased IOP is the
only target for treatment, and discoveringmore about the role
of epigenetics may provide a target for the underlying causes
of the disease.

7. Conclusion

Glaucoma is a multifactorial disease in which all of the
above elements play a role. What we can take from the
current information is that there is still much to be discovered
about the different aspects of the disease pathogenesis. Of
particular importance is the role of epigenetics within some
of the contributing factors to the disease and how the overall
epigenetic profile of a glaucomatous eye differs from that of
a normal eye. When taking into account the roles of TGF𝛽
and TSP1 in glaucoma, it is clear that these have an epigenetic
aspect which contributes to the activity of these proteins in a
number of diseases, and so it may play a part in how TGF𝛽
and TSP1 control the cellular response in the glaucomatous
environment.

This also links to the role that hypoxia plays in regulating
the epigenetic profile of glaucoma, as hypoxia also plays a
role in the regulation of TGF𝛽 and TSP1. The hypoxic and
oxidative stress environment found in glaucoma is thought
to play a significant part in the disease pathogenesis through
HIF1𝛼 and the induction of aberrant epigenetic modification.
Epigenetic alterations allow a cell to adapt to the hypoxic
environment and therefore change its phenotype—possibly
to a profibrotic one in the context of glaucoma.
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